
Citation: Schira-Heinen, J.; Wang, L.;

Akgün, S.; Blum, S.; Ziegler, B.;

Heinen, A.; Hartung, H.-P.; Küry, P.

Modulation of Specific

Sphingosine-1-Phosphate Receptors

Augments a Repair Mediating

Schwann Cell Phenotype. Int. J. Mol.

Sci. 2022, 23, 10311. https://

doi.org/10.3390/ijms231810311

Academic Editor: Cheorl-Ho Kim

Received: 22 July 2022

Accepted: 1 September 2022

Published: 7 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Modulation of Specific Sphingosine-1-Phosphate Receptors
Augments a Repair Mediating Schwann Cell Phenotype
Jessica Schira-Heinen, Luzhou Wang, Seda Akgün, Sofia Blum, Brigida Ziegler, André Heinen, Hans-Peter Hartung
and Patrick Küry *

Neuroregeneration Laboratory, Department of Neurology, Medical Faculty, Heinrich-Heine-University,
40225 Düsseldorf, Germany
* Correspondence: kuery@uni-duesseldorf.de; Tel.: +49-211-81-17822; Fax: +49-211-81-18469

Abstract: Transdifferentiation of Schwann cells is essential for functional peripheral nerve regen-
eration after injury. By activating a repair program, Schwann cells promote functional axonal
regeneration and remyelination. However, chronic denervation, aging, metabolic diseases, or chronic
inflammatory processes reduce the transdifferentiation capacity and thus diminish peripheral nerve
repair. It was recently described that the sphingosine-1-phosphate receptor (S1PR) agonist Fin-
golimod enhances the Schwann cell repair phenotype by activation of dedifferentiation markers and
concomitant release of trophic factors resulting in enhanced neurite growth. Since Fingolimod targets
four out of five S1PRs (S1P1, S1P3-5) possibly leading to non-specific adverse effects, identification of
the main receptor(s) responsible for the observed phenotypic changes is mandatory for future specific
treatment approaches. Our experiments revealed that S1P3 dominates and that along with S1P1
acts as the responsible receptor for Schwann cell transdifferentiation as revealed by the combinatory
application of specific agonists and antagonists. Targeting both receptors reduced the expression of
myelin-associated genes, increased PDGF-BB representing enhanced trophic factor expression likely
to result from c-Jun induction. Furthermore, we demonstrated that S1P4 and S1P5 play only a minor
role in the adaptation of the repair phenotype. In conclusion, modulation of S1P1 and S1P3 could be
effective to enhance the Schwann cell repair phenotype and thus stimulate proper nerve repair.
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1. Introduction

Despite similarities, repair Schwann cells (SCs), also called Büngner cells, differ from
immature Schwann cells by the activation of a repair program and downregulation of
myelin gene expression (reviewed in [1]). Acute injuries to the peripheral nervous system
(PNS) lead to de- or transdifferentiation of Schwann cells orchestrating peripheral nerve
regeneration by initiation of the immune response, support of myelin clearance as well
as axonal regeneration by providing trophic factors and axonal guidance molecules [2,3].
Although peripheral nerve regeneration is quite efficient compared to the injured central
nervous system, the overall regeneration capacity diminishes over time as well as in re-
sponse to pathological changes in the nervous tissue. For example, it was demonstrated
that Schwann cells in chronically denervated nerves lose the capacity to transdifferentiate
with subsequent failure of trophic factor secretion and nerve regeneration [4,5]. Moreover,
aging reduces the regeneration capability due to less efficient activation of the transdif-
ferentiation program [6] including lower amounts of trophic factor secretion (reviewed
in [7]) and induction of chronic inflammatory processes [8]. Pharmacological modulation of
Schwann cells to adopt and maintain the repair phenotype thus fulfills unmet clinical needs,
particularly for the extended periods typically required for nerve repair in humans [9].
Thus, reactivation of Schwann cells in distal nerve stumps and stimulating their intrinsic
capacity could be effective in order to enhance the nerve regeneration potential [5,10,11].
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Sphingosine-1-phosphate (S1P) is derived from ceramide via deacylation by cerami-
dases resulting in the intermediate sphingosine which is phosphorylated by sphingosine
kinases 1/2 [12]. S1P primarily acts as an extracellular signaling molecule via binding to
five different G-protein-coupled receptors (S1P1-5) regulating, e.g., cell growth, prolifer-
ation, and migration as well as apoptosis and inflammation [13–15]. Each S1P receptor
is able to trigger distinct signaling pathways and is therefore potentially implicated in
regulatory functions of various cellular responses. S1P1 acts via activation of G-protein Gi
whereas S1P2 and S1P3 act via Gi, Gq, and G12/13 activation, and S1P4 and S1P5 activate Gi
and G12/13.

Modulation of S1P receptors by application of FTY720P (Fingolimod) to both juvenile
and adult Schwann cells promotes the generation of the repair mediating Schwann cell
phenotype characterized by a downregulation of myelin proteins and temporal activation
of c-Jun, the latter of which is known to trigger Schwann cell transdifferentiation [16–18].
Moreover, mass spectrometry analysis revealed that FTY720P induces the secretion of a
number of trophic factors involved in glial-mediated PNS repair via promoting neurite
growth of dorsal root ganglion (DRG) explants on both growth permissive and growth
inhibitory substrates [16,19]. Additionally, the TGFβ-Smad signaling pathway is activated
in response to Fingolimod treatment [19]. TGFβ signaling was previously suggested to
promote nerve regeneration by reactivation of a growth permissive Schwann cell phe-
notype [20–22]. Transdifferentiation processes after PNS injury seem to be similar to an
epithelial mesenchymal transition (EMT) behavior [2,22]. Interestingly, it was shown that
the EMT is modulated by S1P signaling in a TGFβ-dependent manner [23,24] indicating
that S1P receptor (S1PR) modulation could be used as a therapeutic option to promote
nerve regeneration via an engaged Schwann cell transdifferentiation process.

