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ABSTRACT: Ambient air pollution is an important contributor
to increasing cases of lung cancer, which is a malignant cancer with
the highest mortality among all cancers. It primarily manifests in
the form of pulmonary nodules, but not all will develop into lung
cancer. Therefore, it is highly desired to distinguish between
benign and malignant pulmonary nodules for the early prevention
and treatment of lung cancer. Currently, histopathological
examination is the gold standard for classifying pulmonary nodules,
which is invasive, time-consuming, and labor-intensive. This study
proposes a metallomics approach through synchrotron radiation X-
ray fluorescence (SRXRF) with a simplified one-dimensional
convolutional neural network (1DCNN) to distinguish pulmonary nodules by using serum samples. SRXRF spectra of serum
samples were obtained and preliminarily analyzed using principal component analysis (PCA). Subsequently, machine learning
algorithms (MLs) and 1DCNN were applied to develop classification models. Both MLs and 1DCNN based on full-channel spectra
could distinguish patients with benign and malignant pulmonary nodules, but the highest accuracy rate of 96.7% was achieved when
using 1DCNN. In addition, it was found that characteristic elements in serum from patients with malignant nodules were different
from those in benign nodules, which can serve as the fingerprint metallome profile. The simplified model based on characteristic
elements resulted in good performance of sensitivity and F1-score > 91.30%, G-mean, MCC and Kappa > 85.59%, and accuracy =
94.34%. In summary, metallomic classification of benign and malignant pulmonary nodules using serum samples can be achieved
through 1DCNN-boosted SRXRF, which is easy to handle and much less invasive compared to histopathological examination.
KEYWORDS: pulmonary nodules, metallomics, synchrotron radiation X-ray fluorescence, one-dimensional convolutional neural network,
serum

1. INTRODUCTION
Ambient air pollution exerts a significant impact on both the
deterioration of ecosystems and the heightened burden of
respiratory ailments, which has become a major public health
problem.1 As the primary organ directly exposed to ambient air
pollutants, the lungs bear the brunt of the adverse health
impacts.2 Lung cancer, a particularly devastating respiratory
disease, is a significant global health threat, with approximately
2.5 million new cases and 1.8 million deaths reported
worldwide in 2022.3 Early diagnosis and treatment can
improve prognosis and reduce medical costs for lung cancer
patients.4 Pulmonary nodules, characterized as round or
irregular lesions with a diameter of 30 mm or less in the
lung, can be benign or malignant.5 Untreated malignant
pulmonary nodules often develop to lung cancer, significantly
impacting patient survival.6 On the other hand, misdiagnosing
benign nodules as malignant ones can lead to unnecessary and

potentially harmful treatments such as surgery, chemotherapy,
or radiation therapy. Currently, commonly used diagnostic
methods for pulmonary nodules include endoscopy examina-
tions, medical imaging diagnosis, and histopathological
examinations. Endoscopy examinations may not locate all of
the nodules. Medical imaging can detect pulmonary nodules
but cannot distinguish between benign and malignant ones.7

Histopathological examination is the gold standard for the
diagnosis of malignant nodules, but it is invasive, time-
consuming, and labor-intensive.8 The development of more
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effective and less destructive methods for the diagnosis of
malignant pulmonary nodules remains a pressing clinical
challenge.9

The advantages of body fluids, especially serum, in cancer
diagnosis lie in their less-invasive, simple, and rapid nature.10

The discrimination between benign and malignant pulmonary
nodules with serum has been achieved through metabolomics
and proteomics.11−14 Metallomics is the systematic inves-
tigation of the concentration, speciation, distribution, structure,
and function of metals and metalloids in biological
systems.15,16 By studying the metallome difference, it has
been applied the screening of neurodevelopmental disorders,17

pediatric inflammatory bowel disease,18 cardiovascular dis-
eases,19 and cancer.20,21

Conventional techniques for quantification of the metal-
lome, such as Atomic Fluorescence Spectroscopy (AFS) and
Inductively Coupled Plasma Mass Spectrometry (ICP-MS),
offer high accuracy and low detection limits, but these methods
often require destruction of samples and are time-consuming.18

On the other hand, X-ray fluorescence, especially synchrotron
radiation-based X-ray fluorescence (SRXRF) spectroscopy,
allows for simultaneous detection of multiple elements directly
in one run with a relatively low detection limit, which is an
ideal tool for metallomics study. We recently developed a non-
targeted metallomics method based on SRXRF spectra with
machine learning algorithms (MLs) to screen cancer patients,
which is rapid and accurate.22

