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Background. To date, there have been no published investigations on the cause of acetabular debonding, a rare failure phenomenon
in metal-on-metal hip resurfacing where the acetabular porous coating delaminates from the implant while remaining well fixed to
the pelvic bone. Purposes.This study aims to summarize the current understanding of acetabular debonding and to investigate the
discrepancy in rate of debonding between two implant systems. Patients and Methods. To elucidate potential causes of debonding,
we retrospectively analyzed a single-surgeon cohort of 839 hip resurfacing cases. Specifically, we compared rate of debonding and
manufacturing processes between two implant systems. Results. Group 1 experienced significantly more cases of debonding than
Group 2 cases (4.0% versus 0.0%, p value<0.0001). Implant manufacturing processes differed in surface coating, heat treatment,
postmanufacturing treatment, and apex thickness. Debonded implants were more likely to have missed RAIL guidelines (p=0.04).
Conclusions. We identified implant system, postoperative time, and acetabular component placement as variables contributing to
rate of debonding. We recommend minimizing acetabular inclination angle according to RAIL guidelines. Further, we evaluated
manufacturing differences between the two implant systems but did not have access to proprietary data to identify the cause of
debonding. Both implants met ASTM standards, yet only the Group 1 implant debonded. This suggests the second implant had
greater fatigue shear strength. Because the Group 2 implant achieved a more durable interface that did not debond, we suggest
the ASTM F1160 standard for fatigue shear strength be increased to that achieved by its manufacturer. Level of Evidence II. A
retrospective evaluation of prospectively collected data.

1. Introduction

After early enthusiasm in the 2000s [1, 2], hip resurfacing
arthroplasty (HRA) fell into disfavor due to a high incidence
of metallosis with poorly designed implants and at outlier
centers [3]. HRA is more technically demanding than total
hip arthroplasty (THA) and necessitates a separate, steeper
learning curve. Available data suggest HRA performed by
experienced resurfacing surgeons offers greater functional
capacity and improved durability over THA [4–6]. Other
advantages include superior hip stability [7–9], greater bone
preservation leading to less-challenging revision surgeries
[10–12], and lower 10-year all-cause mortality in matched
patient populations when compared to THA [13].

To further improve the success and performance of HRA,
research groups should evaluate failure modes of resurfacing
systems and devise appropriate solutions. In 2012, the FDA

presented a memorandum discussing safety and efficacy
of metal-on-metal (MoM) hip implant systems [14]. This
report identified common failure modes of MoM systems,
but despite the substantial level of detail, the memorandum
failed to mention a rare and poorly understood failure mode
in MoM HRA implant systems, debonding of the porous
titanium (Ti) coating from the cobalt (Co) chrome acetabular
component.

Debonding occurs when shear forces applied at the bone-
implant interface are too high, causing patches of porous
coating to shear from the cup upon loading. Acetabular
debonding has been investigated in a few, small case studies
[15–17], but to date, no studies have been published reporting
rates of debonding in a single, large cohort. Debonding
presents an unusual failure mode that may illuminate flaws
in implant design or manufacturing processes. The current
paper presents a retrospective analysis of a single-surgeon
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Table 1: Demographic information.

Demographic Information
Group 1 Group 2

Variable Corin Biomet P-value
Number of Cases 371 728 –
Age (years) 53.8 ± 9.3 55.1 ± 8.2 0.0177∗
BMI 28.2 ± 5.2 27.9 ± 4.7 0.3371
Female gender (%) 32% 29.1% 0.3125
Preoperative Harris Hip Score 43.4 ± 10.3 45.6 ± 11.8 0.0024∗
Diagnosis (%)

Osteoarthritis 74.1% 81.6% 0.00398∗
Osteonecrosis 11.9% 4.3% 0.0001∗
Dysplasia 7.5% 8.7% 0.5287
Legg Perthes 0.8% 1.7% 0.2585
Post Trauma 0.3% 0.3% 0.9840
Rheumatoid Arthritis 1.1% 2.3% 0.1499
Slipped Capital Epiphysis 0.5% 1.0% 0.4654
Other 3.8% 0.3% 0.0001∗
∗ represents significance.

database with over 5000HRA cases. We compared the rate of
debonding as a unique failure between the two different HRA
implant systems used in our practice: the Corin Cormet 2000
and Biomet M2a Magnum-ReCap� systems. The purpose of
this paperwas twofold: (1) to summarize the current literature
and present a hypothetical mechanism of debonding failure
and (2) to evaluate any discrepancy in rate of debonding
between the two implant systems by investigating differences
in the implant manufacturing and testing processes.