Since Fingolimod targets four out of five S1PRs (S1P1, S1P3-5) [25,26] possibly leading
to unspecific side effects, identification of the main receptor responsible for SC transdiffer-
entiation is mandatory for future specific treatment approaches. We, therefore, investigated
which S1PR subtype dominated SC transdifferentiation and whether the specific modu-
lation of single S1PR subtypes is sufficient to promote the generation of the Schwann cell
repair phenotype.

2. Results
2.1. S1P Receptor Expression in Rat Schwann Cells

We aimed at identifying the S1P receptors involved in phenotypic changes representing
repair Schwann cells. Whereas large differences in receptor subtype expression were
initially reported in Schwann cell cultures [27], a later study described them to be expressed
at similar levels in cultured neonatal rat Schwann cells [28]. Due to these inconsistencies, we
reevaluated S1P1-5 gene expression levels in neonatal rat Schwann cells cultured according
to well-established protocols [19,29,30]. This demonstrated that compared to S1P1, S1P4
and S1P5 showed slightly lower abundances whereas S1P2 transcript levels were >150-fold
and S1P3 transcript levels were >2000-fold increased, respectively, indicating that these
two receptors are highly expressed in SCs (Figure 1). Given the low levels of S1P4 and S1P5
and since Fingolimod does not target S1P2, we focused on S1P1 and S1P3.
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Figure 1. S1P receptor expression in cultured rat neonatal Schwann cells. Gene expression analysis 
revealed that S1P2 and S1P3 are highly expressed in SCs whereas S1P4 and S1P5 were slightly lower 
abundant compared to S1P1. For statistical analysis, a one-way ANOVA with Dunnett’s multiple 
comparison test was used, *** p < 0.001 (n = 5–6). Shown are the mean values ± SEM. 

2.2. Effect of S1P1 Modulation on the Schwann Cell Phenotype 
Treatment with Fingolimod induces a repair Schwann cell phenotype [16,19] which 

could be triggered by targeting all S1P receptors except S1P2. To investigate whether S1P1 
is necessary for the induction of the SC repair phenotype, an S1P1 antagonist (EX26) was 
used in combination with Fingolimod, and expression patterns of corresponding markers 
were analyzed. Fingolimod induced the expression of growth-associated protein 43 (GAP43, 
Figure 2A) and the growth factor platelet-derived growth factor-beta (PDGF-BB, Figure 2B) 
known to support axonal regeneration. Transition to repair cells was further accompanied 
by a reduced expression of transcripts encoding the myelin and lymphocyte protein (Mal, 
Figure 2C) as well as the myelination-associated transcription factors early growth response 
2 (Egr2; Krox20, Figure 2E) and octamer transcription factor 6 (Oct-6, Figure 2F). Further-
more, tyrosinase-related protein 1 (Tyrp1) expression, known to be controlled by c-Jun [17], 
was downregulated upon Fingolimod treatment (Figure 2D). Besides treatment with Fin-
golimod as a positive control, EX26 was applied alone to investigate possible side effects 
of the antagonist itself. Antagonizing S1P1 alone showed no effect on the SC phenotype 
since the expression of the aforementioned markers was unchanged with the exception of 
slightly increased Tyrp1 levels (Figure 2D). Importantly, the combination of Fingolimod 
with EX26 led to a striking change in the expression pattern with Fingolimod-specific 
GAP43, PDGF-BB, and Mal responses (Figure 2A–C) being almost abolished. Neverthe-
less, Krox20 expression after co-treatment with Fingolimod and EX26 did not differ signif-
icantly from EX26-only treated cells (Figure 2E), while Tyrp1 (Figure 2D) and Oct-6 (Figure 
2F) were similarly expressed as in Fingolimod-only treated cells. These observations pro-
vide evidence that Schwann cell transdifferentiation boosted by Fingolimod is at least par-
tially dependent on S1P1. This was further supported by the finding that c-Jun and p-c-
Jun proteins, which are both further induced by Fingolimod [16], can be abolished by co-
application of the S1P1 antagonist EX26 (Figure 2G,H,J,K) whereas EX26 alone did not 
have any impact on these protein abundances. Quantification of PTEN and p-PTEN 

Figure 1. S1P receptor expression in cultured rat neonatal Schwann cells. Gene expression analysis
revealed that S1P2 and S1P3 are highly expressed in SCs whereas S1P4 and S1P5 were slightly lower
abundant compared to S1P1. For statistical analysis, a one-way ANOVA with Dunnett’s multiple
comparison test was used, *** p < 0.001 (n = 5–6). Shown are the mean values ± SEM.

