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Abstract: Citri Reticulatae Pericarpium Viride (CRPV) is the processed product of Citrus reticulata
Blanco. We systematically analyzed two CRPV types, Geqingpi (GQP) and Sihuaqingpi (SHQP),
based on powder color, microscopic characteristics, and chemical composition. In addition, we
characterized their constituents via ultra-high-performance liquid chromatography with hybrid
quadrupole-orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap-MS). Both showed significant
differences in their powder color and microscopic characteristics. Fourier-transform infrared (FT-IR)
spectroscopic analysis results showed that the C=O peak absorption of carboxylic acids and their
carbonyl esters in SHQP was higher than that of GQP, while the C-OH and C-H plane bending peaks
of polysaccharides were lower than those of GQP. We analyzed these data via similarity analysis,
PCA, and OPLS-DA. GQP and SHQP had large distinct differences. Based on the mass measurements
for molecular and characteristic fragment ions, we identified 44 main constituents from CRPV,
including different flavonoid glycosides and flavonoid aglycones in SHQP and GQP, respectively.
We found luteolin-6-C-glucoside, orientin, rhoifolin, and pilloin solely in SHQP, and naringenin
and hesperetin only in GQP. The peak area measurements showed GQP having a higher flavonoid
glycoside (narirutin, hesperidin, etc.) content, whereas SHQP had a higher polymethoxyflavone
(nobiletin, tangeretin, etc.) content. Since we holistically analyzed two CRPV types, the results can
not only support future pharmacological research, but also provide a scientific basis for formulating
more reasonable CRPV quality standards and guide its clinical potential as a precision medicine.

Keywords: Geqingpi; Sihuaqingpi; Citrus reticulata Blanco; Citri Reticulatae Pericarpium Viride;
flavonoid glycosides; flavonoid aglycones; polymethoxyflavones; TCM; UHPLC-Q-Exactive
Orbitrap-MS; FT-IR

1. Introduction

CRPV is a traditional Chinese medicine (TCM) commonly used in China. According
to the “Pharmacopoeia of the People’s Republic of China”, CRPV is the processed product
of the peel of the dried young or immature fruit of Citrus reticulata Blanco and its cultivars.
The earliest records of its medicinal application can be traced back to the Tang Dynasty
in China [1]. As per the TCM theory, CRPV soothes the liver and breaks Qi, eliminates
accumulation, and resolves stagnation [2]. According to its harvesting time, CRPV can
be divided into two types: GQP and SHQP. GQP is the young citrus fruit and is often
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collected from May to June; while SHQP, often collected from July to August, is the
peel of the immature citrus fruit. When used, GQP is directly sliced, whereas SHQP is
longitudinally cut into four pieces towards the base of the peel, and all the flesh pieces
are removed. According to ancient Chinese herbal books, statements like “broken head-
like lotus petals [3]”, “cross out the flesh and divided into four pieces called lotus-like
CRPV [4]”, and “it is better to use a knife to cut the lotus petals on the CRPV”, indicate
that SHQP was used in ancient China [5]. However, GQP is currently often used in the
Chinese mainland. Since CRPV used in ancient and modern China has different types, the
difference in composition and efficacy between the two types is worth exploring.

At present, SHQP costs twice that of GQP in the Chinese mainland. GQP, which is
mainly used as the raw material of decoctions, has a market share of 80–90%. SHQP is
mostly used for preparing Chinese patent medicine, and is also sold to South Korea, Hong
Kong, etc. This shows that there are price and grade differences in the current commodity
circulation types of CRPV. It is necessary to find the different components of the two types,
to help establish the CRPV grade standards and provide a reference for the identification
method of Chinese patent medicines with different CRPV.

Modern studies have found that CRPV inhibits (a) gastrointestinal smooth muscle
movement [6], (b) duodenum contraction [7], (c) the movement of the longitudinal muscle
strips of the small intestine, (d) the contraction of the longitudinal muscle of the ileum,
and stimulating the smooth muscle of the bladder [8–10]; it also affects the bioelectrical
activity of the gastrointestinal tract. It can also reduce the amplitude of the gastric electric
slow-wave and prolongs the period [11].

Clinical studies have found that CRPV extract can induce apoptosis in the human
colon cancer cell line SNU-C4, thus suggesting that CRPV has anticancer effects [12].
Polymethoxyflavones (PMFs) in CRPV improve metabolic disorders like hyperlipidemia,
which is induced by a high-fat diet by modulating the gut microbiome and amino acid
metabolism [13,14]. It also inhibits the proliferation of gastric cancer cells by inducing
gastric cancer cell death via upregulation of the RARβ protein [15]. Bioactive flavonoids
(narirutin, nobiletin, tangeretin, etc.) can protect the liver, reduce its damage, and prevent
liver diseases [16,17]. Nobiletin may inhibit the expression of IL-6, TNF, and CCL2, which
have anti-inflammatory and antioxidant properties. It can relieve the clinical symptoms of
colitis mice and reduce their liver and kidney damage [18–20]. Tangeretin may inhibit the
expression of interleukin-23 and other related proteins via the Notch signaling pathway,
thereby treating acute lung injury [21]. At the same time, it may also inhibit the proliferation
of liver cancer cells [22]. Narirutin has also exhibited anti-inflammatory and antioxidant
activities, by activating the NF-κB and MAPKs pathways, and inhibiting various pro-
inflammatory mediators like NO and PGE2 in macrophages [23]. It not only has a potential
therapeutic effect on Alzheimer’s disease, but may also reduce alcohol-induced liver
damage [24,25]. Hesperidin has not only reduced in vivo lipid accumulation, indicating its
potential anti-hyperlipidemic effects, but also has anti-osteoporotic effects [26,27].

Although some studies have shown that GQP and SHQP are mostly similar in their
compositions, the contents of flavonoids (hesperidin, narirutin, nobiletin, tangeretin, etc.)
and alkaloids (synephrine, N-methyltyraminehydrochloride) are significantly different.
While GQP has higher narirutin and hesperidin contents than SHQP, it has comparatively
lower contents of nobiletin and tangeretin [28–30]. Understanding the pharmacodynamic
material basis of the two CRPV types would help in guiding their rational clinical use.

