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A B S T R A C T

Background: A disease severity index (SI) for Alzheimer's disease (AD) has been proposed that summarizes MRI-
derived structural measures into a single score using multivariate data analysis.
Objectives: To longitudinally evaluate the use of the SI to monitor disease progression and predict future pro-
gression to AD in mild cognitive impairment (MCI). Further, to investigate the association between longitudinal
change in the SI and cognitive impairment, Apolipoprotein E (APOE) genotype as well as the levels of cere-
brospinal fluid amyloid-beta 1–42 (Aβ) peptide.
Methods: The dataset included 195 AD, 145 MCI and 228 control subjects with annual follow-up for three years,
where 70 MCI subjects progressed to AD (MCI-p). For each subject the SI was generated at baseline and follow-
ups using 55 regional cortical thickness and subcortical volumes measures that extracted by the FreeSurfer
longitudinal stream.
Results: MCI-p subjects had a faster increase of the SI over time (p < 0.001). A higher SI at baseline in MCI-p
was related to progression to AD at earlier follow-ups (p < 0.001) and worse cognitive impairment
(p < 0.001). AD-like MCI patients with the APOE ε4 allele and abnormal Aβ levels had a faster increase of the
SI, independently (p= 0.003 and p = 0.004).
Conclusions: Longitudinal changes in the SI reflect structural brain changes and can identify MCI patients at risk
of progression to AD. Disease-related brain structural changes are influenced independently by APOE genotype
and amyloid pathology. The SI has the potential to be used as a sensitive tool to predict future dementia, monitor
disease progression as well as an outcome measure for clinical trials.

1. Introduction

Alzheimer's disease (AD), the most common form of dementia, is a
neurodegenerative disorder that is clinically characterized by gradual
loss of cognitive functions. While the definitive AD diagnosis requires
postmortem autopsy-confirmed existence of amyloid plaques and neu-
rofibrillary tangles in the brain tissue (Khachaturian, 1985;
Markesbery, 1997), the diagnosis of possible or probable AD is based on
clinical signs and symptoms. However, the new diagnostic criteria re-
commend that the clinical diagnosis should be supported by the use of
biomarkers from magnetic resonance imaging (MRI), positron emission

tomography (PET) or cerebrospinal fluid (CSF) (McKhann et al., 2011).
The disease onset is estimated to be a decade or more before clinical
appearance (Jack et al., 2013; Jack et al., 2010a). Therefore, at the time
of diagnosis, irreversible brain damage has already occurred. An early
and accurate diagnosis of AD will be extremely important when disease-
modifying treatments exist. Unfortunately, at the moment, only symp-
tomatic treatments are available.

Mild cognitive impairment (MCI) is an intermediate condition be-
tween normal cognition and dementia that involves noticeable decline
in cognitive abilities. MCI often represents a prodromal form of de-
mentia, conferring a significantly higher risk of converting to AD
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(Gauthier et al., 2006). However, MCI is a heterogeneous condition, i.e.
not all MCI subjects develop dementia even after several years of
follow-up. Therefore, studying MCI is useful because it offers opportu-
nities for relatively early diagnosis of AD by identifying MCI patients at
risk of developing AD.

There is still a need to validate existing biomarkers for early de-
tection of the disease and investigate new diagnostic tools. MRI has
been widely studied in clinical trials for early detection of AD and MCI.
Cognitive impairment in AD and MCI subjects is associated with neuron
loss and progressive cerebral atrophy (Serrano-Pozo et al., 2011). Ad-
vanced image processing and data analysis techniques provide tools to
detect these structural changes in MRI and extract disease-related in-
formation (Falahati et al., 2014). Atrophy of medial temporal struc-
tures, particularly in the hippocampus and entorhinal cortex is con-
sistent findings in AD (Morra et al., 2009). However, atrophy of medial
temporal structures or ventricular enlargement is not specific to AD.
The absence of atrophy does not exclude a diagnosis of AD either.
Measures of single structures are probably insufficient for accurate AD
diagnosis. It has previously been shown that a combination of different
structural measures is more accurate for distinguishing AD from cog-
nitively normal (CN) subjects and predicting future conversion from
MCI to AD (Kloppel et al., 2008; Westman et al., 2013; Zhang et al.,
2011). Recently, we proposed a methodology using multivariate ana-
lysis of automated MRI-derived structural measures (global and re-
gional thickness and volumes) to generate a disease severity index (SI)
(Aguilar et al., 2014; Spulber et al., 2013). The SI summarizes the
patterns of structural brain changes as a single score for each individual
subject, based on the observed patterns in AD and CN subjects. The
methodology has been evaluated in the AddNeuroMed (large European
multi-center study) and the Alzheimer's Disease Neuroimaging In-
itiative (ADNI) and the Australian Imaging Biomarkers and Lifestyle
flagship study of aging (AIBL) cohorts (Ferreira et al., 2017;
Mangialasche et al., 2013; Westman et al., 2011).