2.2. Effect of S1P1 Modulation on the Schwann Cell Phenotype

Treatment with Fingolimod induces a repair Schwann cell phenotype [16,19] which
could be triggered by targeting all S1P receptors except S1P2. To investigate whether S1P1
is necessary for the induction of the SC repair phenotype, an S1P1 antagonist (EX26) was
used in combination with Fingolimod, and expression patterns of corresponding markers
were analyzed. Fingolimod induced the expression of growth-associated protein 43 (GAP43,
Figure 2A) and the growth factor platelet-derived growth factor-beta (PDGF-BB, Figure 2B)
known to support axonal regeneration. Transition to repair cells was further accompanied
by a reduced expression of transcripts encoding the myelin and lymphocyte protein (Mal,
Figure 2C) as well as the myelination-associated transcription factors early growth response 2
(Egr2; Krox20, Figure 2E) and octamer transcription factor 6 (Oct-6, Figure 2F). Furthermore,
tyrosinase-related protein 1 (Tyrp1) expression, known to be controlled by c-Jun [17], was
downregulated upon Fingolimod treatment (Figure 2D). Besides treatment with Fingolimod
as a positive control, EX26 was applied alone to investigate possible side effects of the
antagonist itself. Antagonizing S1P1 alone showed no effect on the SC phenotype since the
expression of the aforementioned markers was unchanged with the exception of slightly in-
creased Tyrp1 levels (Figure 2D). Importantly, the combination of Fingolimod with EX26 led
to a striking change in the expression pattern with Fingolimod-specific GAP43, PDGF-BB,
and Mal responses (Figure 2A–C) being almost abolished. Nevertheless, Krox20 expression
after co-treatment with Fingolimod and EX26 did not differ significantly from EX26-only
treated cells (Figure 2E), while Tyrp1 (Figure 2D) and Oct-6 (Figure 2F) were similarly
expressed as in Fingolimod-only treated cells. These observations provide evidence that
Schwann cell transdifferentiation boosted by Fingolimod is at least partially dependent on
S1P1. This was further supported by the finding that c-Jun and p-c-Jun proteins, which are
both further induced by Fingolimod [16], can be abolished by co-application of the S1P1
antagonist EX26 (Figure 2G,H,J,K) whereas EX26 alone did not have any impact on these
protein abundances. Quantification of PTEN and p-PTEN protein abundances revealed no
difference after Fingolimod treatment reflecting previous results [16]. Additionally, levels
of PTEN and p-PTEN were not affected by antagonizing S1P1 (Figure 2G,I,J,L).
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Figure 2. Antagonizing S1P1 reverses the effect of Fingolimod. Compared to Fingolimod (FTY) 
alone, the combination with the S1P1 antagonist EX26 abolished the transition to the repair pheno-
type. Upon combinatory treatment, GAP43 (A), PDGF-BB (B) and Mal (C) showed similar 

Figure 2. Antagonizing S1P1 reverses the effect of Fingolimod. Compared to Fingolimod (FTY) alone,
the combination with the S1P1 antagonist EX26 abolished the transition to the repair phenotype.
Upon combinatory treatment, GAP43 (A), PDGF-BB (B) and Mal (C) showed similar expression levels
compared to control (buffer) treated SCs. Expression levels of Tyrp1 (D), Krox20 (E) and Oct-6 (F)
slightly increased compared to Fingolimod. To exclude side effects of the antagonist, EX26 was applied
alone revealing only a slight upregulation of Tyrp1 compared to control. For statistical analysis, a
one-way ANOVA with Tukey’s multiple comparison test was used, * p < 0.05, ** p < 0.01, *** p < 0.001.
Shown are the mean values ± SEM with at least n = 4 biological replicates. Western Blot analysis (G,J)
and respective quantification revealed an induction of c-Jun (H) and p-c-Jun (K) after Fingolimod
treatment for 24h which was abolished by co-application with the S1P1 antagonist EX26. No effect on
PTEN (I) and p-PTEN (L) protein abundances was observed, respectively. Representative Western
Blots are shown (G,K). Quantitative data include mean values ± SEM of three biological replicates.
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To further investigate whether S1P1 is important for the phenotypic transition of
SCs into repair cells, the selective S1P1 receptor agonist Ponesimod was used to target
S1P1. Gene expression analysis revealed that stimulation of S1P1 by Ponesimod led to a
significant induction of the regeneration-associated genes GAP43 (Figure 3A) and PDGF-BB
(Figure 3B). In addition, a significant decline in expression of myelin-associated genes Mal
(Figure 3C), Tyrp1 (Figure 3D), Krox20 (Figure 3E) and Oct-6 (Figure 3F) was observed.
Upon combination with EX26, GAP43, PDGF-BB, and Mal gene expression changes were
almost neutralized and similar to controls. Compared to treatment with Ponesimod alone,
the combination with EX26 led to a significantly increased expression of Tyrp1, Krox20, and
Oct-6 which was, however, still not reaching levels of control SCs. By applying Ponesimod
we confirmed an implication of S1P1 in the transition of SCs to the repair phenotype.
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tion of gene expression upon stimulation with the selective S1P1 agonist Ponesimod revealed a 

Figure 3. Ponesimod enhances the generation of a SC repair phenotype. qRT-PCR-based quantifi-
cation of gene expression upon stimulation with the selective S1P1 agonist Ponesimod revealed a
significant induction of GAP43 (A) and PDGF-BB (B) expression whereas Mal (C), Typr1 (D), Krox20 (E)
and Oct-6 (F) expression were reduced. The combinatory treatment with EX26 almost abolished all
Ponesimod-dependent effects. For statistical analysis, a one-way ANOVA with Tukey’s multiple
comparison test was used, * p < 0.05, ** p < 0.01, *** p < 0.001 with at least n = 4 biological replicates.
Shown are the mean values ± SEM.