In this study, we used colorimeter, microscope, FT-IR, and UHPLC-Q-Exactive Orbitrap-
MS technology to comprehensively analyze the similarities and differences between GQP
and SHQP based on powder color, microscopic characteristics, and chemical composition,
to provide a scientific basis for formulating more reasonable CRPV quality standards and
guiding its clinical development as a precision medicine.
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2. Results
2.1. Powder Color Analysis

Upon analyzing the pictures of both GQP and SHQP powder, we found the GQP
powder color was darker than that of SHQP (Figure 1). Based on the L*, a*, and b* values
of 22 samples shown in Table 1, we can see that SHQP had a higher brightness L* value
than GQP, thereby indicating that the SHQP powder color was brighter. Although the
red-green degree value a*: GQP > SHQP > 0, indicated that both their powder colors
were red, the SHQP color was redder. Furthermore, the yellow-blue degree value b*:
SHQP > GQP > 0, indicated that both their powder colors were yellow, but the color of the
SHQP was yellower.
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Figure 1. Powder color of CRPV: GQP (a) and SHQP (b).

Table 1. The value of L*, a*, and b* of GQP and SHQP.

Variable Name
Sample Name

GQP (n = 12) SHQP (n = 10)

L* 62.0 ± 3.9 72.9 ± 2.7 NN

a* 6.0 ± 0.6 1.6 ± 1.3 NN

b* 13.8 ± 1.7 19.1 ± 1.7 NN

E*ab 63.8 ± 4.1 75.6 ± 2.5 NN

NN p < 0.01, as compared with the GQP.

2.2. Microscopic Cell Analysis

According to the microscopic observation, the color of the microscopic cells of GQP
was darker, while that of SHQP was lighter, thus being consistent with the powder color
results. According to the Chinese Pharmacopoeia 2020 edition, while the GQP microcells
comprise calcium oxalate crystallization, epidermal cells of the pulp capsule, and hesperidin
crystal (a), those of SHQP mainly comprise tracheal, calcium oxalate crystallization, exocarp,
mesocarp parenchyma, hesperidin crystal, and stoma (b). The result is shown in Figure 2.
However, while observing, we found that the characteristic cells of SHQP also existed in
individual GQP batches.
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2.3. FT-IR Analysis

The FT-IR spectrum of CRPV is shown in Figure 3, and the location of the most relevant
features of the CRPV are shown in Table 2. We divided the infrared spectral absorption
peaks of GQP and SHQP into five sections: the first was 3450–3350 cm−1; the second was
3000–2800 cm−1; the third was 1800–1350 cm−1; the fourth was 1300–1000 cm−1; and the
fifth section was 900–600 cm−1. There were no significant differences between GQP and
SHQP in the first and second sections. Affected by volatile oils, GQP and SHQP showed
characteristic peaks near 3419 cm−1, which were broad and strong, resulting from the
hydrogen bonding of free O-H. Due to flavonoids, GQP and SHQP showed characteristic
peaks near 2923 cm−1, generated by the asymmetric stretching vibration of methylene C-H.
There was a significant difference between GQP and SHQP in the third sections, affected
by carboxylic acids and their esters. GQP and SHQP showed characteristic peaks near
1746 cm−1, which were carbonyl C=O stretching vibration peaks, with the absorption peak
of SHQP in this band being more noticeable than that of GQP, leading to speculation that
the content of carboxylic acids and its esters in SHQP was higher than that in GQP. GQP
and SHQP showed characteristic peaks near 1639 cm−1, which were C=C or aromatic ring
skeleton vibration superimposed peaks. However, GQP showed two absorption peaks
at 1646 cm−1 and 1609 cm−1, due to asymmetric stretching vibrations. In the fourth and
fifth sections, the absorption peaks of GQP were more noticeable than those of SHQP,
with the fourth section being 1300–1000 cm−1, due mostly to C-O stretching vibration
peaks, while the C-OH stretching vibration peaks of polysaccharides were mostly around
1070 cm−1. The fifth segment peak of 900–600 cm−1 was mostly the vibration absorption
peak of carbohydrates, affected by polysaccharides. GQP and SHQP showed characteristic
peaks around 800 cm−1, which were C-H plane bending vibration absorption peaks. We
speculated that GQP had a higher polysaccharide content than SHQP.



Molecules 2022, 27, 3285 5 of 25

Molecules 2022, 27, x FOR PEER REVIEW 5 of 24 
 

 

 

 
Figure 3. FT-IR of GQP and SHQP. 

Table 2. Location of the most relevant features of the FT-IR spectra of the CRPV. 

Name 
Wavenumber Term (cm−1) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
GQP 3419 2919 — 1646 1609 1518 1445 1372 1302 1276 1243 1203 1181 1131 1095 1070 889 841 814 766 740 

SHQP 3419 2919 1746 1639 — 1518 1445 1372 — 1274 — — — — — 1072 — — 812 764 — 

Figure 3. FT-IR of GQP and SHQP.

Table 2. Location of the most relevant features of the FT-IR spectra of the CRPV.

Name
Wavenumber Term (cm−1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

GQP 3419 2919 — 1646 1609 1518 1445 1372 1302 1276 1243 1203 1181 1131 1095 1070 889 841 814 766 740
SHQP 3419 2919 1746 1639 — 1518 1445 1372 — 1274 — — — — — 1072 — — 812 764 —
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2.4. Qualitative Analysis of Constituents

We analyzed the CRPV samples using UHPLC-Q-Exactive Orbitrap-MS in both posi-
tive and negative ion modes (Figure 4). Considering the chromatographic peaks, the MS
spectra obtained in positive ion mode were better than those obtained in negative ion
mode. Most of the PMFs showed abundant peaks in the positive ion mode rather than in
negative ion mode. Details of the identified compounds are presented in Table 3. Finally,
44 major components were identified or preliminarily identified, including 5 flavone-
C-glycosides, 4 flavone-O-glycosides, 4 flavanone-O-glycosides, 4 flavanone aglycones,
21 PMFs, 3 alkaloids, 2 limonoids, and 1 other compound (Table 3). Chemical structures
of the major constituents are shown in Figures 5–7 and Tables 4 and 5. Among them,
luteolin-6-C-glucoside, orientin, rhoifolin, and pilloin were unique to SHQP, most of which
were flavonoid glycosides. However, flavanone aglycones like naringenin and hesperetin
were unique to GQP.
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Table 3. Identification of the chemical compounds of CRPV by UHPLC-Q-Exactive Orbitrap-MS.