2. Methods

2.1. Patients and Follow-UpMethod. Thesenior author (TPG)
maintains a prospective database (OrthoVault, Columbia,
SC) of more than 5000 HRA procedures. This surgeon has
performed HRA since 1991, and therefore, none of these
cases are from his initial learning curve. The current study
analyzes 839 consecutive procedures between January 2001
and December 2007, with a minimum 10-year follow-up.
Approvals for this study and report were obtained from the
Institutional Review Board of Lifepoint Health Providence
Hospitals in Columbia, South Carolina. In this study, we
compare two similar implants with respect to a single
failure mechanism: late acetabular component loosening.
The first cohort (Group 1) comprised 329 Corin Cormet
devices implanted between 2001 and 2004. The second
group (Group 2) consisted of 510 Biomet Magnum� cases
performed between 2004 and 2007. The two groups were
demographically similar, although Group 2 was slightly older
(p value=0.01) with a higher preoperative clinical score (p
value=0.0024), on average (Table 1). Group 2 had more
patients with posttrauma HRA (2.7% versus 0.3%, p=0.009).
Further, Group 1 had a higher proportion of patients with
osteonecrosis (11.2% versus 4.1%, p <0.0001), although no

HRA cases with a diagnosis of osteonecrosis reported acetab-
ular debonding.

2.2. Implant Systems. The senior author used these two
implant systems in a consecutive fashion. Between March
2001 and December 2004, the hybrid cemented Corin
Cormet 2000 system (Corin, Cirencester, UK) was employed
as a part of a multicenter United States FDA trial. Between
December 2004 and December 2007, Biomet devices com-
prised a cemented ReCap� femoral component and an unce-
mented Magnum� acetabular component (Biomet, Warsaw,
Indiana) and were used in an off-label fashion for total hip
resurfacing.

Both groups employed similar hybrid MoM HRA
implants, and each cohort had a minimum follow-up of 10
years. Similarities between the two acetabular components
(Table 2) include a cast, high-carbon (>0.2%) CoCr substrate
shot blasted with alumina grit and then coated with plasma-
sprayed, unalloyed Ti. The coverage arcs are similar between
these two implants, but the Group 2 implant arc is 4∘ less for
each implant size on average. There are also several, notable
differences in the manufacturing processes of these two
devices. The Group 1 implant [24] is double heat-treated, and
an additional layer of hydroxyapatite (HA) is plasma sprayed
onto the Ti layer. Two sets of relatively thick antirotation
fins at the equator imbed into the ischium and pubis during
impaction. The Group 2 implant system is not heat-treated
and does not have anHA layer.There are four pairs of smaller,
thinner fins evenly spaced around the circumference of the
implant. Implant dimensions are roughly sketched in Figure 1.

Several details, including those of the porous coating
processes, are proprietary and not known to us. Average bead
size was only available for the Cormet device [25]. Pore size
range, but not mean pore size, was available for the Biomet
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Figure 1: Implant design sketches. Corin (left) and Biomet (right) cup dimensions shown, with the gray sphere representing the femoral
head.

Magnum [19]. We were unable to find time to fixation for
either device.

2.3. Procedure. All procedures were performed using a pos-
terior approach as described previously [26]. Before 2009,
acetabular components were positioned with an acetabular
inclination angle (AIA) under 55∘, based on research by De
Smet [27].

2.4. Clinical and Radiographic Analysis. Office or remote
follow-up was requested at 6 weeks, 1 and 2 years, and
every other year thereafter. A clinical questionnaire, radio-
graphs, and a physical examination testing range-of-motion
and strength were performed at each visit. After 1 year,
physical examinations were no longer done routinely on
remote follow-ups. The OrthoVault database (Midlands
Orthopaedics & Neurosurgery, Columbia, South Carolina)
supported our collection and analysis of demographic, clini-
cal, and radiographic data for all patients.