2.3. Role of S1P3 in Schwann Cell Transdifferentiation

The high expression level of S1P3 (Figure 1) prompted investigations on its additional
role in SC transdifferentiation. For this purpose, an S1P3 antagonist (TY52156) was co-
applied with Fingolimod and subsequently, expression levels of the aforementioned repair
SC marker genes were measured. Treatment with this S1P3 antagonist alone did not affect
overall gene expression levels with exception of slightly induced Mal (Figure 4C) and
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Krox20 expression levels (Figure 4E). The significant induction of GAP43 and PDGF-BB in
response to Fingolimod was completely abolished in presence of TY52156 (Figure 4A,B).
Furthermore, Fingolimod-dependent downregulation of Mal (Figure 4C), Tyrp1 (Figure 4D),
Krox20 (Figure 4E) and Oct-6 (Figure 4F) transcript levels were successfully antagonized
in presence of TY52156, with some gene expression levels even slightly exceeding those
of control-treated cells. Likewise, induction of c-Jun protein expression by Fingolimod
was reduced in the presence of TY52156, whereas PTEN and p-PTEN levels remained
unchanged (Figure 4G–L). Thus, these results indicate that besides S1P1 also S1P3 enhances
transdifferentiation into the repair SC phenotype. Hence, by applying this S1P3-specific
antagonist the effect of Fingolimod on the generation of the repair mediating Schwann cell
phenotype could be reversed.
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Figure 4. Induction of the repair Schwann cell phenotype by Fingolimod is neutralized by antagonizing
S1P3. Co-application of Fingolimod (FTY) with TY52156 led to a reversed expression of GAP43 (A),
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PDGF-BB (B), Mal (C), Tyrp1 (D), Krox20 (E) and Oct-6 (F) compared to Fingolimod treatment
alone having similar expression levels as control treated SCs. Treatment of SCs with the S1P3
antagonist alone led to a slight increase of Mal (C) and Krox20 (E). For statistical analysis, a one-
way ANOVA with Tukey’s multiple comparison test was used, * p < 0.05, ** p < 0.01, *** p < 0.001
with at least n = 4 biological replicates. Shown are the mean values ± SEM. Increased levels of
c-Jun (G,H) and p-c-Jun (J,K) proteins induced by Fingolimod were abolished by co-application of
the S1P3 antagonist whereas no effect on PTEN (G,I) and p-PTEN (K,L) protein levels was detected.
Representative Western Blots are shown (G,K). Quantitative data include mean values ± SEM of
three biological replicates.

In order to verify that S1P3 is involved in the induction of the repair mediating
Schwann cell phenotype, an agonist specifically targeting S1P3 (CYM5541) was applied in
subsequent stimulation experiments. Expression of GAP43 and PDGF-BB was upregulated
(Figure 5A,B) and myelin-related genes were downregulated (Figure 5C–F) in presence
of CYM5541 reflecting the Fingolimod related expression patterns. Co-application of the
S1P3 antagonist TY52156 completely abolished these transcriptional responses and even
significantly boosted Tyrp1 expression levels thus corroborating that S1P3 is essential to
induce the repair of SC phenotype.
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expression analyses. As these molecules and their dosing are not well described we first 
tested a small variety of concentrations. Modulation of S1P4 resulted in concentration-
dependent expression changes of GAP43, PDGF-BB, and Tyrp1 whereas the myelin-asso-
ciated genes Mal, Krox20, and Oct-6 were not affected (Figure 6). 

Figure 5. Specific stimulation of S1P3 enhances the Schwann cell repair phenotype. Application of
the S1P3 agonist CYM5541 enhanced the SC repair phenotype including a significant induction of
GAP43 (A) and PDGF-BB (B) expression whereas the myelin-associated genes Mal (C), Tyrp1 (D),
Krox20 (E) and Oct-6 (F) were reduced. The effect of the S1P3 agonist was completely neutralized
by co-application of the S1P3 antagonist TY52156. For statistical analysis, a one-way ANOVA with
Tukey’s multiple comparison test was used, * p < 0.05, ** p < 0.01, *** p < 0.001 with at least n = 4
biological replicates.
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2.4. S1P4 and S1P5 Only Play a Minor Role in Schwann Cell Transdifferentiation

Due to the low expression levels of S1P4 and S1P5 in Schwann cells, we hypothesized
that they exert only minor roles regarding transdifferentiation. To this end, we used specific
agonists for S1P4 (CYM50260) and S1P5 (A971432) and subsequently performed gene ex-
pression analyses. As these molecules and their dosing are not well described we first tested
a small variety of concentrations. Modulation of S1P4 resulted in concentration-dependent
expression changes of GAP43, PDGF-BB, and Tyrp1 whereas the myelin-associated genes
Mal, Krox20, and Oct-6 were not affected (Figure 6).
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affected by S1P4 modulation. For statistical analysis, a one-way ANOVA with Dunnett’s multiple
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Since some genes were indeed regulated by this S1P4 agonist, we next used an S1P4
antagonist CYM50358 (S1P4 A) in combination with Fingolimod and again analyzed SC
markers by qRT-PCR. This revealed that the S1P4 antagonist alone had no effect on gene
expression and that this molecule was also not able to modulate Fingolimod-dependent
responses (Figure 7).
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alone as well as in combination with Fingolimod (FTY + S1P4 A) revealed no effect on the expression
of GAP43 (A), PDGF-BB (B), Mal (C), Tyrp1 (D), Krox20 (E) and Oct-6 (F) whereas Fingolimod alone
led to the typical expression pattern of all markers. For statistical analysis, a one-way ANOVA with
Tukey’s multiple comparison test was used, * p < 0.05, ** p < 0.01, *** p < 0.001 (n = 3).