Data mining is essential in metallomics.23 Principal
component analysis (PCA) and t-Distributed Stochastic
Neighbor Embedding (t-SNE) can achieve data dimension
reduction and clustering.24,25 PCA is suitable for global feature
extraction and dimension reduction, while t-SNE is mainly
used for visualization. MLs including support vector machine
(SVM), k-nearest neighbor (KNN), and Bayesian Network
(BN) have been applied in the identification and screening of
breast cancer,26 lung cancer,27 and gastric cancer.28 However,
these methods rely heavily on high-quality data, effective
preprocessing, and feature extraction.29 Deep learning
exhibited automatic feature extraction30 and better classifica-
tion performance31 to address these shortcomings. The one-
dimensional convolutional neural network (1DCNN) with low
computational complexity effectively captures features for
spectra.32 Therefore, in comparison with MLs, the 1DCNN
was applied with SRXRF to explore its potential for end-to-end
data mining and discrimination of pulmonary nodules.

The aim of this study was to develop an easy-to-handle and
much less invasive method compared to histopathological
examination for the identification of malignant pulmonary
nodules using serum samples with SRXRF data mining as
shown in Figure 1. Blood from patients with pulmonary
nodules was collected, and then serum samples were separated
from the blood. SRXRF spectra of serum were obtained and
preprocessed to establish machine learning and deep learning
classification models. The characteristic elements that dis-
tinguish pulmonary nodules were analyzed, and the model
results were evaluated.

2. EXPERIMENTAL SECTION

2.1. Patients Recruitment and Sample Preparation
This study was approved by the Ethics Committee of the Second
Affiliated Hospital of Anhui Medical University (No. YX2023−193),
and informed consent was obtained from each participant before
blood collection. A total of 60 patients participated and were recruited

in this study and were divided into the two groups: benign pulmonary
nodules group (21 cases) and malignant pulmonary nodules group
(39 cases). The criteria below were followed:

(1) Participants were detected with pulmonary nodules from CT,
and their clinical data were complete; (2) participants did not have a
lung cancer history, pulmonary tuberculosis, or other malignant
tumors; (3) all the nodules were determined by pathological results,
while some benign pulmonary nodules were clinically diagnosed, with
size remaining stable after 3−5 years of follow-up; and (4) individuals
who had both types of nodules were not recruited in this study.

There was no significant difference in the gender and age between
the two groups. Serum samples were obtained from fasting venous
blood by centrifugation at 3000 rpm for 10 min.
2.2. SRXRF Spectra Collection
A 60 μL portion of serum was dropped onto filter paper, air-dried, and
placed on a precision translation stage for SRXRF data acquisition.
SRXRF spectra were collected at the 4W1B beamline of the Beijing
Synchrotron Radiation Facility (BSRF), which operates at 2.5GeV
with a current of 250 mA. A polychromatic beam (pink beam) with
energy of 10−18 keV was used as the incident X-ray. A four-element
Hitachi Vortex-ME4 silicon drift detector coupled to a Quantum
Detectors Xspress3 multichannel analyzer system was used to collect
XRF spectra. The serum was excited by the incident X-ray excitation
source with a spot size of 50 μm, and 121 spectra were collected for
each sample by manipulating the translation stage.
2.3. SRXRF Spectral Preprocessing and Dimension
Reduction
The fluorescence characteristic peaks of almost all elements were in
the channel range between 1 and 1024, which were selected from
original SRXRF spectra of 4096 channels for further analysis. Prior to
the development of classification models, various preprocessing
methods, such as discrete wavelet transform (DWT), Pareto scaling
(PAR), Savitzky-Golay smoothing (SG), and moving average filtering
(MA), were applied to the spectral data. DWT separates interference
components, such as system errors and baseline drift. PAR scales the
range and maintain the original structure of the data, which was
calculated according to eq 1, where xij and xij represent the data

before and after PAR, and xi and si refer to the mean value and
standard deviation of the i-th spectra, respectively. SG reduces noise
and extracts trends through polynomial fitting and sliding windows. In
this study, a cubic polynomial and a 15-point window were utilized for
the smoothing process. MA is instrumental in reducing the noise and
smoothing data. A window size of 15 points was used to calculate the
average value, which was substituted for the central data point. To
reduce noise and maintain peak shape, SG and MA were applied to
the SRXRF spectra.