Patient questionnaires facilitated the collection of infor-
mation necessary for calculating the following clinical scores:
Harris hip score (HHS) [28], University of California, Los
Angeles (UCLA) activity score [29], and visual analogue
scale (VAS) pain score for normal and worst days [30]. HHS
determines clinical outcome; UCLA activity scores measure
activity level on a scale from 1 to 10, for which 10 represented
the highest level of activity; VAS pain scores rate the level
of pain from 0 to 10, with zero representing no pain and 10
representing maximum levels of debilitating pain.

Both supine and standing anterior-posterior pelvis and
lateral radiographs are taken and analyzed for component
position, shifting, and radiolucencies by the senior author
at each follow-up interval and upon request. We determine
the acetabular inclination angle (AIA) on a standing pelvis
radiograph by measuring the angle formed by two straight
lines: one parallel to flat face of the acetabular component
and the other tangential to the precipice of both ischial
tuberosities. Wemeasured all radiographs using InteleViewer
(InteleRAD, Chicago, IL, USA).

2.5. Statistical Methods. The significance level 𝛼 was defined
as 0.05 for all statistical analyses in this study. A paired, two-
tailed Student’s T-test was used to calculate the significant

Table 3: Acetabular failures by category.

Type Corin Biomet P-value
# Cases 371 728 –
(1) Late Loosening 15 (4.0%) 2 (0.3%) <0.0001∗
Debonding 13 (3.5%) 0 (0.0%) <0.0001∗
Intact Coating 0 (0.0%) 2 (0.3%) 0.3125
Unknown 1 (0.3%) 0 (0.0%) 0.1615
(2) Early Loosening 2 (0.5%) 8 (1.1%) 0.3576
(3) AWRF 4 (1.1%) 4 (0.5%) 0.3271
∗ indicates significance.

difference between average preoperative and postoperative
numerical outcomeswithin and between study groups.When
comparing two population proportions, a two-sample Z-test
was used. Kaplan-Meier survivorship curves were plotted to
evaluate implant survival among different groups. Log-rank
and Wilcoxon tests were performed to calculate significant
differences between survivorship curves. Curves and sur-
vivorship statistical tests were generated using XLSTAT (New
York, NY).

3. Results

In Group 1, there was a significantly higher rate of late acetab-
ular component loosening, as well as loosening categorized
as debonding; cup loosening characterized as debonding is
confirmed intraoperatively. Both groups had a minimum
of 10 years’ follow-up, at which point Kaplan-Meier (KM)
implant survivorship was 96.0% and 97.2%, respectively
(p=0.0008) (Figure 2). With debonding as an endpoint, 10-
year Group 1 implant survivorship was 97.8% and Group 2
implant survivorship was 100% (p<0.0001).

Table 3 lists the incidence of acetabular failuremodes; def-
initions and descriptions of each failure mode are detailed in
Table 4. Debonding only presented in Group 1, occurring at a
mean of 9.7 years (range 4 to 14 years). The surgeon identified
debonding intraoperatively at revision surgery, and this was
confirmed by the surgical assistance and implant company
representative; the implant coating appeared delaminated
from the implant bulk material and well fixed in the pelvic
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Table 5: Clinical and radiographic data.

Clinical and Radiographic Data
Group 1 Group 2

Variable Corin Biomet P-value
n 371 728 –
Clinical Data
Harris Hip Score (Post-Op) 93.6 ± 14.6 96.7 ± 7.6 0.0001∗
UCLA Score 6.6 ± 2.1 7.2 ± 2.0 0.0001∗
VAS Pain: Regular Day 0.6 ± 1.6 0.3 ± 0.9 0.001∗
VAS Pain: Worst Day 1.7 ± 2.6 1.4 ± 2.2 0.03∗
Mean Cobalt 2.6 ± 3.7 1.7 ± 1.8 0.0001∗
Mean Chromium 1.7 ± 2.3 1.1 ± 1.3 0.0001∗
Radiographic Data
Acetabular Inclination Angle (∘) 45.6 ± 7.2 45.1 ± 11.7 0.6504
Radiolucency 4 (0.01%) 0 (0.00%) 0.005∗
Osteolysis 3 (0.01%) 2 (0.00%) 0.200
∗ indicates significance.
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Figure 2: Kaplan-Meier implant survivorship for two study cohorts.
Kaplan-Meier implant survivorship analysis using late acetabular
failure as an endpoint. All cases in both groups have a minimum
of 10 years’ follow-up. At 10 years, survivorship is 97.2% for Biomet
and 96.0% for Corin (p=0.0008). Late acetabular failure is defined
as failure of acetabular component >2 years. Results of the log-rank
test (p value <0.0001) and Wilcoxon test (p value <0.0001) show
significant difference in the occurrence of late acetabular failures
between the two implant groups.