Compound/Peak
Number Identification Molecular

Formula

Retention
Time
(min)

[M + H]+ (m/z)
(Error, ppm)

[M − H]−(m/z)
(Error, ppm)

Fragment Ions in the Positive
Ion Mode (m/z) b

Fragment Ions in the
Negative Ion Mode

(m/z) b

Belongs
to

Medicine

Flavone-C-glycosides

3
Luteolin-6,8-di-C-

glucoside
c

C27H30O16 6.12 611.15961
(−1.72) ND

557.12787 [M + H-OCH2CH3]+,
473.10663 [M +

H-C4H8O4-H2O]+, 353.06503 [M
+ H-2C4H8O4-H2O]+

ND G/S

4
Victern-2 (apigenin-6,8-

di-C-glucoside)
c

C27H30O15 7.21 595.16406
(−2.834)

593.15009
(−0.011)

457.11102 [M +
H-C4H8O4-H2O]+ ND G/S

5
Chrysoeriol-6,8-C-

glucoside
c

C28H22O16 7.72 625.17480
(−2.417)

623.16058
(−0.13)

487.11911 [M +
H-C4H8O4-H2O]+, 367.08112 [M

+ H-2C4H8O4-H2O]+

503.12042 [M −
H-C4H8O4]−,

413.08749 [M − H-
C4H8O4-C3H6O3]−,

383.07684 [M −
H-2C4H8O4]−

G/S

6 Luteolin-6-C-glucoside c C21H20O11 9.04 449.10727
(−1.264)

447.09268
(1.101)

413.08545 [M + H-2H2O]+,
395.07538 [M + H-3H2O]+,

329.06519 [M + H-C4H8O4]+,
299.05475 [M + H-C8H6O3]+

ND S

7 Orientin c C21H20O11 9.52 449.10687
(−2.155) ND

431.09659 [M + H-H2O]+,
413.08609 [M + H-2H2O]+,

383.07559, 353.06506, 329.06506,
311.05478, 299.05450

ND S

Flavone-O-glycosides

8
Eriodictyol-7-O-

rutinoside
c

C27H32O15 10.83 597.17963
(−1.767)

597.17963
(−1.767)

289.07040, 355.08051, 195.02887,
153.01813 ND G/S

10 Rhoifolin c C27H30O14 14.01 579.16992
(−1.575)

577.147
(0.257)

433.11099 [M + H-Rha]+,
271.05981 [M + H-Glc-Rha]+,

153.01849, 85.02903

269.04529 [M −
H-Glc-Rha]− S
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Table 3. Cont.

Compound/Peak
Number Identification Molecular

Formula

Retention
Time
(min)

[M + H]+ (m/z)
(Error, ppm)

[M − H]−(m/z)
(Error, ppm)

Fragment Ions in the Positive
Ion Mode (m/z) b

Fragment Ions in the
Negative Ion Mode

(m/z) b

Belongs
to

Medicine

14

3-Hydroxy-3-methyl-5-
oxo-5-

[[(2R,3S,4S,5R,6S)-3,4,5-
trihydroxy-6-[2-

methoxy-4-(5,7,8-
trihydroxy-6-methoxy-

4-oxochromen-2-
yl)phenoxy]oxan-2-

yl]methoxy]pentanoic
acid/2-(3-Methoxy-4-

hydroxyphenyl)-3-[6-O-
(3,5-dihydroxy-3-
methyl-5-oxopent-
anoyl)-beta-D-gluc-

opyranosyloxy]-5,7-di-
hydroxy-8-methoxy-4H
-1-benzopyran-4-one c

C29H32O17 16.44 653.16907
(−2.156)

651.15558
(0.007)

347.07596, 332.05252, 301.03387,
187.05991, 145.04945, 127.03915,

85.02909
286.04791, 151.00246 G/S

15 Torminaloside c C28H30O16 16.84 623.15985
(−1.302)

621.64514
(−0.208) 317.06540

315.06540 [M −
H-144-162]−,

271.02466, 151.00233
G/S

Flavanone-O-glycosides

9 Narirutin a,c C27H32O14 13.51 581.18439
(−2.092)

579.17035
(−0.832)

273.07533 [M + H-Glc-Rha]+,
195.02816, 153.01816, 85.02905

271.06091
[M − H-Glc-Rha]−,

151.00253
G/S

12 Hesperidin a,c C28H34O15 15.18 611.19501
(−2.037)

609.18109
(−0.503)

303.08820 [M + H-Glc-Rha]+,
263.05466, 219.02869, 111.04427,

85.02897

301.07141
[M − H-Glc-

Rha]−,286.04776
G/S

16 Didymin c C28H34O14 21.57 595.20013
(−3.364)

593.18616
(−0.543)

287.09140, 153.0204
[M + H-Glc-Rha-C

9H10O]+, 129.05472, 111.04424,
85.02905

285.07639
[M − H-Glc-Rha]− G/S
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Table 3. Cont.

Compound/Peak
Number Identification Molecular

Formula

Retention
Time
(min)

[M + H]+ (m/z)
(Error, ppm)

[M − H]−(m/z)
(Error, ppm)

Fragment Ions in the Positive
Ion Mode (m/z) b

Fragment Ions in the
Negative Ion Mode

(m/z) b

Belongs
to

Medicine

20 Melitidin c C33H40O18 26.34 725.22607
(−3.682)

723.21222
(−0.788) 419.13303 ND G/S

Flavanone aglycones

11 Homoeriodictyol c C16H14O6 15.19 303.08502
(−4.472)

301.07068
(0.051) 153.01822 [M + H-C9H10O2]+

286.04791 [M −
H-CH3]−,151.00233
[M − H-C9H10O2]−

G/S

17 Isosakuranetin c C16H14O5 21.57 287.09030
(−3.832)

285.07590
(0.526)