Strikingly, independent of the concentration, modulation of S1P5 by means of S1P5
agonist A971432 application did not affect the expression of the repair SC markers (Figure 8).
Thus, our data revealed that enhancement of the repair program gene expression by
fingolimod did not require activation of S1P4 or S1P5 receptors.
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3. Discussion

Transdifferentiation of myelinating and non-myelinating Schwann cells into a repair
mediating cell type is an important prerequisite for successful nerve repair after peripheral
nerve injury. Due to extended regeneration periods in humans, efficient transdifferentiation
faces limitations. In addition, peripheral nerve pathologies induced by, e.g., inflammation,
diabetes, or drugs reduce the nerve repair capacity resulting in life-long nerve impairment
and consequently diminished quality of life. Thus, particularly in conditions of impeded
nerve regeneration, pharmacological treatment to reactivate Schwann cells to adopt and
maintain the repair phenotype could be effective in order to enhance nerve restoration.

S1P receptor modulation by Fingolimod treatment was shown to boost the repair
phenotype of cultured neonatal and adult rat Schwann cells characterized by downregula-
tion of myelin-associated genes and induction of trophic factor secretion [16,19]. However,
to prevent adverse side effects, identification of the main S1P receptor responsible for
transdifferentiation is mandatory to develop new therapeutic approaches to foster the SC
repair phenotype and thus functional nerve repair. We here investigated the impact of S1P
receptor modulators on the Schwann cell phenotype and demonstrated that S1P1 and S1P3
are the main contributors to Schwann cell transdifferentiation. Targeting both receptors
reduced the expression of myelin-associated genes, and increased PDGF-BB representing
enhanced trophic factor expression, both likely due to the induction of c-Jun.

It was already demonstrated that rat as well as human Schwann cells express S1P1 pro-
tein in vitro and in vivo [28] as well as other S1P receptors [27]. Nevertheless, we performed
another qRT-PCR analysis to verify that Schwann cells which were prepared and cultured in
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a different manner also expressed S1P1 (and other S1P receptors). Gene expression analysis
revealed that S1P3 is highly expressed in cultured Schwann cells compared to other S1P
receptors (Figure 1). Thus, S1P3 is likely to be the main Fingolimod target in SCs. Fur-
thermore, S1P2 is highly expressed in Schwann cells, however, since Fingolimod does not
target S1P2, this receptor subtype was excluded from further investigation. Nevertheless,
the involvement of S1P2 in chemotherapy-induced neuropathy [31] and its high expression
levels in Schwann cells suggest an important role in the PNS and should be addressed in
future investigations. In comparison, S1P4 and S1P5 relative expression levels were low
which is in agreement with previous observations [27]. Of note, RNA-sequencing of SCs pu-
rified from sciatic nerves after injury revealed low expression levels of S1P5 [22] indicating
that our observations in cultured Schwann cells reflect physiological S1P5 expression levels
in vivo. Interestingly, dedifferentiated Schwann cells derived from the bridge and from
the distal nerve part significantly downregulated S1P3 whereas the other S1P receptors
were not affected by the injury [22]. It thus appears that S1P3 has a physiological relevance
during the nerve repair process which needs further characterization. At protein level, it is
known that S1P1 is internalized after binding to Fingolimod, hence protein turnover and
localization could be highly dynamic depending on extrinsic signals. Therefore, future
experiments have to address the temporal and spatial S1P1 and S1P3 localization as well as
posttranscriptional/-translational regulation in cultured Schwann cells and in vivo after
nerve injury.

By applying combinations of Fingolimod with antagonists for S1P1 and S1P3, respec-
tively, we provided evidence that both receptors are involved in Schwann cell transdif-
ferentiation. Fingolimod enhanced the SC repair phenotype characterized by changes in
transcription factor expression including a downregulation of Krox20 and Oct-6 accompa-
nied by an induction of GAP43 and PDGF-BB as well as higher c-Jun protein levels, the latter
of which is known to be a key regulator in Schwann cell transdifferentiation [17]. Similar to
Fingolimod treatment, S1P1 antagonism by EX26 reverses the pathology of experimental
autoimmune encephalomyelitis (EAE) which depends on significant lymphocyte seques-
tration in the lymph nodes [32]. In Schwann cells, however, S1P1 antagonism by EX26
application revealed no significant impact on the cellular phenotype (Figure 2). Since Fin-
golimod promotes the internalization of S1P1 which is counteracted by EX26 [32] it appears
that S1P1 internalization could indeed be relevant for Schwann cell transdifferentiation.