bone. The surgical team only recorded where debonding
occurred in three cases (23% of debonding cases). Of these,
delamination was reported to have occurred on the outer
edges of the cup. Amount of delamination ranged from 33
to 90% of the acetabular porous coating. Other acetabular
failure modes, such as failure of ingrowth, AWRF, and late
loosening with intact porous coating, were not different
between the two groups (p value=0.2, p value=0.5, and p
value=0.3, respectively). One Group 1 patient had revision
surgery elsewhere, and therefore we categorized their failure
as “unknown” loosening.

Figure 3 presents the number of late acetabular failure
cases for Group 1 implant systems, dependent on time since

Table 6: Acetabular position data.

Debonded Corin ALL Corin ALL Biomet
# Met RAIL 4/13 (30.8%) 133/227 (58.6%) 265/506 (52.4%)
Avg AIA 48.0 ± 8.6 44.2 ± 7.3 45.1 ± 11.7

surgery. Two Group 1 acetabular failures occurred before 2
years (0.5% of total cases) with all other acetabular failures
occurring thereafter (5.1%). Failures occurred at a mean of
8.5 years. There were no differences between the time since
surgery and rate of late failure. There was no statistical dif-
ference between date of HRA surgery and rate of late failure,
although we observed most instances of Group 1 debonding
were from cases performed in 2002. Manufacturers often use
outside suppliers to perform porous coating. Unfortunately,
themanufacturer would not provide us with vendor informa-
tion for failed implants. Therefore, we investigated failure rate
of implants from specific time periods; we could not establish
any correlation. Group 2 implants failed late at 7 and 8 years.
Clinical data (Table 5) indicate a higher postoperative HHS
and UCLA activity score for Group 2 (HHS p value<0.0001,
UCLA p value<0.0001), as well as lower VAS pain scores
on regular and worst days (regular p value<0.0001, worst p
value=0.0315). Radiographic data indicate a lower instance
of radiolucency (p value<0.005) in Group 2 (Table 5). No
debonding cases presented radiolucency. Nine debonding
cases (69.2% total debonding cases) presented AIA over the
relative acetabular inclination limit (RAIL) [32] on their
earliest postoperative radiographs, as compared to 94 or
227 measured radiographs (41.4%) from Group 1 (p=0.04)
(Table 6).

4. Discussion

We investigated a poorly understood failure phenomenon
in which the porous coating debonds from the acetabular
component. Several centers have published case studies
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Figure 3: Corin late acetabular failure distribution over postoperative time. Figure 3 presents a distribution of Corin acetabular failures
over postoperative time. Callouts show number of failures and percentage of the entire cohort (371 cases). Two cases failed before 2 years
postoperatively (0.5% of cases) and are considered failure of ingrowth.

on debonding [15–17]. However, our group is the first to
analyze a large clinical database and report rate of acetabular
component debonding in two implant systems.

We prospectively recorded details of all complications
and failures in our database. For this study, we considered
only acetabular failure modes, which include late loosening
(>2 years), early loosening (<2 years), early cup shift (<2
years), and AWRF (Table 4). Results of the log-rank test (p
value=0.0001) and Wilcoxon test (p value=0.0001) revealed
implant choice as a significant factor in late acetabular failure,
with 13 cases of Group 1 debonding out of 371 total surgeries
(3.5%) (Figure 2). Group 2 presented 2 instances of late
acetabular failure out of 728 surgeries (0.3%); during revision
surgery, the surgeon (TPG) did not classify either of these
complications as debonding.