Figure 1. Scheme for classification of benign and malignant
pulmonary nodules using serum samples.
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PCA reveals the intrinsic elemental differences of SRXRF in serum
and performs dimensionality reduction and clustering. This study
applied PCA to the averaged spectra to preliminarily explore the
distribution between benign and malignant pulmonary nodules in low
dimensional space. Additionally, t-SNE reduces distances between
points with high similarity and increases distances between points
with low similarity, visualizing high-dimensional data in a low
dimensional space.
2.4. Model Development
Partial least-squares discriminant analysis (PLSDA) and soft
independent modeling of class analogy (SIMCA) are supervised
learning models for handling high-dimensional correlated data.
PLSDA transforms the data into a new space while maintaining
strong correlation and minimizing the squared error, which improves
the performance of linear discrimination and probability calculation.
In contrast, SIMCA constructs separate principal component
subspaces for each class and determines the class label of a test
sample by calculating the squared distance between the projected
sample and the centroid of each class subspace. On the other hand,
decision tree (DT) adopts a bottom-up hierarchical structure, using
features to recursively partition the data, ultimately yielding the
classification results. To avoid overfitting, pruning techniques were
employed, and Gini coefficients were used as the splitting criteria. In
contrast to the feature-based PLSDA, SIMCA and DT, KNN is an
instance-based learning algorithm. It finds the K nearest labeled
samples to the unknown sample and determines the class label of the
unknown sample based on majority voting. In this study, the
Euclidean distance was used as the similarity metric for KNN.

1DCNN has demonstrated efficacy in capturing and extracting
features from SRXRF data,23 which is characterized by high
dimensionality and intricate correlations. Compared to previous
studies, the model employed an average pooling layer (AvgPool) in
the last layer, allowing for the input of spectra of varying sizes.
Additionally, the model structure discarded the maximum pooling
layer between convolutional layers for retaining more features. The
basic structure, as depicted in Figure 2, consisted of three stacked

convolution layers (labeled as Conv1, Conv2, and Conv3), one
AvgPool, and one fully connected layer (labeled as Linear). The three
convolution kernel sizes were 19, 11, 5, with strides of 6, 4, and 3,
respectively. Normalization layers and nonlinear activation functions
were applied after each convolutional layer to enhance the model’s
performance. Specifically, the Leaky Rectified Linear Unit (LReLU)
was adopted as the activation function, as its calculation formula (eq
2) allows for enhanced nonlinear response. To convert the model
output into probabilities corresponding to benign and malignant
nodules, the sigmoid function was used. Additionally, the labels of the
nodules were converted into a one-hot encoding, which stores the n-
bit state in the form of 0 and 1. This transformation facilitated the
model’s learning and classification of the nodule types.
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x x

x x
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<
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where α refers to the Leaky coefficient with a value of 0.01.
During the development of the 1DCNN model, the batch size was

set to 256, the initial learning rate to 1 × 103, and the epoch of
iterations to 600. The model utilized Binary Cross Entropy (BCE)
loss as loss function. The Adaptive Moment Estimation (Adam)
optimizer was employed. In order to achieve better convergence
during the training process, the weight attenuation coefficient β1 of
the Adam momentum term was set to 0.9, and the attenuation
coefficient of the learning rate was set to 0.988. A total of 660 spectra
were randomly partitioned into calibration set with 462 spectra and
validation set with 198 spectra. The quantity ratio in the calibration
set and validation set was consistent with the sample proportion of
benign and malignant nodules. Cross validation is used to select the
optimal hyperparameters and evaluate its performance on different
data subsets.
2.5. Model Performance Assessment
Accuracy (eq 3) is calculated as the ratio of correctly classified
samples to the total number of samples in each data set. Sensitivity
(eq 4) represents the proportion of correctly classified patients with
malignant and benign nodules. For imbalanced samples, compre-
hensive evaluation indicators including Matthews correlation
coefficient (MCC), Geometric-mean (G-mean), F1-score, and
Kappa coefficient have been introduced into for model evaluation,
and their calculation formulas are shown in eqs 5−8.

