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Transgenic Chickens Expressing the 
3D8 Single Chain Variable Fragment 
Protein Suppress Avian Influenza 
Transmission
Sung June Byun1, Seong-su Yuk2, Ye-Jin Jang1, Hoonsung Choi1, Mi-Hyang Jeon1, TO Erdene-
Ochir2, Jung-Hoon Kwon2, Jin-Yong Noh2, Jeom Sun Kim1, Jae Gyu YOO1 & Chang-Seon Song2

The 3D8 single chain variable fragment (scFv) is a mini-antibody that causes unusual sequence-
independent nuclease activity against all types of nucleic acids. We used recombinant lentiviruses to 
generate transgenic chickens expressing the 3D8 scFv gene under the control of the chicken β-actin 
promoter. From 420 injected embryos, 200 chicks (G0) hatched and were screened for the 3D8 scFv 
using PCR, and 15 chicks were identified as transgenic birds expressing the transgene in their semen. 
The G0 founder birds were mated with wild-type hens to produce seven transgenic chicks (G1). 3D8 
scFv expression in the chicken embryonic fibroblasts (CEFs) was verified by RT-PCR and Western blot 
analysis. Immunofluorescence staining for 3D8 scFv in the CEFs revealed that the 3D8 scFv protein 
was primarily cytosolic. To identify 3D8 scFv anti-viral activity, wild-type and two transgenic CEF 
lines were infected with H9N2 avian influenza virus (AIV). We selected one line of transgenic chickens 
that exhibited the lowest number of plaque-forming units to be challenged with H9N2 virus. The 
challenge experiment revealed that contact exposed transgenic chickens expressing 3D8 scFv exhibited 
suppressed viral shedding. This results suggest that the transgenic chickens developed in this study 
could be useful for controlling potential within-flock AIV transmission.

Avian influenza (AI) belong to type A influenza virus have potential to infect a wide range of animal species, and 
its transmission characteristics make it a global threat to domestic birds as well as mammals, including humans1. 
In the poultry industry, when diseases are endemic and/or biosecurity measures are impractical to enforce, vac-
cination is one of the most widely used tools for the control of AI infection2; however, the diversity of viral 
antigenic subtypes and their potential for evolutionary shifts and genetic drift are major hurdles that inhibit the 
achievement of sterile immunity by vaccination, even for antigenically well-matched viruses3, 4. Therefore, novel 
approaches for controlling AI infections are needed, and alternative strategies for the prevention and control of 
influenza virus infection are being developed.

To date, several antiviral research approaches have been utilized to control AI. Inhibitors such as antiviral 
drugs act to block the activity of viral proteins involved in the targeted virus’ entry into, replication within or 
departure from host cells5, 6; however, there is concern that antiviral drug abuse in farm animals could lead to 
the growth of antiviral-resistant mutant viruses. Monoclonal antibody targeting of viral proteins has had limited 
success because of the difficulty in identifying suitable epitopes for neutralization as well as viral antigen shift 
and drift7. Another antiviral approach operates by degrading the viral RNA genome using siRNAs, which are 
sequences that target avian influenza virus (AIV) ribonucleoprotein or nucleoprotein genes8, 9. In a more practical 
approach, recombinant proteins, such as cytokines and probiotics, have been utilized as feed additives to improve 
immunity against AI10–13. Notably, all of the antiviral approaches described above are limited to a degree because 
of their high cost and difficulty of application in vivo.

Ribonucleases (RNases) represent another antiviral therapy approach to degrading viral RNA genomes. 
Earlier studies demonstrated that RNases originating from different hosts exhibit effective antiviral activities 
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towards the human immunodeficiency virus (HIV-1) and potato spindle tuber viroid (PSTVd), although the 
antiviral effects of these RNases depends on their RNA-hydrolyzing activity14–16. The 3D8 single chain variable 
fragment (3D8 scFv) is produced from the variable domains of heavy (VH) and light (VL) DNA products of an 
anti-DNA monoclonal antibody isolated from the spleen cells of the MRL-lpr/lpr mouse, which spontaneously 
develops an autoimmune syndrome resembling human systemic lupus erythematosus17. 3D8 scFv is distinctive 
in that the recombinant protein can internalize via caveolae/lipid raft pathway-mediated endocytosis via initial 
interactions with cell-surface heparin sulfate proteoglycans and then accumulate in the cytosol without being 
translocated to the nucleus18. Moreover, a recent study demonstrated that 3D8 scFv exhibits hydrolytic activity 
towards RNA and DNA viruses19, 20. These study demonstrated that the 3D8 scFv gene may have the potential 
for use as an effective new antiviral material that can prevent and control AIV by hydrolyzing the AIV genome.