153.01819 [M + H-C9H10O]+,
133.06485, 161.05966

243.06580 [M −
H-C2H2O]−,

151.00258 [M −
H-C9H10O]−

G/S

19 Naringenin c C15H12O5 25.93 273.07462
(−2.380)

271.06021
(0.406)

153.01817 [M + H-C8H8O]+,
171.02881,

147.03499, 119.04930, 91.05465,
67.01865

151.00258 [M −
H-C8H8O]−,

119.04896 [M −
H-C7H4O4]−,

107.01255 [M −
H-C8H8O-CO2]−

G

23 Hesperetin c C16H14O6 27.73 303.08527
(−3.447)

301.07068
(0.051)

153.01822 [M + H-C9H10O2]+,
287.07544, 219.06482, 171.02875,

177.05461
ND G

PMFs

13 Pilloin c C17H14O6 15.60 315.08542
(−0.895) ND

300.06253 [M + H-CH3]+,
285.03963 [M + H-2CH3]+,

136.01561 [M + H-CH3-C9H8O3]+
ND S

21
Monohydroxy-

trimethoxyflavone
c

C18H16O6 26.55 329.10101
(−2.901) ND

314.07339 [M + H-CH3]+,
299.05457 [M + H-2CH3]+,

268.07254, 181.01285, 153.01811
ND G/S

22
7-Hydroxy-3,5,6,8-

tetramethoxyflavone
c

C19H18O7 26.59 359.11145
(−3.006) ND

344.08826 [M + H-CH3]+,
301.07016 [M + H-2CH3-CO]+,

298.08319
ND G/S
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Table 3. Cont.

Compound/Peak
Number Identification Molecular

Formula

Retention
Time
(min)

[M + H]+ (m/z)
(Error, ppm)

[M − H]−(m/z)
(Error, ppm)

Fragment Ions in the Positive
Ion Mode (m/z) b

Fragment Ions in the
Negative Ion Mode

(m/z) b

Belongs
to

Medicine

24
7-Hydroxy-3′,4′,5,6,8-
pentamethoxyflavone

c
C20H20O8 29.10 389.12201

(−2.786) ND
374.09921 [M + H-CH3]+,
359.07571 [M + H-2CH3]+,

341.06537 [M + H-2CH3-H2O]+
ND G/S

25
Isosinensetin (3′,4′,5,7,8-
Pentamethoxyflavone)

c
C20H20O7 29.66 373.12717

(−2.705) ND 343.08087 [M + H-2CH3]+,
315.08609 [M + H-2CH3-CO]+ ND G/S

26
3′-Hydroxy-4′,5,6,7,8-

Pentramethoxyflavone
c

C20H20O8 30.77 389.12219
(−2.786) ND 374.09912 [M + H-CH3]+,

359.07562 [M + H-2CH3]+ ND G/S

27
3,4′,5,7-Tetrametho-

xyflavone
c

C19H18O6 31.86 343.11694
(−1.967) ND

327.08597 [M + H-CH4]+,
328.09256 [M + H-CH3]+,

299.09109 [M + H-CH4-CO]+,
163.03397

ND G/S

28
Monohydroxy-

hexamethoxyflavone
c

C21H22O9 32.74 419.13324
(−0.999) ND 404.10974 [M + H-CH3]+,

389.08646 [M + H-2CH3]+ ND G/S

29
5-Hydroxy-3′,4′,7,8-

tetramethoxyflavone
c

C19H18O7 33.12 359.11148
(−2.922) ND 197.0105 [M + H-C10H10O2]+,

169.0165 [M + H-C10H10O2-CO]+ ND G/S

30

Sinensetin
(3′,4′,5,6,7-Pentrametho-

xyflavone)
c

C20H20O7 33.22 373.12723
(−2.545) ND 357.09563 [M + H-CH4]+,

343.08081 [M + H-2CH3]+ ND G/S

31 4′,5,6,7-
Tetramethoxyflavone C19H18O6 33.43 343.11673

(−2.579) ND
328.09363 [M + H-CH3]+,

317.07031, 285.07556, 181.01324,
153.01805

ND G/S

32
3′,4′,5,7,8-

Pentamethoxyflavanone
c

C20H22O7 34.47 375.14322
(−0.609) ND

211.05995 [M + H-C10H10O2]+,
196.03661 [M +

H-C10H10O2-CH3]+, 168.04150
ND G/S
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Table 3. Cont.

Compound/Peak
Number Identification Molecular

Formula

Retention
Time
(min)

[M + H]+ (m/z)
(Error, ppm)

[M − H]−(m/z)
(Error, ppm)

Fragment Ions in the Positive
Ion Mode (m/z) b

Fragment Ions in the
Negative Ion Mode

(m/z) b

Belongs
to

Medicine

35
Nobiletin (3′,4′,5,6,7,8-
hexamethoxyflavone)

a,c
C21H22O8 36.90 403.13779

(−2.367) ND

373.09137 [M + H-2CH3]+,
355.08060 [M + H-3CH3]+,

327.08591, 312.0705, 301.07031,
211.02361, 183.02884

ND G/S

36
4′,5,7,8-

Teramethoxyflavone
c

C19H18O6 37.23 343.11685
(−2.229) ND 313.07028 [M + H-2CH3]+,

327.08560 [M + H-CH4]+ ND G/S

37
Dihydroxy-

tetramethoxyflavone
c

C19H18O8 37.86 375.10706
(−1.024) ND

360.08340 [M + H-CH3]+,
345.06018 [M + H-2CH3]+,

327.04971 [M + H-2CH3-H2O]+
ND G/S

39
3,5,6,7,8,3′,4′-

Hexamethoxyflavone
c

C22H24O9 39.14 433.14835
(−2.213) ND

418.12482 [M +
H-CH3]+,403.10187 [M +

H-2CH3]+, 385.09146 [M +
H-2CH3-H2O]+, 345.05917 [M +

H-4CH3-CO]+, 211.02190,
165.05423

ND G/S

40
Tangeretin (4′,5,6,7,8-

Pentamethoxyflavone)
a,c

C20H20O7 40.56 373.12738
(−2.143) ND

358.10428, 343.08102 [M +
H-2CH3]+, 297.07553, 183.02886,

135.04411
ND G/S

41
Monohydroxy-

tetramethoxyflavone
c

C19H18O7 42.31 359.11206
(−1.307) ND 343.08096, 315.08582, 298.08322,

164.08301 ND G/S

42
5-Hydroxy-6,7,8,3′,4′-
Pentamethoxyflavone

c
C20H20O8 43.91 389.12213

(−2.477) ND

374.09550, 359.07574 [M +
H-2CH3]+, 341.06528, 215.01813,

197.0119 [M +
H-C10H12O2-2CH3]+

ND G/S
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Table 3. Cont.