Combined application of Fingolimod with EX26 (Figure 2) partially abolished the
Fingolimod-mediated phenotypic changes. Co-application of EX26 neutralized the Fingolimod-
mediated upregulation of the pro-regenerative factors GAP43 and PDGF-BB, accompanied
by reduced expression of Mal. However, expression levels of Tyrp1, Krox20, and Oct-6 were
similar to Fingolimod-treated cells. Likewise, the S1P1 agonist Ponesimod enhanced the
repair phenotype, however, EX26 antagonism was only partially effective to neutralize the
phenotypic changes (Figure 3). In contrast, Fingolimod-mediated repair phenotype adap-
tion seems to be more effectively neutralized by the S1P3 antagonist TY52156 than EX26
since the Fingolimod-mediated phenotypic changes were completely abolished (Figure 4).
The S1P3 antagonist TY52156 was shown to inhibit Fingolimod-induced bradycardia
in vivo [33] which is a well-known side effect of Fingolimod treatment. Oral bioavailability
makes TY52156 attractive for future therapeutic approaches, however, needs further valida-
tion [34]. Interestingly, targeting S1P3 by TY52156 application slightly induced Mal and
Krox20 expression, which is opposite to the effect of Fingolimod application. It thus appears
that S1P3 plays an essential role in Schwann cell phenotypic adaptations to Fingolimod.
By using the S1P3 agonist CYM5541, the Schwann cell repair phenotype was successfully
induced (Figure 5), thus suggesting that S1P3 may have a role in SC transdifferentiation.
CYM5541 was stated to specifically bind to S1P3 when applied in concentrations up to
10 µM. Furthermore, this S1P3 agonist is supposed to occupy a differential chemical space
in the ligand binding pocket than S1P. Thus, this allosteric binding site may account for
the high S1P3 selectivity of CYM5541 [35], especially in low concentrations as used in the
presented study. The repair phenotype effect of CYM5541 was completely neutralized by
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co-application with the S1P3 antagonist TY52156, thus confirming the important role of
S1P3 in Schwann cell transdifferentiation. The induction of higher c-Jun as well as p-c-Jun
levels by Fingolimod was likewise neutralized by co-application of S1P1 and S1P3 antago-
nists, respectively (Figures 2 and 4). Both receptors are known to target a wide spectrum
of downstream effectors. Whereas S1P1 selectively binds to Gαi/0, S1P3 acts via Gαi/0,
Gαq, and G12/13, the latter of which is known to regulate Jun kinase (JNK) which in turn
phosphorylates c-Jun (reviewed by [36]). Crosstalk between both S1P receptor-activated
pathways could explain that antagonism of both S1P receptors leads to neutralization of
the Fingolimod-induced increase of p-c-Jun levels. Future experiments should address a
detailed pathway analysis with a focus on S1P1 and S1P3-based induction of c-Jun signaling
and putative crosstalk of both receptors.

Expression levels of S1P4 and S1P5 were relatively low in cultured Schwann cells
(Figure 1). However, since Fingolimod targets both receptors we investigated their role
in Schwann cell transdifferentiation. Targeting S1P4 by the agonist CYM50260 revealed a
concentration-dependent effect on the expression levels of GAP43, PDGF-BB, and Tyrp1
of which GAP43 and Tyrp1 were contrarily regulated compared to Fingolimod-induced
phenotypic changes (Figure 6). We can only speculate on the activity of this supposed S1P4
agonist in that its specificity is not that tight. On the other hand, despite evidence that
S1P4 does not appear to be one of the main receptors for Schwann cells, it nevertheless
might interfere with S1P1 and S1P3. Additionally, antagonism of S1P4 revealed no effect
on the SC repair marker expression (Figure 7) indicating that this receptor only plays a
minor role in the adaptation of the repair phenotype. Similarly, targeting of S1P5 revealed
no phenotypic changes (Figure 8). Based on our observations we therefore conclude that
S1P3 modulation alone could be sufficient to efficiently support a SC repair phenotype and
might probably come with fewer side effects.

As previously shown, cultured neonatal and adult Schwann cells behave similarly re-
garding phenotypic changes after Fingolimod treatment, therefore, only neonatal Schwann
cells were used in the present study. Schwann cell reactions upon S1P modulation have
so far not been studied in vivo. Upcoming experiments will therefore have to functionally
investigate the role of S1P1 and S1P3 during peripheral nerve development and after
peripheral nerve injury, probably by Schwann cell-specific ablation of each S1P receptor.
This is of high relevance since, in antagonist/agonist combinatory experiments, binding
competition of the molecules could not fully be excluded.

In addition, since targeting S1P3 appears to be an attractive treatment option to
promote nerve repair, the impact of a (local or systemic) application of specific agonists
must be addressed in peripheral nerve injury models. To our knowledge, the role of the
S1PRs-S1P axis in Schwann cells after peripheral nerve injury has not been investigated
so far. In future studies, molecular mechanisms as well as the functionality of S1PR in
PNS regeneration should be addressed. Furthermore, as no detailed analysis of S1P itself
in peripheral nerves after injury in vivo has been performed, future investigations will
most likely also include lipidomics analyses. Interestingly, a recent study revealed that
adoption of the repair phenotype in mice is accompanied by changes in the lipid metabolism
including decreased levels of S1P which, however, is delayed in human injured nerves [37].
These observations suggest that pharmacological treatment of S1P receptors could lead to
different effects in human Schwann cells. Thus, the transfer of S1PR modulation to human
Schwann cells derived from, e.g., nerve biopsies or differentiated from induced pluripotent
stem cells represents yet another important step toward developing new treatment options.