We investigated genetic modifications as an approach for controlling AI in commercial poultry by introducing 
a 3D8 scFv gene customized to have an increased affinity for AI nucleoproteins. Here, we generated a line of trans-
genic chickens expressing the 3D8 scFv gene, evaluated transgenic 3D8 scFv expression and performed challenge 
experiments using H9N2 AIV.

Results
Production of transgenic chickens expressing 3D8 scFv.  The CBA-3D8 scFv-HA-IRES-puro lentivi-
ral vector (Supplementary Figure S1) was pseudotyped with vesicular stomatitis virus glycoprotein (VSV-G) and 
used to produce transgenic birds. A total of 420 embryos (stage-x) were injected with approximately 100,000 virus 
particles each, and 200 G0 chicks (47.6%) ultimately hatched. To screen for the transgenic chickens, 185 chicks 
were raised to sexual maturation, and semen samples from 92 surviving roosters were screened by PCR. Fifteen 
cockerels (G0) were identified as possessing the 3D8 scFv gene presented in the germ line (data not shown). Three 
transgenic roosters (J-21, J-168, and J-186) were randomly selected and crossed to wild-type counterparts, and 
1302 chicks (J-21, 459; J-168, 335; J-186, 508) were produced and screened. From these chicks, 9 transgenic G1 
offspring were identified by PCR (data not shown). The J-168 rooster did not produce any transgenic progeny, 
whereas the J-21 and J-186 roosters produced 6 and 3 progeny, respectively. During G1 transgenic chick growth, 
two died (N-140 and P-296) suddenly of unknown causes. A Southern blot analysis was used to verify the pres-
ence of the 3D8 scFv insertion in seven G1 birds (N-82, N-95, N-165, N-183, N-238, P-54, and P-196) and one 
G2 bird (offspring of P-54) (Fig. 1). The transgenic chickens were divided in two groups according to their gene 
insertion positions, which resulted from the different founder transgenic chickens (J-21 and J-186). Because the 
G1 transgenic birds consisted of one male and six females, the transgenic G1 animals were crossbred to wild-type 
hens or roosters to generate G2 transgenic chickens. The 187 resulting G2 progeny were screened by PCR to 
assess the presence of the transgene (data not shown). The ratio of transgenic to non-transgenic offspring (91/187, 
49%) did not significantly differ from the expected Mendelian ratio, and the results from the G1 generation of 
transgenic chickens are summarized in Supplementary Table S2. The expression of 3D8 scFv in the transgenic and 
wild-type chicken tissues was analyzed by RT-PCR using the 3D8 scFv-specific primer. In the transgenic chickens, 
the transgene was expressed in all tissues, whereas in the wide-type chickens, 3D8 scFv was not expressed in any 
tissues (Fig. 2). We also investigated behavioral pattern and weight gain kinetics in case of possible phenotypic 
disorder derived from the production. The transgenic chickens showed normal behavioral properties in hear-
ing, seeing, vocalizing, smelling, feeding and even mating. We compared relative weight gains of the transgenic 

Figure 1.  Southern blot analysis of the transgenic chickens. Genomic DNA samples were extracted from whole 
blood samples from wild-type and transgenic chickens (G1 and G2), digested with EcoRV, electrophoresed, 
blotted, and hybridized with a probe for the 3D8 scFv gene. M, DIG-labeled DNA marker; lane 1, wild-type 
chicken; lane 2, P-54; lane 3, P-54 offspring; lane 4, N-82; lane 5, N-95; lane 6, N-165; lane 7, N-183; lane 8, 
P-196; lane 9, N-238.
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chicken with that of other lines transgenic or non-transgenic chickens (Supplementary Figure S4). Accordingly, 
we presumed no significant in phenotyping relationship between 3D8 protein and lentiviral vector-derived factor.

3D8 scFv expression in transgenic CEFs.  To characterize the expression and distribution of 3D8 scFv 
protein within the transgenic CEFs, Western blotting and confocal microscopy analyses were performed. Because 
the Western blot analysis did not show any positive bands under normal conditions, we performed an immuno-
precipitation and observed a band at approximately 30 kDa, which corresponded to the 3D8 scFv protein (Fig. 3). 
3D8 scFv appeared to be expressed at low levels. Similarly, confocal microscopy revealed a weak cytoplasmic 
fluorescence signal (Fig. 4). Together, these data indicate that transgenic CEFs expressed 3D8 scFv at low levels. 
To localize the inserted 3D8 scFv gene in transgenic chicken, we traced the sequence and identified that the vector 
was inserted into the intron sequence between exon 18 and 19 of ABCA4 transcript variant 1 (Supplementary 
Figure S3).

Figure 2.  RT-PCR analysis of 3D8 scFv mRNA in transgenic and wild-type chicken tissues. 3D8 scFv mRNA is 
present in the trachea (1), ovary/testis (2), kidney (3), spleen (4), pancreas (5), brain (6), lung (7), liver (8), heart 
(9), muscle (10), and intestines (11).