Compound/Peak
Number Identification Molecular

Formula

Retention
Time
(min)

[M + H]+ (m/z)
(Error, ppm)

[M − H]−(m/z)
(Error, ppm)

Fragment Ions in the Positive
Ion Mode (m/z) b

Fragment Ions in the
Negative Ion Mode

(m/z) b

Belongs
to

Medicine

43

Natsudaidain
(3-hydroxy-3′,4′,5,6,7,8-
Hexamethoxyflavone)

c

C21H22O9 46.20 419.13290
(−1.810) ND

389.08630 [M + H-2CH3]+,
371.07581 [M + H-2CH3-H2O]+,

361.09167
ND G/S

44
Monohydroxy-

tetramethoxyflavone
c

C19H18O7 47.65 359.11179
(−2.0598) ND

344.08826 [M + H-CH3]+,
329.06528 [M + H-2CH3]+,

197.00768
ND G/S

Alkaloids

1 Stachydrine c C7H13NO2 1.30 144.10161 ND 102.05531, 84.08133, 58.06592 ND G/S

2 Synephrine a,c C9H13NO2 1.84 168.10179 ND

135.06801 [M + H-H2O-CH3]+,
119.04944 [M +

H-H2O-CH3NO2]+, 107.04957 [M
+ H-H2O-CH3-CO]+, 91.05482,

81.07052

ND G/S

18 CitrusinIII c C36H53N7O9 23.97 728.39557
(−2.722) ND 700.40399 [M + H-CO]+,

587.31830, 474.23471 ND G/S

Limonoids

33 Limonin c C26H30O8 35.15 471.20053
(−1.728)

469.18555
(−0.307)

425.19559 [M + H-H2O]+,
367.19043 [M +

H-CH2O2-2CH3-H2O]+,
161.05972

ND G/S

38 Nomilin c C28H34O9 39.03 515.22668
(−1.706) ND

469.22083 [M + H-CH2O2]+,
411.21735 [M +

H-CH2O2-2CH3-H2O]+,
161.05966

ND G/S
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Table 3. Cont.

Compound/Peak
Number Identification Molecular

Formula

Retention
Time
(min)

[M + H]+ (m/z)
(Error, ppm)

[M − H]−(m/z)
(Error, ppm)

Fragment Ions in the Positive
Ion Mode (m/z) b

Fragment Ions in the
Negative Ion Mode

(m/z) b

Belongs
to

Medicine

Other compounds

14

2-
(carbamoylamino)ethyl-

[5-(dimethylamino)-
pentyl]-methyl-

propylazanium/diethyl-
[[[2-methyl-3-[1-

(methylamino)butan-2-
ylamino]propanoyl] am-
ino]methyl]azanium c

C14H33ON4 35.54 274.27328
(−2.066) ND 256.26324, 106.08664, 88.07628 ND G/S

G: Geqingpi belongs to CRPV; S: Sihuaqingpi belongs to CRPV; a Confirmation in comparison with authentic standards.; b Glc = glucose moiety, Rha = rhamnose moiety, ND: Not
detected; c Confirmation in comparison with literature.



Molecules 2022, 27, 3285 16 of 25

Table 4. Compounds with the flavone structure.

Name R1 R2 R3 R4 R5 R6 R7

Luteolin-6,8-di-C-
glucoside H OH Glc OH Glc OH OH

Victern-2 (apigenin-6,8-di-
C-glucoside) H OH Glc OH Glc H OH

Chrysoeriol-6,8-C-
glucoside H OH Glc OH Glc OCH3 OH

Rhoifolin H OH H ONeo H H OH
Isosinensetin (3′,4′,5,7,8-
Pentamethoxyflavone) OCH3 H OCH3 OCH3 OCH3 OCH3 OCH3

Sinensetin (5,6,7,3′,4′-
Pentramethoxyflavone) OCH3 OCH3 OCH3 H OCH3 OCH3 OCH3

Nobiletin (5,6,7,8,3′,4′-
hexamethoxyflavone) OCH3 OCH3 OCH3 OCH3 OCH3 OCH3 OCH3

Tangeretin (5,6,7,8,4′-
Pentamethoxyflavone) OCH3 OCH3 OCH3 OCH3 H H OCH3

3,5,6,7,8,3′,4′-
Hexamethoxyflavone H OCH3 OCH3 OCH3 OCH3 OCH3 OCH3

Glc = glucose, Neo = neohesperidoside.

Table 5. Compounds with the flavanone structure.

Name R1 R2 R3

Narirutin ORut H OH
Hesperidin ORut OH OCH3

Homoeriodictyol OH OCH3 OH
Isosakuranetin OH H OCH3

Didymin ONeo H OCH3
Naringenin OH H OH
Hesperetin OH OH OCH3

Rut = rutinoside, Neo = neohesperidoside.
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2.4.1. Analysis of Flavonoids

In this study, we identified 44 major components including 5 flavone-C-glycosides,
4 flavone-O-glycosides, 4 flavanone-O-glycosides, 4 flavanone aglycones, 21 PMFs,
3 alkaloids, 2 limonoids, and 1 other compound from the CRPV samples. Consistent with
the previously reported results [31], the retro Diels–Alder (rDA) reaction often exists in the
cracking process of most flavonoids.