Herein, we retrospectively analyzed clinical data routinely
collected as part of standard care. We did not perform
retrieval analyses on delaminated implants, although it would
be beneficial in understanding where and how extensively
debonding occurs. Debonding was confirmed intraopera-
tively during revision surgery by three professionals famil-
iar with the surgery and product. All debonding patients
reported abrupt onset of pain and presented a sudden cup
shift on recent X-rays. Most recent metal ion levels prior to
loosening were within optimal range, and the mean did not
vary significantly from nonloosened cases (4.2 ± 2.7 𝜇g/L,
and 2.6 ± 3.7 𝜇g/L, respectively; p value=0.1107). However,
moderate metallosis was present intraoperatively in cases
revised by the primary surgeon. All cases of debonding
presented after 4 years postoperatively. Debonded cups met
RAIL in only 30.8% of cases, as compared to 58.6% of all
Group 1 cups (p=0.04). However, there was no difference in
average AIA or number of cases above the RAIL between
Group 1 and Group 2. Thus, cup position may contribute,
but is not the sole cause, of debonding. Age, BMI, sex,
diagnosis, and postoperative activity did not influence risk of
debonding.We identified implant system, postoperative time,
and AIA as factors that contribute to risk of debonding.

The available literature comprises three case studies on
cup debonding in HRA [15–17] and three in THA [33–35].
These case studies suggest that debonding occurs when shear
forces applied at the bone-implant interface are too high,
causing patches of porous coating to shear from the cup upon
loading. Delport et al. [15] found the surface coating of the
debonded implant well fixed into the pelvis bone at revision
surgery and reported signs of metallosis, although they did
not publish metal ion values. Our group primarily performs
HRA, and we have thus not encountered debonding in THA.
However, we know four case studies on delamination [33–
35]. Each group noted significant osteolysis and metallosis in
their debonding cases. Amount of porous coating debonding
ranged from 60 to 100% of the cup surface.

Manley et al. [36] found that the fatigue shearing strength
of bead-sintered coating-substrate interfaces was similar to
or less than that between coating and bone. An in vivo study
found shearing strength at the bone-implant interface was
between 4.25 and 7.81 MPa for plasma-sprayed, porous Ti
coatings [31]. An in vitro analysis [24] of Ti porous coat-
substrate interfaces found static shear strength to be greater
than 20MPa, on average; this same report showed the coating
can withstand fatigue shear forces of 10 MPa for at least 107
cycles, per the ASTM F1160 standard [14].

Corin reported static shear strength for the surface-
substrate interface of the Cormet cup as 20.9 MPa in a batch
of 5, but the standard deviation was 4.1 MPa [14]. Corin also
completed shear fatigue strength testing on six samples for
10 million cycles at 10 MPa with no failures. Hot isostatic
pressing (HIP) treatment of the Group 1 component may
influence the bonding between the porous coat and substrate
since HIP removes carbides. HIP may introduce residual
stresses into the two materials, as the modulus of elasticity of
the porous coat is one-third that of the substrate; however,
it has been shown that HIP can increase the strength of
adhesion between coat and substrate if done after the PVD
process [37, 38].
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Although we evaluated differences in implant design and
manufacturing processes, we cannot be sure which design
features caused Group 1 implants to debond significantly
more than Group 2 cups. As described, Corin uses double
heat treatment, HIP, and solution annealing, while Biomet
does not. A study by Daniel et al. concluded that implants
with double heat treatment present more wear and osteolysis
[39]. With more information on the manufacturing process,
we could know whether Corin’s HIP introduces residual
stresses into the implant, depending on which stage it is
performed [37, 38]. Corin uses HA in their acetabular com-
ponent coating, while Biomet does not; thismay contribute to
greater bone ingrowth and a stronger lock between bone and
the implant surface [40]. In some accounts [21], sphericity
between the components differs significantly. Lastly, the
Biomet acetabular component has a thicker cup apex at 6mm
compared to Corin cups at 4 mm. Increased apex thickness
prevents deformation during impaction, and thus, the Group
2 device may accumulate less damage intraoperatively [41].
We did not record the location of implant debonding in most
cases, so we lack the information to identify a consistent
pattern. However, of the cases that we did record details of
debonding, we identified that delamination usually occurred
on the outer edges of the cup and that 33 to 90% of the porous
coating had detached from the implant and remained well
fixed in the bone.