Figure 3.  Western blot analysis of 3D8 scFv proteins in transgenic and non-transgenic CEFs. The 3D8 
scFv gene was expressed in transgenic CEFs. A heavy chain was also detected in all samples because of the 
immunoprecipitation. M: standard marker protein sizes; lane 1, wild-type CEF; lane 2, transgenic CEF (E-185); 
lane 3, transgenic CEF (D-280).

Figure 4.  Cells were stained with rabbit anti-HA tag antibody and secondary FITC-anti-rabbit antibody for 
confocal microscopy; DAPI-stained nuclei are colored blue. Wild-type (A), transgenic CEFs (B).

http://S4
http://S3


www.nature.com/scientificreports/

4ScIeNtIfIc REPOrTs | 7: 5938 | DOI:10.1038/s41598-017-05270-8

Reduced viral growth in transgenic CEFs.  To assess the antiviral activities of the 3D8 scFv protein in 
CEFs, we compared the viral growth in transgenic and non-transgenic CEFs using a plaque reduction assay. 
Compared with the non-transgenic CEFs, the transgenic CEF supernatant exhibited significantly reduced plaque 
formation in MDCK cells. Compared with the plaque formation results for the non-transgenic CEFs, reductions 
of 71.1% and 41.1% were observed for the 10-fold diluted D-280 and E-185 CEF plaques, respectively (Fig. 5). 
Meanwhile, relative intensity of Western blot bands in Fig. 3 were 89.2% (D-280) and 65.1% (E-185). These results 
indicate that H9N2 virus growth was inhibited in transgenic CEFs as relative expression of 3D8 scFv increase, 
which results in reduced plaque formation on MDCK cells. In addition, we performed real-time PCR, assessing 
the expression level of the 3D8 scFv gene in the bronchi of wild-type and transgenic chickens, The 3D8 scFv was 
highly expressed in the transgenic chicken (D-280) (Supplementary Figure S5). Although the 3D8 scFv expres-
sion level in the bronchi was not enough to reduce viral shedding from direct H9N2 infection through nasal inoc-
ulation, it could suppress the viral shedding in the contact-exposed chickens as shown in the animal experiment.

Reduced viral shedding of transgenic chickens after contact transmission of AIV.  Transgenic 
chickens were experimentally infected with AIV to determine whether the expression of the nucleic-acid hydro-
lyzing antibody conferred reduced viral shedding from the challenged group or reduced susceptibility to infection 
via contact exposure with the directly infected group. To test whether the H9N2 virus infected the challenged 
chickens and was successfully transmitted to the contact-exposed chickens under our experimental conditions, 
SPF chickens were designated as a control group. Direct infection resulted in viral shedding in oropharyngeal 
samples from all of the directly infected chickens; however, compared with the D-280 and non-TG groups, the 
SPF group exhibited higher oropharyngeal mean viral shedding titers at 5 and 7 dpi. The cloacal mean viral 
shedding titers of the D-280 and non-TG groups were also significantly lower than that of the SPF chickens on 
swabbing days. The D-280 group did not exhibit reduced oropharyngeal viral shedding when directly infected. 
The only difference observed between the transgenic and non-transgenic chickens was reduced cloacal mean viral 
shedding titers in the D-280 group at 7 dpi (Fig. 6). To assess the protective capacity of transgenic chickens against 
contact AIV transmission, viral shedding levels were also measured for contact-exposed transgenic chickens. All 
of the non-TG and SPF group chickens exhibited oropharyngeal and cloacal viral shedding, suggesting successful 
contact transmission in our experimental conditions. Interestingly, compared with the direct challenge group, 
the mean viral shedding titer of the contact-exposed D-280 group was lower than that of non-TG chickens. The 
D-280 group also showed significantly reduced oropharyngeal viral shedding compared with the non-TG group 
at 5, 7, and 9 dpi. The non-TG group presented cloacal viral shedding at 7 and 9 dpi, whereas only one D-280 
cloacal sample exhibited viral shedding with a significant (p < 0.001) difference in the mean viral shedding titer 
(Fig. 7).