Analysis of Flavonoid-O-Glycosides

Flavonoid-O-glycosides are common flavonoid compounds commonly found in citrus
fruits, and are linked to rutinose or neohesperidose via the C-7 hydroxyl group, which
links the disaccharide to the aglycone [32,33]. Based on previous reports [34–37], we
identified and tentatively characterized four flavone-O-glycosides (compounds 8, 10, 14,
and 15) and four flavanone-O-glycosides (compounds 9, 12, 16, and 20). For instance,
compared with reference standards, we unambiguously identified compounds 9 and 12
as narirutin and hesperidin, respectively. Hesperidin showed a quasi-molecular ion [M
+ H]+ at m/z of 611.19501 (C28H34O15), due to the continuous loss of a glucose (162 Da)
and a rhamnose (146 Da), thereby giving characteristic product ions at m/z of 303.08820.
Narirutin gave an [M + H]+ signal at m/z of 581.08439 (C27H32O14), and its fragmentation
pattern shared similarity with hesperidin, which generated MS/MS ions at m/z of 273.07533
[M + H-Glc-Rha]+.

Analysis of Flavonoid-C-Glycosides

Fragmentations in most flavonoid-C-glycosides were based on the aglycones of
flavones [38]. In the MS/MS spectra, the main product ion of flavone-C-glycosides usually
occurred in the glycosyl moiety, which was generated by the loss of water molecule(s) and
the glycosidic methylol group as formaldehyde [39]. According to previous reports [34–37],
the product ions [M + H–n18Da]+ are diagnostic ions, while the other two fragments,
[M–H–90Da]− and [M–H–120Da]−, revealed that a C-glycoside was connected with
hexose units. In the present study, we tentatively identified five flavone-C-glycosides
(compounds 3, 4, 5, 6, and 7) in CRPV, in which compounds 6 and 7 belong to SHQP.
For example, compound 3 showed a quasi-molecular ion [M + H]+ at m/z of 611.15961
(C27H30O16), which generated MS/MS ions at m/z of 557.12787 [M + H-OCH3-H2O]+,
473.10663 [M + H-C4H8O4-H2O]+, and 353.06503 [M + H-2C4H8O4-H2O]+. Compound 4
exhibited a quasi-molecular ion [M + H]+ at m/z of 595.16406 (C27H30O15), which gener-
ated MS/MS ions at 457.11102 [M + H-C4H8O4-H2O]+. Compound 5 displayed a quasi-
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molecular ion [M + H]+ at m/z of 625.17480 (C28H22O16), which generated MS/MS ions at
m/z of 487.11911 [M + H-C4H8O4-H2O]+ and 367.08112 [M + H-2C4H8O4-H2O]+. Com-
pound 6 exhibited a quasi-molecular ion [M + H]+ at m/z of 449.10727 (C21H20O11), which
generated MS/MS ions at 413.08545 [M + H-2H2O]+ and 395.07538 [M + H-3H2O]+. Com-
pound 7 presented a quasi-molecular ion [M + H]+ at m/z of 449.10727 (C21H20O11), which
generated MS/MS ions at m/z of 413.08545 [M + H-2H2O]+ and 395.07538 [M + H-3H2O]+.
On comparing with the flavonoid-C-glycosides in the existing literature, we tentatively
identified compounds 3, 4, 5, 6, and 7 as luteolin-6,8-di-C-glucoside, victern-2, chrysoeriol-
6,8-C-glucoside, luteolin-6-C-glucoside, and orientin, respectively.

Analysis of PMFs

PMFs are almost exclusively found in citrus species [40]. They have the same aglycon
structure; the difference lies in the number and position of the hydroxyl groups (-OH)
and/or methoxy groups (-OCH3) connected to the A, B, and C rings of the aglycon.
Furthermore, the diagnostic ions of PMFs are [M + H–nCH3]+, [M + H–2CH3–H2O]+,
[M + H–2CH3–CO]+, etc. [41]. By comparison with elution times and MS/MS data from
previous reports [34,35], we screened 21 PMFs in CRPV. For example, by comparing with the
reference standards, we identified compounds 35 and 40 as nobiletin and tangeretin, respec-
tively. Nobiletin exhibited a quasi-molecular ion [M + H]+ at m/z of 403.13779 (C18H16O7)
and displayed secondary fragments at m/z of 373.09137 [M + H-2CH3]+. Tangeretin ex-
hibited a quasi-molecular ion [M + H]+ at m/z of 373.12783 (C20H20O7) and displayed
secondary fragments at m/z of 328.0622 [M + H-CH3]+ and 343.08102 [M + H-2CH3]+. Com-
pound 39 presented a quasi-molecular ion [M + H]+ at m/z 433.14835 (C22H24O9), which
generated MS/MS ions at m/z of 418.12482 [M + H-CH3]+, 403.10187 [M + H-2CH3]+, and
385.09146 [M + H-2CH3-H2O]+. On comparing with the existing literature, we tentatively
identified compound 39 as 3,5,6,7,8,3′,4′-Hexamethoxyflavone.

2.4.2. Analysis of Other Compounds

Compounds 33 and 38 showed a quasi-molecular ion [M + H]+ at m/z of 471.20053
(C26H30O8) and 515.22668 (C28H34O9), respectively. The characteristic ions of these com-
pounds were usually generated by the loss of H2O, CO, and CO2, and displayed secondary
fragments at m/z of 425.19559 [M + H-H2O]+, 367.19043 [M + H-CH2O2-2CH3-H2O]+,
469.22083 [M + H-CH2O2]+, and 411.21735 [M + H-CH2O2-2CH3-H2O]+. When com-
pared with the previous reports, compounds 33 and 38 were identified as limonin and
nomilin [34,35].

2.5. Statistical Analysis

We applied different statistical analyses like the similarity analysis, PCA analysis, and
OPLS-DA analysis, based on the FT-IR information. Similarity analysis between samples
was calculated as Euclidean distance, and the final result is shown in Table 6. The larger the
value, the higher the similarity between the samples, while the smaller the value, the lower
the similarity between the samples. The similarity value between the GQP varieties is 1.00,
and the similarity between the SHQP varieties is also 1.00. However, the similarity value
between GQP and SHQP is 0.65~0.66. This means that there are large differences between
GQP and SHQP.