Accuracy
TP TN

TP FN FP TN
100%= +

+ + +
×

(3)

Sensitivity
TP

TP FN
100%=

+
×

(4)

MCC
TP TN FP FN

(TP FP)(TP FN)(TN FP)(TN FN)
= × ×

+ + + +
(5)

G mean
TP

TP FN
TN

TN FP
=

+
×

+ (6)

F1 score
2TP

2TP FP FN
=

+ + (7)

p p

p
Kappa

1
o e

e

=
(8)

where TP represents malignant nodules correctly identified as
positive, TN represents benign nodules correctly identified as
negative, FN represents malignant nodules misclassified as negative,
and FP represents benign nodules misclassified as positive. In eq 8, p0
is the accuracy rate of correctly predicted samples, and pe is the ratio
of the sum of product of the actual and predicted values of benign and
malignant nodules to the square of the total sample number.

The receiver operating characteristic (ROC) curve plotted with
true positive rate on the vertical axis and false positive rate on the
horizontal axis was achieved by varying different segmentation
thresholds. The curve allows for a direct comparison of the
generalization performance of the model. The closer the curve is to
the upper left corner, the higher the accuracy of the model. Aera
Under the Curve (AUC) is the area enclosed by the ROC curve and
the coordinate axis. A higher AUC indicates greater authenticity in the
detection method. When AUC approaches 1.0, the method’s
authenticity is higher, while values close to 0.5 suggest limited
practical value.

3. RESULTS AND DISCUSSION

3.1. Comparative Analysis of SRXRF Spectra
Figure 3 shows the total raw and averaged SRXRF spectra of
serum samples from patients with benign or malignant
pulmonary nodules. The spectral patterns from both groups

Figure 2. Architecture of the 1DCNN model.
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are basically consistent, but the peak areas vary for 14
elements, indicating disparities in metal element concen-
trations within the serum between malignant and benign
nodules. Unmarked peaks observed between Al and K may be
attributed to Rayleigh Scatter and Compton Scatter.33

3.2. Explanatory Classification Analysis by PCA

Figure 4 illustrates the contribution rates of PCs and the PCA
score plots of 60 samples. As depicted in Figure 4a, the first 7
PCs accounted for 99.8% variance in the original data.
Especially, the conversion of PC1 to PC3 explained a significant
portion of the original information, reaching up to 83.5%.
Consequently, the clustering information on the first three PCs
was analyzed in detail. From the score plot of PC1 vs PC2
shown in Figure 4b, it can be observed that patients with
malignant nodules exhibited a higher dispersion, while benign
nodules tended to cluster together. Interestingly, the benign

nodules were situated within the scatter of the malignant
nodules. Figure 4c displays the score plot of PC2 vs PC3, and
the clustering pattern of nodules in the two categories aligns
with the score plot of PC1 vs PC2, with benign nodules
surrounded by the clusters of malignant nodules. This
phenomenon could potentially be attributed to the presence
of cancerous cells spreading into the blood of patients with
malignant nodules, leading to elemental abnormalities.34

Consequently, it can be deduced that PCA holds the potential
to distinguish partially malignant nodules from benign ones,
although additional methods are still required for further
refinement.
3.3. Full-Channel Classification Models

Four MLs (SIMCA, PLSDA, DT, and KNN) and the 1DCNN
model were used to classify benign and malignant pulmonary
nodules based on full-channels of SRXRF spectra.

Figure 3. SRXRF spectra of benign and malignant pulmonary nodules: (a) total raw and (b) averaged spectra.

Figure 4. PCA for SRXRF spectra with different nodules: (a) histogram of PC contribution rate, (b) PCA score plots of PC1 vs PC2, and (c) PC2 vs
PC3.

Figure 5. Accuracies of machine learning models based on preprocessed spectra.
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3.3.1. Classification Models with ML. The preprocessed
spectra are shown in Figure S1. The weak peaks in the spectra
after DWT disappear, and the relative peak intensity after PAR
changes compared to the spectra without preprocessing. The
spectra after SG and MA maintain the same shape and achieve
denoising. Figure 5 shows the accuracy of MLs with both raw
and preprocessed full-channels spectra. In terms of pretreat-
ment methods, the accuracies of DWT and PAR are
comparable to or even lower than those without pretreatment
in certain cases. These unexpected results could be attributed
to the loss of crucial information caused by improper
preprocessing. On the other hand, SG and MA preprocessing
methods exhibited improved accuracy suggesting that noise
present in the spectra can negatively impact the model’s
accuracy, and smoothing operations appear to be more suitable
preprocessing methods.