Reduced antibody responses to AIV contact exposure in transgenic chickens.  To identify the 
evidence of immune response in transgenic chicken following AIV infection, seroconversions were detected 
using ELISA and HI assays. The ELISA assay detected seroconversion in all of the directly challenged chickens. 
Seroconversion of all of the contact-exposed non-TG and SPF chickens suggests that the viruses shed by chal-
lenged chickens were successfully transmitted; however, contact exposure to AIV induced seroconversion of 
only four of ten D-280 chickens. The D-280 chickens showed significantly (p < 0.001) reduced mean HI titers 

Figure 5.  Plaque reduction assay from 3D8 scFv-expressing H9N2-infected CEFs with intensity of the Western 
blot bands. MDCK monolayers were infected with either undiluted or 10-fold diluted supernatant from 3D8 
scFv-expressing H9N2-infected CEFs and overlaid with agar. After 48 hours, visible plaques were detected by 
crystal violet staining and then counted. The data are shown as the mean number of plaque-forming units for 
each assay in triplicate, and extrapolated 50% egg infectious dose were noted. Western blot band intensities of 
3D8 scFv-expressing CEFs were quantified using Image J 1.31 V software. Statistical significance: **p < 0.01; 
***p < 0.001 by ANOVA with Tukey-Kramer post-test when compared with non-TG group.
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(0.9 HIU) than non-TG chickens (5.1 HIU) (Fig. 8). These results indicate that the viruses shed by the D-280 
group failed to infect contact-exposed transgenic chickens, whereas the viruses shed by the non-TG group were 
successfully transmitted.

Figure 6.  Viral shedding of directly challenged transgenic chickens. Twenty three-week-old non-transgenic 
chickens (non-TG) and transgenic chickens (D-280) were housed each containment cages in a BSL2 animal 
facility, and an additional twenty three-week-old SPF chickens were housed as a control group. Ten chickens 
from each group were intranasally challenged with 100 μl of 107.5 EID50/mL H9N2 virus. The other 10 naïve 
chickens in each group were co-housed in the same containment isolator from 6 hour post-inoculation. 
Oropharyngeal and cloacal swab samples were collected at 3, 5, 7, and 9 days post-inoculation (dpi) from the 
challenged chickens and the viral RNA was quantified by real-time RT-PCR. Each cycle threshold value was 
extrapolated to egg infectious dose fifty and mean viral shedding titers were calculated. ***p < 0.001 by 
unpaired t-test.
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Discussion
In this study, we used a recombinant lentiviral vector system to generate transgenic chickens that express the 
3D8 single chain variable fragment (3D8 scFv) in all organ tissues. The 3D8 scFv gene encodes a recombinant 

Figure 7.  Viral shedding of contact exposed transgenic chickens. Twenty three-week-old non-transgenic 
chickens (non-TG) and transgenic chickens (D-280) were housed each containment cages in a BSL2 animal 
facility, and an additional twenty three-week-old SPF chickens were housed as a control group. Ten chickens 
from each group were intranasally challenged with 100 μl of 107.5 EID50/mL H9N2 virus. The other 10 naïve 
chickens in each group were co-housed in the same containment isolator from 6 hour post-inoculation. 
Oropharyngeal and cloacal swab samples were collected at 3, 5, 7, and 9 days post-inoculation (dpi) from 
contact exposed chickens and the viral RNA was quantified by real-time RT-PCR. Each cycle threshold value 
was extrapolated to egg infectious dose fifty and mean viral shedding titers were calculated. ***p < 0.001 by 
unpaired t-test.
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anti-nucleic acid antibody produced by linking the VH and VL DNA strands of the immunoglobulin gene iso-
lated from an autoimmune-prone MRL-lpr/lpr mouse with lupus disease17. Production and characterization of 
an anti-idiotypic single chain Fv that recognizes an anti-DNA antibody.

Because the 3D8 scFv protein possesses nuclease activity, 3D8 scFv expression is expected to inhibit viral 
genome amplification regardless of viral shift and drift21, and the 3D8 scFv protein exhibited anti-viral activity 
against classical swine fever virus (CSFV) in PK15 cells19. Therefore, 3D8 scFv overexpression in transgenic chick-
ens is predicted to damage the host genome and induce apoptosis because 3D8 scFv exhibits nuclease activity. 
A study recently demonstrated that 3D8 scFv overexpression in HeLa cells following transient transfection was 
deleterious and resulted in the degradation of the host nucleic acids18. However, low levels of 3D8 scFv expression 
were tolerated by host cells and did not affect the expression of cytoplasmic RNAs including β-actin mRNA and 
the 28 S and 18 S rRNAs19. Using RT-PCR, we demonstrated that the 3D8 scFv gene is expressed in all transgenic 
chicken organs, and because 3D8 scFv was expressed at low levels and primarily cytoplasmic, cell death was not 
induced (confocal figure). Although we did not investigate or verify 3D8 scFv expression levels in fertilized eggs, 
3D8 scFv nuclease activity might naturally eliminate embryos overexpressing 3D8 scFv during development.