4. Materials and Methods
4.1. Primary Neonatal Schwann Cell Culture

Primary neonatal rat Schwann cells were prepared as described previously [29,30].
Briefly, sciatic nerves were obtained from ten rat pups (postnatal days 0 to 2), the sur-
rounding epineurium was stripped off and blood vessels were removed. Nerves were cut
into pieces of approximately 1–2 mm in length and incubated with a trypsin/collagenase
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mixture (2.5%/0.6%, respectively, both Sigma-Aldrich, Taufkirchen, Germany) in DMEM
(Gibco, Life Technologies GmbH, Darmstadt, Germany) for 1 h at 37 ◦C. After stopping the
digestion process, cell homogenate was filtered using a 60 µm gaze filter and transferred
into non-coated cell culture flasks. In order to remove contaminating fibroblasts, cells
were treated twice with 10 µM arabinosyl-cytosine (Ara-C, Sigma-Aldrich) followed by
complement lysis using anti-Thy1.1 antibodies (Bio-Rad Cat# MCA04G, RRID:AB_322809)
and baby rabbit complement (Cedarlane, Burlington, ON, Canada), resulting in purified
Schwann cell cultures. To promote Schwann cell proliferation, 100 µg/mL bovine pituitary
extract (Merck Millipore, Darmstadt, Germany) was applied after complement lysis. The
purity of cultures was assessed by staining using an anti-S100 antibody (Sigma-Aldrich
Cat# S2644, RRID:AB_477501). Afterwards, neonatal Schwann cells were cultured in poly-
D-lysine (PDL, 0.1 mg/mL, Sigma-Aldrich) coated cell culture flasks at 37 ◦C and 10% CO2
in DMEM supplemented with 10% FBS (Lonza, Cologne, Germany), 2 mM L-glutamine
(Thermo Fisher Scientific, Darmstadt, Germany) and penicillin/streptomycin (Thermo
Fisher Scientific) in presence of 2 µM forskolin (Sigma-Aldrich). Schwann cell medium was
exchanged every second day.

4.2. Modulation of S1P Receptors

For treatment with S1PR modulators, Schwann cells were seeded at a density of
25,000–35,000 Schwann cells/cm2 on PDL-coated 24-well plates. On day 2 after seeding,
Schwann cells were incubated in a Schwann cell medium together with S1PR modulators for
another 48 h. Fingolimod (0.1 µM FTY720P, Echelon Biosciences, Salt Lake City, UT, USA)
was always used as a positive control. In addition, S1PR agonists were used to specifically
modulate receptors S1P1 as well as S1P3-5. All substances were dissolved in DMSO (Sigma-
Aldrich) unless otherwise stated: 7.5 µM Ponesimod (S1P1 agonist, Selleckchem, Houston,
TX, USA); 15 µM EX26 (S1P1 antagonist, Tocris Bioscience, Bristol, UK); 5 µM CYM5541
(S1P3 agonist, Tocris); 5 µM TY52156 (S1P3 antagonist, Tocris), 1.25 µM, 2.5 µM, 5 µM and
10 µM CYM50260 (S1P4 agonist, Tocris); 1 µM CYM50358 hydrochloride (S1P4 antagonist,
Tocris); 1.25 µM, 2.5 µM, 5 µM, and 10 µM A971432 (S1P5 agonist, Tocris, solved in 1N
HCl). For each treatment condition, 3–4 wells of a 24-well plate were pooled and used for
quantitative real-time-PCR (qRT-PCR) analysis.

4.3. Quantitative Gene Expression Analysis

After stimulation with S1PR modulators for 48 h, Schwann cells were washed once
with PBS and lysed with RLT buffer (Qiagen, Hilden, Germany). RNA isolation was per-
formed by using the RNeasy Mini Kit (Qiagen) according to the manufacturer’s instructions
including DNase digestion (RNase free DNase Kit, Qiagen) to avoid genomic DNA contam-
ination. RNA concentrations were measured by NanoDrop ND-1000 spectrophotometer.
Only samples with high-quality RNA (260/280 > 1.8) were further used for qRT-PCR
analysis. Synthesis of cDNA was performed by means of the High Capacity cDNA Reverse
Transcription Kit with RNase inhibitor (Life Technologies) using 250 ng total RNA per
reaction. Quantitative determination of relative gene expression was performed on Applied
Biosystems 7900 HT Fast Real-Time PCR System using primers listed in Table 1 and SYBR
Green master mix (Life Technologies). Data were analyzed according to the manufacturer’s
∆∆Ct method (Applied Biosystems). ODC and GAPDH were used as reference genes. Each
sample was related to the corresponding buffer-treated control sample.
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Table 1. Primer sequences.