In this study, four MLs were employed to classify benign and
malignant pulmonary nodules. The PLSDA model achieved
the highest accuracy of 84.8% when the MA was applied.
Similarly, the SIMCA model also attained the same accuracy
with either SG or MA preprocessing. Notably, the DT model
exhibited the best performance with an accuracy of 92.5%
when SG preprocessing was utilized, showcasing an improve-
ment compared to the previous two models. Furthermore, the
KNN model achieved the highest accuracy of 93.7% with the
SG, representing the most favorable result among the MLs.

The ROC curves (Figure S2a) and confusion matrices
(Figure S2b) were obtained with the optimal preprocessing
method. The ROC curves in Figure S2a depict the perform-
ance of the PLSDA, SIMCA, DT, and KNN models. The AUC
values for benign nodules were 0.92, 0.93, 0.97, and 0.97,
respectively, while the AUC values for malignant nodules were
0.93, 0.91, 0.96, and 0.97, respectively. Figure S2b presents the
confusion matrices of MLs. The SIMCA model correctly
detected 116 malignant nodules, but incorrectly classified 12 of
them as benign nodules, indicating relatively poorer perform-
ance in detecting malignant nodules compared to other
models. Similarly, the PLSDA model misdiagnosed 12 out of
128 malignant nodules as benign nodules, suggesting it
performed poorly in detecting benign nodules. Fortunately,
the KNN model demonstrated the highest effectiveness among
the models, with only 13 misclassifications out of 198 spectra.
3.3.2. Classification Model with 1DCNN. Figure 6

illustrates the performance of the improved 1DCNN model.
The accuracy and loss curves of the 1DCNN model with no
preprocessing are shown in Figure 6a. The accuracy of the
network exhibits a rapid initial increase, followed by a gradual
slowdown until it eventually stabilized. After 600 iterations of

network training, the validation accuracy reached 96.73%. The
loss value demonstrates a sharp decline during the initial stages
of network training, gradually decreasing until convergence.
The loss of the validation set stabilized at 0.09. Remarkably, in
comparison to MLs, the accuracy of 1DCNN model shows a
significant improvement, with a 4.0% increase for the
calibration set and a 3.6% increase for the validation set
compared to the KNN model. The confusion matrix is shown
in Figure 6b, where 4 benign nodules were misdiagnosed as
malignant, which is an improvement compared to the MLs.
The ROC curves are shown in Figure 6c, with AUC values of
both nodules reaching 0.99.
3.4. The Simplified Models through Characteristic
Elements
Previous studies have attempted to assess the concentrations of
metal elements in the serum samples of lung cancer patients. It
was found that there were lowered concentrations of Zn, Mg,
Fe, Co, Na, K, Ca, Mo, and Se and elevated concentrations of
Al, Cu, Pb, Mn, Co, Fe, Cr, Mg, Cd, Hg, As, and Ni in sera of
lung cancer patients compared to the control group. However,
there are also conclusions that contradict the above
situation.35−39 Besides direct comparing of element concen-
tration, ratios between elements have been identified important
biomarkers for lung cancer disease in serum (V/Mn, V/Pb, V/
Zn, Cr/Pb).40 All of the above reflect the dysregulation of
metal elements in serum from lung cancer patients.

The SRXRF spectra, known for their low detection limit,
allow for the simultaneous excitation of multiple elements from
Sodium (Na) to Uranium (U) in the periodic table. In this
study, 14 channels corresponding to 104 (Na), 125 (Mg), 149
(Al), 331 (K), 369 (Ca), 451 (Ti), 495 (V), 542 (Cr), 590
(Mn), 641 (Fe), 693 (Co), 748 (Ni), 805 (Cu), and 864 (Zn)
are the characteristic channels in SRXRF spectra. Figure 7
presents the relative intensity distributions of the selected
characteristic elements. The violin plot’s curve represents the
degree of adherence to a normal distribution, with the center
point indicating the mean value and the length of the box
representing the standard deviation. The data distribution
adhered to the standard normal distribution, suggesting that
the samples being studied were representative. The relative
average intensity of each element in serum of benign nodules
was lower to that of malignant nodules, indicating that
malignant nodules led to a general increase or decrease in the
concentration of elements compared to patients with benign
nodules. Among the 14 elements, Na, Al, Co, Ni, and Ca
showed relatively small differences, whereas the relative levels
of the remaining elements were greater in malignant nodules
compared to benign nodules. This may be due to the disorder

Figure 6. Performance of 1DCNN model. (a) Accuracy and loss curves, (b) confusion matrix, and (c) ROC curve.
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of metal element markers in the serum caused by malignant
nodules, while benign nodules remain stable within a certain
area. This observation was consistent with the PCA score map,
which shows the benign nodules surrounded by the clusters of
malignant nodules.