We characterized the 3D8 scFv gene and protein expression in CEFs derived from 3D8 scFv transgenic 
chicken (Figs 1, 2 and 3). Although genomic and RT-PCR analyses clearly detected the 3D8 scFv gene in trans-
genic CEFs, the Western blot analysis of non-immunoprecipitated cell lysates did not detect the 3D8 scFv band. 
Because confocal microscopy detected a weak green 3D8 scFv signal via a secondary FITC-antibody, we used 
immunoprecipitation to concentrate the 3D8 scFv proteins in the CEF lysates. The Western blot analysis of the 
immunoprecipitated lysates revealed an approximately 30 kDa band corresponding to 3D8 scFv protein. Our 
study demonstrated that the 3D8 scFv gene was consistently expressed in transgenic cells. Because the level of 
3D8 scFv expression failed to induce apoptosis, the transgenic cells did not undergo apoptosis. Although we did 
not intend for the CEFs to express such low levels of 3D8 scFv protein, 3D8 scFv anti-viral activity in transgenic 
CEFs was detectable. Recently, we have expanded our research towards investigating the role of 3D8 through con-
trol of anti-viral effect against H1N1 influenza virus and MNV22, 23. Thus, we suppose that low level of 3D8 scFv 
expression could alleviate initial stage of viral propagation.

The reduction in plaque-forming units suggests that although 3D8 scFv expression levels were lower than 
expected, viral propagation in the transgenic CEFs was inhibited by the nucleic acid hydrolyzing activity of 3D8 
scFv, which resulted in the release of a virus with reduced infectivity towards MDCK cells. Based on our analysis 
of the anti-viral activity in primary cells derived from transgenic animals, we selected one transgenic chicken 
lines and examined 3D8 scFv mRNA expression by RT-PCR (Fig. 2). The selected transgenic chicken lines were 
challenged with a low-pathogenic AI (H9N2). Although AIV subtype H9N2 is categorized as a low pathogenic 
AI virus that usually replicates in the respiratory and intestinal tracts, it has caused serious economic losses in 
the Asian poultry industry, including reduced egg production and growth rates. Consequently, we determined 
whether the transgenic chicken lines could resist the H9N2 virus24–29. The expression of the nucleic-acid hydro-
lyzing antibody in transgenic chickens that were infected with H9N2 virus did not suppress oropharyngeal or 
cloacal viral shedding; however, although the viral shedding levels were similar in both transgenic and non-TG 
chickens, virus shed by direct challenge was not enough to infect contact exposed transgenic chickens. Of course, 
another transmission experiments from AIV infected non-TG chickens to TG chickens are essential to make 
a better understanding this results. However, when we compared the virus infectivity and virus titers between 
non-TG chickens and TG chickens by direct infection, the infectivity and virus titers of non-TG and TG chick-
ens were similar whether 3D8 scFv gene is expressed or not. Thus, we could suppose that because viral yields of 
H9N2 in both group of directly challenged chickens were comparable, so as the overall exposure of the virus in 
both groups of contact chickens was. The serum antibody results indicated that transgenic chickens that were 
directly challenged with the virus could not resist systemic H9N2 virus infection; however, as a result of natu-
ral transmission, transgenic chickens that were contact exposed to challenged transgenic chickens showed lit-
tle or no immune response. These results suggest that transgenic chickens that were challenged directly have 
altered H9N2 virus transmission dynamics because 3D8 scFv weakens viral infectivity. Although the transgenic 

Figure 8.  Serum antibody levels and c-ELISA results of challenged and contact exposed chickens. Serum 
samples were collected three weeks after challenge. Seroconversion was detected using competitive ELISA 
targeting nucleoprotein antibodies. Mean hemagglutination inhibition (HI) titer were compared between 
transgenic and non-transgenic chickens. Each error bar represents standard deviation. ***p < 0.001 by 
unpaired t-test.



www.nature.com/scientificreports/

8ScIeNtIfIc REPOrTs | 7: 5938 | DOI:10.1038/s41598-017-05270-8

chicken could not suppress viral shedding from direct infection, they showed some extent of protection from 
contact transmission. This limited resistance means that the transgenic chicken cannot protect a high dose virus 
from infection. However, in actual poultry farms, it is suspected that outbreak of AIV starts primarily with virus 
transmitted by contaminated workers or machineries from outside30. In consequence, the virus could infect 
non-immunized or naïve chickens at first, and spread to adjacent hosts thorough contact or air exposure. We 
suppose that the transgenic chicken might protect the first exposure of AIV to poultry farm, and also suppress 
possible chicken-to-chicken and chicken-to-human transmission.