We established a PCA model and an unsupervised pattern recognition technique with
R2 (X) (cum) = 0.748 and Q2 (cum) = 0.588. The final PCA score scatter plot and bi-plot
are shown in Figure 8a,b. As shown in Figure 8a, we separated the samples into distinct
groups. GQP and SHQP were clustered together; as well as being visible to the naked
eye in Figure 8b, this feature indicates that samples fell into two classes; different infrared
peaks had different effects between GQP and SHQP. The infrared peaks numbered 7, 16,
2, 8, and 3 had a greater impact on the clustering of SHQP, while the rest had a greater
impact on the clustering of GQP. A clear separation between GQP and SHQP was achieved,
indicating the significant differences between these two species.
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Table 6. Similarity analysis of GQP and SHQP.

Sample
Number G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22

G1 1.00
G2 1.00 1.00
G3 1.00 1.00 1.00
G4 1.00 1.00 1.00 1.00
G5 1.00 1.00 1.00 1.00 1.00
G6 1.00 1.00 1.00 1.00 1.00 1.00
G7 1.00 1.00 1.00 1.00 1.00 1.00 1.00
G8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
G9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

G10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
G11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
G12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
S13 0.66 0.66 0.65 0.65 0.65 0.66 0.65 0.65 0.65 0.65 0.65 0.65 1.00
S14 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 1.00 1.00
S15 0.66 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 1.00 1.00 1.00
S16 0.66 0.66 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 1.00 1.00 1.00 1.00
S17 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 1.00 1.00 1.00 1.00 1.00
S18 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.65 0.66 0.66 0.66 0.66 1.00 1.00 1.00 1.00 1.00 1.00
S19 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 1.00 1.00 1.00 1.00 1.00 1.00 1.00
S20 0.66 0.66 0.65 0.65 0.66 0.66 0.65 0.65 0.66 0.66 0.65 0.65 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
S21 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
S22 0.66 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

We established the OPLS-DA model by setting GQP and SHQP as groups I and II,
respectively. The OPLS-DA scores plot was established with the model parameters of R2

(Y) = 0.999 and Q2 (cum) = 0.997 and is shown in Figure 8c. Therefore, we confirmed
the OPLS-DA model based on the FT-IR data used to separate GQP and SHQP. Since the
variable importance in the projection (VIP) value reflected the contribution of each variable
to the grouping, we used VIP ≥ 1 as the threshold to filter and obtain eleven different
infrared peaks related to species classification (Figure 8d). The VIP values of the infrared
peaks numbered 13, 12, 11, 21, 15, 9, 17, 14, 3, and 5 were > 1, and all these were important
for distinguishing between GQP and SHQP. The permutated R2 and Q2 values on the
left were lower than the original point on the right (Figure 8e), thus indicating that the
established OPLS-DA mode has high goodness of fit and predictability.
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3. Materials and Methods
3.1. Chemicals and Materials

Hesperidin (China National Institute for Food and Drug Control), narirutin (Chengdu
Keluo Biological Technology Co., Ltd., Chengdu, China), nobiletin (Chengdu Pusi Biological
Technology Co., Ltd.; Chengdu, China), tangeretin (Chengdu Pusi Biological Technology
Co., Ltd.; Chengdu, China), acetonitrile (Merck Co., Kenilworth, NJ, USA), methanol (Tianjin
Concord, Tianjin, China), formic acid (Nanjing Chemical Reagents Co., Nanjing, China).

Twenty-two batches of CRPV samples, comprising the GQP and SHQP, from different
provinces of China, were purchased from various pharmacies and markets (Figure 9,
Supporting Information Table S1). They were authenticated by Professor Feng Li (Shandong
University of Traditional Chinese Medicine). According to morphological characteristics,
all the samples were dried fruit or immature fruit skins of Citrus reticulata Blanco and its
cultivars. G1–G12 were GQP, and these types of GQP were round thick slices, the surface
was grayish-green or black-green, cut surface was yellow-white or light yellow-brown,
densely living with most oil chambers, gas fragrance, bitter taste, and spicy. S13–S22
were SHQP, and these types of SHQP were irregular filamentous, surface grayish-green or
black-green, cut surface was yellow-white or light yellow-brown, fragrance, bitter taste,
and spicy.
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3.2. Sample Preparation

Appropriate amounts of the reference standards were dissolved in methanol. The
reference solutions were stored at 4 ◦C before use. All samples were ground into a thin
powder through an 80-mesh sieve.

3.2.1. Sample Preparation for Microscopic Observation

A small amount of homogenized sample powder was accurately weighed, and an
appropriate amount of chloral hydrate test solution (chloral hydrate:distilled water:glycerin
50:15:10) was added to it. The mixture was heated and permeated, then covered with the
cover glass to make microscopic observations.

3.2.2. Sample Preparation for FT-IR

An appropriate amount of homogenized sample powder and potassium bromide
powder were accurately weighed and dried separately in a constant temperature oven at
65 ◦C and 115 ◦C for 1.5 h, privately. Sample powder and potassium bromide (1:100) were
mixed and ground under an infrared baking lamp, then pressed into flakes by a powder
tablet press (Graseby Specac) for FT-IR analysis.

3.2.3. Sample Preparation for UHPLC-Q-Exactive Orbitrap-MS

An appropriate amount of homogenized sample powder (0.2 g) was accurately
weighed and ultrasonically extracted with 25 mL methanol/water (50:50, v/v) for 45 min
at room temperature. The suspension was centrifuged at 5000 rpm for 5 min to remove
residue. Then, the solution was filtered through a 0.22 µm filter for analysis.

3.3. Powder Color, Microscopic Identification, and Chemical Composition Analysis
3.3.1. Power Color Determination Analysis

A high-quality COLORIMETER (NH300, ThreeNH Technology Co., Ltd., Shenzhen,
China) was used to measure the powder color and obtain L* (brightness), a* (red-green), b*
(yellow-blue), and the total color value E*ab, which was obtained by the following formula:
E*ab = (L2 + a2 + b2)1/2. The chromaticity meter used the international universal light
source D65 with a standard deviation of ∆E* ab < 0.07 (the average of 30 times of interval
measurement after calibration of the standard whiteboard).

3.3.2. Microscopic Observation Analysis

An Olympus BX53F microscope (Olympus Life Sciences, Tokyo, Japan) with MC50
lens (Mshot, Mingmei Technology Co., Ltd., Guangzhou, China) was used to observe the
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characteristic cells in CRPV. The microscope preview resolution was set as 2560 × 1944;
the capture resolution was 2560 × 1944; no color enhancement (saturation default 100); no
single color; no automatic white balance; color correction OFF.