Gene Primer Sequence

GAP43 fwd: CCG GAG GAT AAG GCT CAT AAG G
rev: TTG TTA TGT GTC CAC GGA AGC T

GAPDH fwd: GAA CGG GAA GCT CAC TGG C
rev: GCA TGT CAG ATC CAC AAC GG

Krox20 fwd: TTT TTC CAT CTC CGT GCC A
rev: GAA CGG CTT TCG ATC AGG G

Mal fwd: AGG AGG CCT TTG GTT ATC CC
rev: GCA AAT GGC AGA TTT GGG TAC

Oct-6 fwd: GGC ACC CTC TAC GGT AAT GTG T
rev: TTG AGC AGC GGT TTG AGC T

ODC fwd: GGT TCC AGA GGC CAA ACA TC
rev: GTT GCC ACA TTG ACC GTG AC

PDGF-BB fwd: GTT CGG ACG GTG CGA ATC
rev: GTG TGC TTA AAC TTT CGG TGC TT

S1P1 fwd: AAA TGC CCC AAC GGA GAC T
rev: TCC ATG CCC GGG ATG AT

S1P2 fwd: GGT CAA GCT CTA CGG CAG TGA
rev: AAG AGG CCC CAA TGA GCA T

S1P3 fwd: TCC TCA ACT CGG CCA TGA A
rev: ACG CCG CAT CTC TTT GCT

S1P4 fwd: TGA GGC CCA GGG ACA GTT T
rev: GGC TCT CGC ATC TTG AAG CT

S1P5 fwd: TTG GCT GTG TGC GCT TTC
rev: GGT GCA TGG AAG CGA GGA T

Tyrp1 fwd: CTT CGT CAG GGC CTT GGA
rev: GCA ATG ACA AAT TGA GGG TGA GT

4.4. Western Blot Analysis

For protein analysis, 1.5–2 × 106 Schwann cells were seeded on PDL-coated 10 cm
dishes. On day 2 after seeding, cells were incubated in Schwann cell medium together with
S1PR modulators for another 24 h using the same concentrations as for gene expression
analysis. Prior to cell harvest, the medium was removed, and cells were washed 3× with
ice-cold PBS to prevent protein contaminants originating from the FBS-containing culture
medium. Afterward, 2 mL PBS was added to the dish, and cells were detached from the
dish using a cell scraper (Sigma Aldrich). The cell suspension was centrifuged for 10 min
at 2100 rpm and 4 ◦C. The supernatant was removed, and cell pellets were immediately
frozen and stored at −80 ◦C. Cells were lysed in RIPA buffer (Cell Signaling Technology,
Danvers, MA, USA) supplemented with HALTTM Protease/Phosphatase inhibitor cocktail
and EDTA (both Thermo Fisher Scientific). Lysates were sonicated (SonopulsHD2070; 50%
power, pulse 0.5 s on and 0.5 s off) and centrifuged for 10 min at 14,000 rpm and 4 ◦C.
Protein concentrations of supernatants were determined by DC Protein assay (BioRad, Cat#
5000112). Same protein amounts for each sample (30 µg to detect non-phosphorylated
proteins or 50 µg to detect phosphorylated proteins) were diluted in Bolt LDS sample buffer
supplemented with Bolt sample reducing agent, incubated at 70 ◦C for 10 min, loaded
onto an SDS-PAGE (Bolt 12% Bis-Tris Plus Gel) and run for 15 min at 50 V followed by
200 V for 45 min (Sure Lock X Cell, all Thermo Fisher Scientific). Proteins were blotted on
nitrocellulose membranes pre-incubated with blot-buffer by using the Power Blotter System
(all Thermo Fisher Scientific). Afterward, proteins were visualized by PierceTM Reversible
Protein Stain Kit and documented by using Fusion SL Vilber Lourmat imaging system
(Vilber Lourmat, Eberhardzell, Germany) and subsequently blocked with 1% milk powder
in TBS for 1 h at RT. Primary antibodies were diluted in blocking buffer with following
concentrations: c-Jun (Cell Signaling Technology Cat# 9165, RRID:AB_2130165) 1:2000, p-c-
Jun (Cell Signaling Technology Cat# 3270, RRID:AB_2129575) 1:1500, PTEN (Cell Signaling
Technology Cat# 9188, RRID:AB_2253290) 1:2000, p-PTEN (Cell Signaling Technology
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Cat# 9551, RRID:AB_331407) 1:3000. After incubation overnight at 4 ◦C, membranes were
washed with TBS/0.05% Tween 20 (3× 10 min) and the secondary antibody anti-rabbit
IgG, HRP-linked (1:2000 in TBS/0.1% Tween20 supplemented with 1% milk powder, Cell
Signaling Technology Cat# 7074, RRID:AB_2099233) was applied for 1 h at RT. After
washing 3× with TBS/0.05 % Tween20, membranes were incubated with Super Signal
West Pico Chemiluminescent Substrate (Thermo Fisher Scientific, Cat# 34579) for 5 min
and signals were detected and analyzed by using the Fusion SL Vilber Lourmat imaging
system including only unsaturated protein bands. Since most of the housekeeping proteins,
such as GAPDH or actin, are highly abundant, detection signals are mostly out of the linear
range which makes reliable quantification impossible. To prevent this technical issue, we
here used total protein normalization, which is based on normalization of the abundance of
target proteins to the total amount of protein in each lane. This method is independent of a
single loading control and is recognized as the gold standard for quantitative Western Blot
analysis [38,39]. Three individual experiments were performed (= 3 biological replicates).
For two biological replicates, blots were performed twice (technical replicates).

4.5. Statistical Analysis

All data are shown as mean values and standard error of the mean (SEM). For statistical
analysis and graph illustrations, Microsoft Excel and Graphpad Prism (version 8.0, San
Diego, CA, RRID: SCR_002798) were used. For all shown data, significances were analyzed
by using a one-way ANOVA with Dunnett’s multiple comparison test or Tukey’s multiple
comparison test. Data were considered statistically significant at * p < 0.05, ** p < 0.01,
*** p < 0.001. In order to ensure the clarity of the data, we refrained from labeling data that
were not significantly different. n represents the number of independent experiments.
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Abbreviations
DMSO dimethyl sulfoxide
Egr2 early growth response 2
FTY720P Fingolimod
GAP43 growth associated protein 43
GAPDH glyceraldehyde 3-phosphate dehydrogenase
Mal myelin and lymphocyte protein
Oct-6 octamer transcription factor 6
ODC ornithine decarboxylase
PDGF-BB platelet-derived growth factor-beta
PNS peripheral nervous system
PDL poly-D-lysine
PTEN phosphatase and tensin homolog
S1P sphingosine-1-phosphate
S1PR sphingosine-1-phosphate receptor
SC Schwann cell
TGFβ transforming growth factor-beta
Tyrp1 tyrosinase-related protein 1
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