Currently, vaccination is an important tool for controlling AIV infection on poultry farms; however, if the 
vaccines are not well matched to the strain that the chickens are exposed to, protection conferred by the vaccina-
tion can be reduced and the possibility of within-flock transmission may be increased. Consequently, transgenic 
chickens that can resist AIV could represent a useful built-in resistance concept. To our knowledge, only one trial 
has been performed using a built-in resistance concept similar to our research31. One potential advantage to using 
the transgenic chickens developed here is that they could reduce continuous within-flock virus transmission by 
preventing viral replication, thus reducing the likelihood of transmission to people who are in contact with the 
chickens and ultimately reducing the potential for the spread of AIV from birds to humans. In addition, because 
we utilized 3D8 scFv that were made to target 18 nucleotide sequence of NP-encoding influenza RNA which is 
known as relatively conserved sequence regardless of subtype, the 3D8 scFv produced by transgenic chickens has 
advantage of sequence-specific degradation to influenza virus, which could be applied to other subtypes32

In conclusion, we developed a transgenic chicken line expressing 3D8 scFv, and these chickens exhibited an 
antiviral effect on AIV infection that was confirmed in transgenic chickens and CEFs, thus supporting the idea 
that 3D8 scFv is an effective anti-viral protein. These results also demonstrate that the transgenic chicken line 
developed in this study could be useful as a novel strategy for controlling AIV transmission.

Materials and Methods
Vector construction and virus particle production.  The 0.75-kb 3D8 scFv gene and the 1.7-kb chicken 
β-actin promoter (CBA) were amplified from pIg20-3D8 scFv32 and pCXGFP-1, respectively, using the following 
primers: 3D8 scFv sense, 5′-ggatccgccaccatggaggtccag-3′ and antisense, 5′-gagctcttttatttccagcttggtccc-3′; CBA 
sense, 5′-attaatagtaatcaattacggggtc-3′ and antisense, 5′-gaattctttgccaaaatgatgagac-3′. The primers were designed 
to contain BamHI, XhoI, AseI, or EcoRI sites (underlined) at their 5′ ends. The PCR-amplified fragments were 
cloned into pCR4-TOPO (Invitrogen, Carlsbad, CA, USA). To introduce the HA-tag sequences into the 3D8 scFv 
C-terminus, we synthesized oligonucleotides (5′-ctcgagtctagatacccatacgacgtcccagactacgctagctagagggcccgagctcg-
cggccgc-3′) encoding the HA tag (Bioneer, Korea) and introduced this oligo into the 3D8 scFv/pCR4-TOPO 
XhoI/NotI sites (Invitrogen). The 3D8 scFv-HA and CBA fragments were digested with BamHI and NotI or AseI 
and EcoRI, respectively. The digested fragments were then subcloned into the pEGFP-N3 BamHI and NotI or 
AseI and EcoRI sites, respectively (Clontech, Mountain View, CA, USA). The resulting CBA-3D8 scFv-HA/pEG-
FP-N3 construct was then digested with AflIII and NotI to generate a 2.5 kb CBA-3D8 scFv-HA fragment that 
was gel purified and end filled using the Klenow fragment (Promega, Madison, WI, USA). The lentivirus vector 
DP-IRES-puro (Macrogen, Korea) was digested with HpaI and EcoRV and then ligated to the CBA-3D8 scFv-HA 
fragment to generate CBA-3D8 scFv-HA-IRES-puro. The CBA-3D8 scFv-HA-IRES-puro DNA sequence was 
confirmed by sequencing, and a schematic of the construct is shown in Supplementary Figure S1. Lentivirus 
particles containing the CBA-3D8 scFv-HA gene were produced according to the manufacturer’s instructions 
(Macrogen). Briefly, three plasmids (the transfer vector, VSV-G expression vector, and gag-pol expression vector) 
were co-transfected into 293 T cells at a 1:1:1 molar ratio using Lipofectamine 2000 (Invitrogen). Culture media 
supernatants were then harvested 48 h after transfection, filtered with a 0.45 µm pore membrane filter (Nalgene, 
NY, USA), and concentrated up to 100 fold using a Centricon Plus-20 centrifugal filter (Millipore, Billerica, MA, 
USA). Recombinant virus stocks were resuspended in DMEM (Invitrogen), aliquoted, and stored at −80 °C. The 
concentrated viral stocks contained approximately 1 × 108 colony forming units per milliliter.

Generation of transgenic chickens.  The embryos were cultured until stage-X and microinjected with 
lentivirus vector as previously described33. Approximately 100,000 virus particles were microinjected into the 
center of the subgerminal cavity below the developing embryo of each newly laid egg produced by Lohmann 
brown laying hens. The embryos were incubated until hatching using the surrogate shell ex vivo culture system 
phases II and III, and the chicks that hatched were raised to sexual maturity. To screen the transgenic roosters for 
the presence of the transgene, genomic DNA was extracted from the semen of hatched roosters (G0) using the 
Wizard® Genomic DNA Purification Kit (Promega). A PCR assay (50 μl volume) was performed using FastStart 
PCR master (Roche Applied Science, Indianapolis, IN, USA), 50 ng of genomic DNA template, and 100 nM of 
each primer (sense, 5′-cctctgctaaccatgttcatgccttc-3′ and antisense, 5′-gctagtgaatgtgtatccagaagcctt-3′) to amplify 
260 bp DNA fragments, including the β-actin promoter and 3D8 scFv gene. The PCR assay was performed under 
the following conditions: initial DNA denaturation at 95 °C for 4 min; 35 sets of incubations at 95 °C for 30 s, 60 °C 
for 30 s, and 72 °C for 20 s; and a final incubation at 72 °C for 5 min. The transgenic roosters were then mated with 
wild-type hens to produce G1 and G2 transgenic chickens. Transgene insertions in individual G1 and G2 chick-
ens were analyzed first by PCR and subsequently by Southern blot analysis. Genomic DNA (10 μg) was isolated 
from whole blood, digested with EcoRV (Promega), resolved on a 1.0% (w/v) agarose gel, and then transferred 
to a nylon membrane (Roche). EcoRV cuts once within the integrated provirus between the HA tag and the IRES 
(see Supplementary Figure S1). The membrane was analyzed with DIG-labeled 3D8 scFv probes (25 ng/ml) using 
the DIG High Prime DNA Labeling and Detection Starter Kit II (Roche).