3.3.3. FT-IR Analysis

The infrared spectrum of CRPV was scanned using a Frontier FT-IR spectrometer
(Perkin Elmer, Waltham, MA, USA) along with an FR-DTGS detector. Scanning parameters
were as follows: scanning range of 4000–400 cm−1, spectral resolution of 4 cm−1, wave-
length reactivity of ±0.02 cm−1, wavelength accuracy of ±0.1 cm−1. The interference of
H2O and CO2 was deducted during scanning. After the processing of peak position and
baseline correction, the maps and data were corrected using OMNIC 9.2 software (Thermo
Nicolet Corporation, Madison, WI, USA).

3.3.4. UHPLC-Q-Exactive Orbitrap-MS Analysis

Detection was performed using a Vanquish FLEX ULTRA-high-performance liquid
chromatography system and a quadrupole orbital well high-resolution mass spectrometer
Q-Exactive (Thermo Fisher Scientific, Waltham, MA, USA). Chromatographic separation
was performed with an ACQUITY C18 column (2.1 mm × 100 mm, 1.8 µm, 100 Å; Phe-
nomenex, Torrance, CA, USA) maintained at 30 ◦C with linear gradient elution using (A)
water (0.01% formic acid) and (B) acetonitrile (0.01% formic acid) as the mobile phase. The
optimized gradient elution procedure was as follows: 10 to 15% B (0–3 min), 15–37% B
(3–30 min), 37–60% B (30–50 min), 60 to 85% B (50–65 min), and 85% B (75 min). The flow
rate was 0.2 mL/min. The sample injection volume was 2 µL.

MS/MS identification was performed using a high-resolution mass spectrometer
equipped with an electrospray ionization (ESI) source using a quadrupole tandem electro-
static field track well. Ion mode: positive and negative ion mode; auxiliary temperature:
350 ◦C; auxiliary gas flow rate: 10; sheath gas flow rate: 35; atomization voltage: 3.0 kV;
capillary temperature: 350 ◦C; scan mode: full mass-DD MS2; scanning range: 100–1500.
Sheath gas pressure auxiliary gas pressure: 30, 40, 50 arb. Nitrogen was used as an atomizer
and auxiliary gas. Data were obtained using Thermo Scientific Xcalibur.

3.4. Statistical Analysis

Data obtained from the study are presented as mean ± standard deviation (SD).
The one-way ANOVA and similarity analyses were carried out using SPSS 22.0 statistical
software (SPSS, Inc., Chicago, IL, USA). Principal component analysis (PCA) and orthogonal
partial least squares-discriminant analysis (OPLS-DA) were performed using SIMCA 14.0
software (Umetrics, Inc., San Jose, CA, USA).

4. Results and Discussion

In this experiment, we studied 22 batches of CRPV (12 kinds of GQP and 10 kinds of
SHQP) based on their powder color, microscopic cells, FT-IR analysis, and composition
analysis. The color of SHQP powder was comparatively brighter, with the color of GQP
and SHQP being comparatively redder and yellower, respectively. The microscopic charac-
teristic cells of GQP mainly comprised calcium oxalate crystallization, epidermal cells of
the pulp capsule, and hesperidin crystal, while those of SHQP mainly comprised tracheal,
calcium oxalate crystallization, exocarp, mesocarp parenchyma, hesperidin crystal, and
stoma. FT-IR analysis showed that SHQP had a higher content of carboxylic acids and its
esters than GQP, whereas GQP had a higher content of polysaccharides than SHQP.

We detected 44 main components using the UHPLC-Q-Exactive Orbitrap-MS. Among
them, the flavanone aglycones, naringenin and hesperetin, were the unique components
of GQP. Naringenin can reduce the phosphorylation of STAT3 in the hypothalamus by
regulating adipocytokines, to achieve weight loss in obese rats and treat hypertension [42].
In vitro and in vivo experiments have confirmed that naringenin can reduce hepatic lipid
accumulation and attenuate the inflammation in mice by downregulating the expression of
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the NLRP3 /NF-κB signaling pathway both in Kupffer cells and hepatocytes [43]. Moreover,
it can also decrease urea, creatine, and uric acid levels, thereby protecting against rat liver
and kidney damage [44]. Hesperetin reportedly has both neuroprotective and memory-
improving effects, and it works by reducing both the inflammatory mediators’ expression
and neuronal apoptosis [45,46].

Luteolin-6-C-glucoside, orientin, rhoifolin, and pilloin were unique components in
SHQP. Previous literature has shown that orientin exhibits antibacterial effects and can
inhibit the growth of Staphylococcus aureus [47]. Although both rhoifolin and pillion have
shown anti-inflammatory effects, their mechanisms are different. Rhoifolin inhibits the
secretion of inflammatory factors and inhibits the expression of IKKβ and IκBα in the
NF-κB signaling pathway [48,49]. Additionally, it can repair liver and kidney damage in
mice with acute inflammation, treat rheumatoid arthritis, and exert anti-pancreatic cancer
effects [50]. Pilloin inhibits the production of inflammatory molecules in macrophages and
downregulates inflammatory cytokines, thus showing good anti-inflammatory activity
both in vitro and in vivo [51]. However, we found no pharmacological studies related to
luteolin-6-C-glucoside.

GQP has been reported to be mainly used for breaking Qi and resolving stagnation,
while SHQP is mainly used for regulating both the liver and Qi [28]. The above studies
prove that the pharmacological activities and action mechanisms of the different compo-
nents in both GQP and SHQP are different. These may be the reasons for the differences
in the clinical efficacy of GQP and SHQP. This research can provide a reference for the
establishment of different grade standards of CRPV or establish identification methods for
Chinese patent medicines with different CRPV as raw materials, while also helping with
their clinical development as a precision medicine. More studies on the pharmacological
efficacy should be carried out in the future, thus helping to formulate more reasonable
quality standards for CRPV and guide its clinical use as a precision drug.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules27103285/s1, Table S1: Information on Citri
Reticulatae Pericarpium Viride.
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