We hypothesize that debonding occurs at a higher rate in
implants with a lower fatigue shear strength, and therefore,
the ASTM F1160 testing standard for fatigue shear strength
needs to be increased. Microfractures accumulate during
daily and strenuous activity while osteocytes remodel bone
and repair these microfractures [42]. However, the torsional
strain and fatigue shearing stress transmit to the implant,
which has no inherent repair capabilities. Thus, despite the
greater shear strength at the substrate-coating interface, the
bone-coating interface does not accumulate fatigue strain
[43, 44]. Inelastic mismatch strain between the surface film
and bulk material may also contribute to debonding of the
coating [1, 40].

A primary limitation of this study stems from using
these resurfacing devices in a consecutive fashion. Group
1 has a follow-up of 13 to 15 years, while the Group 2 is
10 to 13 years out from surgery. However, most acetabular
failures occur before 10 years postoperatively (Figure 3).
Additionally, to minimize this follow-up bias, we provide
an additional comparison of all late loosening between the
two groups that occurred before 10 years (2.2% of Group
1 cases, 0.3% of Group 2 cases, p value=0.002). Secondly,
many details of the implant manufacturing processes are
proprietary, and therefore another limitation is our lack
of enough detailed information to identify the exact cause
of debonding. Another limitation is our classification of
debonding as a binary “yes or no”; detailing the mechanism
or extent of debonding will require a future retrieval analysis
study. However, the primary purpose of this study was to
identify whether rate of debonding varied between implant
brands and if there were any differences in the manufacturing
processes. Lastly, the Corin group had fewer cases with post-
traumatic HRA and was more diagnosed with osteonecrosis.

However, no cases with osteonecrosis or posttraumatic HRA
debonded.

5. Conclusion

This paper presents a retrospective analysis of a single-
surgeon cohort, an implant manufacturer comparison, and a
literature review of acetabular debonding, a rare and poorly
understood failure mode. In debonding, bone ingrows into
the implant initially, but late loosening occurs when the
plasma porous coat on the outer face of the acetabular cup
becomes detached from the bulk implant and remains fixed
to the pelvic bone. Acetabular component position seems to
have some influence; we recommend surgeons align acetabu-
lar cups according to the RAIL guidelines. Furthermore, the
Group 1 acetabular cup failed from debonding at a rate of
3.5%while the Group 2 cup did not delaminate. We identified
postoperative time, AIA, and implant type as risk factors for
debonding. The differences in manufacturing processes and
design (Table 2) for the Group 1 implant likely contribute
to its high rate of debonding. According to the current
available literature, debonding of the porous coat occurs due
to accumulation of microfractures at the coating-substrate
interface. Therefore, we believe that a fatigue failure test
may be more relevant to this failure mode than a static test.
We suggest that the ASTM F1160 standard for fatigue shear
strength be increased to minimize the chance that implant
coatings will debond even after years of vigorous activity.

Abbreviations

HRA: Hip resurfacing arthroplasty
THA: Total hip arthroplasty
MoM: Metal-on-metal
Ti: Titanium
Co: Cobalt
Cr: Chromium
PVD: Physical vapor deposition
HA: Hydroxyapatite
AWRF: Adverse wear-related failure
HHS: Harris hip score
UCLA: University of California Los Angeles
VAS: Visual analog scale
AIA: Acetabular inclination angle
KM: Kaplan-Meier
RAIL: Relative acetabular inclination limit
HIP: Hot isostatic pressing.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors report no conflicts of interest.



Advances in Orthopedics 9

Acknowledgments

This study was paid in full by the primary surgeon (Thomas
P. Gross). This research was funded by the senior author and
Midlands Orthopaedics & Neurosurgery. The authors do not
report any other funding sources or financial support.

References

[1] K. Corten, R. Ganz, J.-P. Simon, and M. Leunig, “Hip resur-
facing arthroplasty: current status and future perspectives,”
European Cells and Materials, vol. 21, pp. 243–258, 2011.

[2] H. C. Amstutz and M. J. Le Duff, “Background of metal-on-
metal resurfacing,” Proceedings of the Institution of Mechanical
Engineers, Part H: Journal of Engineering in Medicine, vol. 220,
no. 2, pp. 85–94, 2006.

[3] S. Williams, I. Leslie, G. Isaac, Z. Jin, E. Ingham, and J.
Fisher, “Tribology andWear ofMetal-on-MetalHip Prostheses:
Influence of Cup Angle andHead Position,”The Journal of Bone
and Joint Surgery-American Volume, vol. 90, no. Suppl 3, pp. 111–
117, 2008.
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