3D8 scFv gene expression in transgenic chickens.  To analyze the 3D8 scFv mRNA expression patterns 
in transgenic chickens, tissue samples were harvested and homogenized using TRIzol and a PureLink® RNA Mini 

http://S1
http://S1
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Kit (Invitrogen) according to the manufacturer’s protocol. Total RNA was isolated from the chicken embryonic 
fibroblasts (CEFs) and organ tissues (e.g., trachea, ovary/testis, kidney, spleen, pancreas, brain, lung, liver, heart, 
muscle, and intestine) of an adult G2 hemizygous transgenic and a wild-type hen. cDNA was synthesized from 2 
μg of total RNA using the ImProm-IITM reverse transcription system (Promega) according to the manufacturer’s 
instructions. One microliter of cDNA was used for each 50 μl PCR reaction, which were performed using Ex Taq 
DNA polymerase (TaKaRa, Tokyo, Japan). The following primers were used for the PCR amplifications: 3D8 
scFv sense, 5′-actctcaccatcagcagtgtgcag-3′ and antisense, 5′-ctagctagcgtagtctgggacg-3′; chicken GAPDH sense, 
5′-gattctacacacggacacttcaagg-3′ and antisense, 5′-acaatgccaaagttgtcatggatgac-3′34. Following an initial cDNA 
denaturation at 95 °C for 2 min, the PCR amplification conditions consisted of denaturation at 95 °C for 20 s, 
annealing at 60 °C for 40 s, and extension at 72 °C for 30 s. Thirty-five amplification cycles were performed for 
3D8 scFv and 25 cycles were performed for GAPDH. The PCR products were resolved on 1.5% agarose gels, and 
GAPDH amplification was used to normalize cDNA loading.

3D8 scFv transgenic chicken embryonic fibroblast cells.  To prepare the primary CEFs, the body 
walls of 10-day-old chicken embryos were chopped with a knife, trypsinized, and collected by centrifugation35. 
Enzymatic activities were stopped with fetal bovine serum (FBS), and the cells were washed once with PBS. The 
culture media contained 15% FBS (HyClone, Logan, UT), 100 U/ml penicillin (HyClone), and 100 µg/ml strep-
tomycin (HyClone). The harvested cells were plated and maintained at 37 °C with 5% CO2. The 3D8 scFv trans-
genic cells isolated from transgenic eggs were selected by 2 µg/ml Puromycin (Sigma, St Louis, MO) for 3 days. 
The surviving cells were selected and amplified in the same media containing 2 µg/ml Puromycin for subsequent 
experiments. The amplified cells were frozen in Recovery™ Cell Culture Freezing Media (Gibco, Grand Island, 
NY, USA) for later experiments.

Western blot analysis.  Western blot analysis was performed to assess 3D8 scFv protein expression in the 
transgenic CEFs (D-280, offspring of P-54; E-185, offspring of N-165). Cell lysates were produced using wild-type 
and transgenic CEFs and then immunoprecipitated with protein G-agarose beads (Roche) and 5 µl of polyclonal 
rabbit anti-HA tag antibodies (Abcam, Cambridge, UK) at 4 °C overnight. The precipitated proteins were resolved 
by SDS-PAGE and transferred to a nitrocellulose membrane (Roche). The membrane was then immersed in 
blocking solution containing 5% skim milk in TBS-T at room temperature for 1 h and incubated with 1 µg/ml of 
a monoclonal mouse anti-HA tag antibody (Abcam) in TBS-T at 4 °C overnight. The membrane was then washed 
3 times for 10 min with TBS-T and incubated with the appropriate HRP-conjugated second antibody in 5 TBS-T 
with % skim milk at room temperature for 1 h. The blot was then washed 5 times with TBS-T, and the specific 
antibody-antigen complexes were detected using an ECL detection system (GE Healthcare, Fairfield, CT, USA).