To eliminate irrelevant information and improve the
computation speed for data analysis, simplified models were
established based on characteristic channels. Both KNN, an
optimal machine learning algorithm with full-channels, and
1DCNN, a representative deep learning algorithm, were
established as simplified models to evaluate and compare for
classifying nodules, the performance of which is shown in
Table 1. The 1DCNN model obtained better results with

accuracies of 94.34% for validation set. The sensitivity and F1-
score of 1DCNN were both greater than 90%, while G-mean,
MCC, and Kappa are all greater than 85%, showing a
significant improvement compared to the simplified KNN.
The simplified model with acceptable performance demon-
strated that the characteristic elements play an important role
in distinguishing pulmonary nodules. The input parameters
were reduced from 1024 to 14, reducing the complexity of the
model by 98.63%, which improve the prediction speed.
Simplified model reduces risk of overfitting, improves general-
ization ability, and is crucial in practical applications and
resource limited fields. Therefore, the simplified 1DCNN
model based on characteristic channels was used to classify
benign and malignant pulmonary nodules, although the
accuracy decreased 2.39% compared with full-channels model.

T-SNE is a powerful visualization tool that is suitable for
exploring the structure and patterns of high-dimensional data.
Full-channel spectra, characteristic channel spectra, and
features extracted from the convolutional layers of 1DCNN
were applied to visualize the data distribution in 2D spaces. As
shown in Figure S3, the scatter points of the two types of
pulmonary nodules almost completely overlap, and the scatter
points of the full-channel spectra (Figure S3a) are more
chaotic, while the scatter points of the characteristic channels
(Figure S3b) show a trend of separation. The features (Figure
S3c) extracted by 1DCNN exhibit significant separability in
the 2D space. This phenomenon demonstrates a series of
dynamic changes from the original spectra to the features
extracted by 1DCNN, as well as the effectiveness of 1DCNN
in pulmonary nodule classification.

This study proposes a metallomics approach through
SRXRF with simplified 1DCNN to distinguish pulmonary
nodules using serum samples. Because 1DCNN is a data-
hungry approach, the sample size is further expanded for
training and validation to improve the model performance.
Meanwhile, further research is needed to determine whether
this method is applicable for distinguishing other types of lung
diseases

4. CONCLUSIONS
The study highlights the feasibility of metallomics, coupled
with SRXRF and 1DCNN, for distinguishing between benign
and malignant pulmonary nodules. This approach enables
accurate classification without the need for quantifying of
metal element concentrations in serum. The 1DCNN and MLs
model were developed based on full-channels with optimal
accuracy of 96.73%. The simplified model based on character-
istic elements resulted in good performance of sensitivity and
F1-score > 91.30%, G-mean, MCC, and Kappa > 85.59%, and
accuracy = 94.34% for eliminate redundancy. Compared with
metabolomics or proteomics study on the classification of
benign and malignant pulmonary nodules, the obtaining of
metallomics profiling with SRXRF is easy-handle and less-
destroy to serum samples.

Throughout the model development, 14 serum metal
elements were identified as significantly impacting nodule
classification, which paves the way for the potential use of
metal elements in serum as biomarkers for diagnosis and
prognosis. These elements may serve as the fingerprint
metallome profile as diagnostic and treatment indicators for
patients with nodules and provide a basis for the development
of rapid detection methods for nodules classification.
Considering the low availability of synchrotron radiation
based XRF, further attempts with commercially available XRF
machines are under investigation.
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Figure 7. Intensity distribution diagram of characteristic elements.

Table 1. Performance for the Classification Models Based
on Characteristic Channels with KNN and 1DCNN

Predicted Class

KNN 1DCNN

Actual Class
Benign
Nodules

Malignant
Nodules

Benign
Nodules

Malignant
Nodules

Benign
Nodules

56 13 63 6

Malignant
Nodules

9 120 5 124

Sensitivity (%) 81.16 93.02 91.30 96.12
F1-score (%) 83.58 91.60 91.97 95.75
G-mean (%) 75.48 87.75
MCC (%) 75.27 87.73
Kappa (%) 71.08 85.59
Accuracy (%) 88.79 94.34
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