Confocal laser scanning microscopy and immunofluorescence analysis.  Transgenic (D-280) and 
wild-type CEFs were seeded at a density of 5 × 104 cells/well in a 4-well plate over glass coverslips the day before 
use. The cells were fixed with 4% paraformaldehyde for 15 min, washed 3 times with cold PBS 3 times and then 
permeabilized with Perm buffer (1% BSA, 0.1% saponin, and 0.1% sodium azide in PBS) at room temperature for 
10 min. The cells were blocked with 3% horse serum in PBS for 40 min and then incubated with rabbit anti-HA 
tag Ab followed by FITC-anti-rabbit IgG (Invitrogen). The nuclei were stained by incubating cover slips with 
100 µg/ml propidium iodide at room temperature for 5 min. The cells on the coverslips were mounted in mount-
ing media, observed using a Zeiss LSM 510 laser confocal microscope and analyzed with Carl Zeiss LSM Image 
software.

CEF viral infection.  CEFs from two G2 hemizygous transgenic progeny (D-280 and E-185) and 
non-transgenic embryos were prepared and cultured in M199 (Invitrogen, Germany) and Ham’s F-10 (Sigma, St 
Louis, MO) mixed media containing 10% FBS (Hyclone, Logan, UT, USA), 0.65% sodium bicarbonate, and 1% 
penicillin/streptomycin. The CEFs were prepared 24 h prior to H9N2 infection at 107.5 EID50/200 µl, and the infec-
tions were performed in triplicate. After 48 h, confluent MDCK monolayers that had been propagated in 6-well 
plates were infected with an undiluted supernatant and a 10-fold diluted supernatant from the H9N2 
virus-infected CEFs. After infection, the cells were washed with PBS and overlaid with a 0.7% agarose gel 
(Invitrogen) containing 1 μg/ml tosylsulfonyl-phenylalanyl-chloromethyl ketone (TPCK)-treated trypsin 
(Sigma). After 48 h, the cells were fixed in 10% PBS-buffered formalin and plaques were visualized using crystal 
violet staining.

In vivo viral infection and transmission studies.  Twenty three-week-old non-transgenic chickens 
(non-TG) and transgenic chickens (D-280) were housed in containment cages in a BSL2 animal facility, and an 
additional twenty three-week-old SPF chickens were housed as a control group. All chickens were identified using 
individual tags, and feed and water were supplied ad libitum. To confirm that the chickens were serologically 
naïve to AI, we utilized a commercially available competitive ELISA (BioNote, Korea) directed against 
anti-nucleoprotein (NP) antibodies. Ten chickens from each group were intranasally challenged with 100 μl of 
107.5 EID50/mL H9N2 virus (A/Korean native chicken/Korea/K040110/2010). Ten naïve chickens in each group 
were co-housed in the same containment isolator for 6 hours post-inoculation. To assess viral shedding, oro-
pharyngeal and cloacal swab samples were collected at 3, 5, 7, and 9 days post-inoculation (dpi) and suspended in 
1 mL of PBS. Suspensions (200 μl) were used for RNA extraction using an RNeasy Mini Kit (QIAGEN, Valencia, 
CA, USA) according to the manufacturer’s instructions. Viral RNA was quantified by cycle threshold (Ct) values 
using M gene-based real-time RT-PCR as previously described36. To extrapolate the Ct values to infectious units, 
serial 10-fold dilutions were prepared from known titers of A/Korean native chicken/Korea/K040110/2010 
(H9N2) viruses from egg allantoic fluid (measured in EID50). Viral RNA was extracted from these dilutions and 
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quantified by real-time RT-PCR, as described above. To generate a standard curve, the Ct values for each viral 
dilution were plotted against the viral titers. The resulting standard curve had a high correlation coefficient 
(r2 > 0.99) and was used to determine the EID50 from Ct values. To detect the immune response to challenged 
virus, serum samples were collected three weeks after challenge for hemagglutination inhibition (HI) assays. HI 
assays were performed according to the OIE standard HI method using 4 hemagglutination units (HAU) of 
formalin-inactivated homologous antigen37.

Ethics statements.  The generation of transgenic chickens was reviewed and approved by the Korea National 
Institute of Animal Science Institutional Animal Care and Use Committee (IACUC) (2013–051). The experi-
mental procedures used in animal management, reproduction, and embryo manipulation followed the standard 
operating procedures of our laboratory. Transgenic chicken infections were performed at the Konkuk University 
School of Veterinary Medicine and approved by the Konkuk University IACUC.

Statistical analysis.  An analysis of variance (ANOVA) and Tukey–Kramer post-hoc test were used to com-
pare the plaque reduction percentages. Unpaired t-tests were used to compare viral shedding and serum HI titers 
between transgenic chickens and non-transgenic chickens. P-values < 0.05 were considered to be significant.
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