The present study builds on our previous work to generate the SI,
but we have made several methodological improvements. Longitudinal
image processing in FreeSurfer is employed for the first time to generate
regional volume and thickness measures. This reduces the inter-in-
dividual variability and increases the accuracy of the extracted struc-
tural measures (Reuter et al., 2012). By improving the input features for
multivariate analysis, we can study changes in the patterns of atrophy,
investigate disease progression and evaluate the performance of the SI
more accurately. We have added age correction (Falahati et al., 2016)
to further improve the accuracy of the SI. This has not previously been
applied longitudinally. We have only described longitudinal changes in
the SI once before in a small sample of MCI subject with short follow-up

time (one year). In the present study we have a much larger sample size
and subjects are followed-up for three years (baseline, 12-, 24- and 36-
month). To have a sufficient follow-up time is important to evaluate
small change as well as study the relationship between the SI to cog-
nition and APOE genotype. Finally, changes in the SI have not pre-
viously been investigated in relation to amyloid burden in the brain as
well as how sensitive it is to predict and monitor time to conversion to
AD.

2. Material and methods

2.1. Participants

A total of 568 subjects (AD = 195, MCI = 145, CN = 228) were
included in the current study. For AD, follow-up data were available up
to 24 months. All MCI and 129 CN subjects had a 36 months follow-up.
Out of 145 MCI subjects, 70 subjects progressed from MCI to AD (MCI-
p) and 75 subjects remained stable or returned to normal cognition
(MCI-s) within the 36 months follow-up period. Besides, during the
36 months period, 11 CN subjects progressed to MCI or AD. The de-
mographics of participants are given in Table 1.

The dataset used was obtained from the Alzheimer's disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). ADNI was
launched in 2003 by the National Institute on Aging (NIA), the National
Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food
and Drug Administration (FDA), private pharmaceutical companies and
non-profit organizations (Mueller et al., 2005). The primary goal of
ADNI is to test whether serial MRI, PET, other biological markers, and
clinical and neuropsychological assessments can be combined to mea-
sure the progression of MCI and early AD. The Principal Investigator of
this initiative is Michael W. Weiner, MD, VA Medical Center and Uni-
versity of California – San Francisco. ADNI subjects were recruited from
over 50 sites across the U.S. and Canada. For up-to-date information,
see www.adni-info.org.

2.2. Inclusion and diagnostic criteria

Briefly, for AD the dementia diagnosis was based on DSM-IV and
they had to meet the NINCDS-ADRDA criteria for probable AD, as well
as have a total Clinical Dementia Rating (CDR) score of 0.5 or above.
MCI diagnosis required a MMSE score between 24 and 30; memory
complaints; normal activities of daily living; total CDR score of 0.5; and
Geriatric Depression Scale (GDS) score of ≤5. The inclusion criteria for
control participants were a MMSE score between 24 and 30; total CDR
score of 0; and GDS score ≤ 5. No significant neurological or

Table 1
Baseline demographic and clinical characteristics of subjects.

CN MCI-s MCI-p AD

Count 228 75 70 195
Age, years 75.9 ± 5.0

(59.9–89.6)
74.5 ± 7.4
(55.1–86.4)

74.3 ± 6.9
(55.2–87.8)

75.5 ± 7.5
(55.1–90.9)

Education, years 16.0 ± 2.8
(6–20)

16.2 ± 2.8
(7–20)

15.8 ± 3.2
(6–20)

14.7 ± 3.2
(4–20)

MMSE score 29.1 ± 1.0
(25–30)

27.5 ± 1.7
(24–30)

26.6 ± 1.7
(24–30)

23.3 ± 2.0
(18–27)

CDR total score 0 0.5 0.5 0.74 ± 0.25
(0.5–1)

Gender, male/female 111/117 15/60 27/43 95/100
CSF Aβ levels 207.1 ± 53.4

(79.0–297.7)
177.1 ± 62.5
(90.8–298.8)

142.5 ± 38.8
(84.7–272.8)

142.7 ± 40.0
(75.0–295.8)

CSF Aβ−/Aβ+ 69/45 16/23 3/37 8/91
APOE ε4−/ε4+ 168/60 42/33 24/46 67/128

Continuous data is represented as mean ± SD (minimum –maximum); CN, cognitively normal subjects; MCI, mild cognitive impairment; MCI-s, stable MCI; MCI-p, progressive MCI; AD,
Alzheimer's disease; MMSE, mini mental state examination; CDR, clinical dementia rating; CSF, cerebrospinal fluid; Aβ, amyloid-beta 1–42; Aβ−, Aβ > 192 pg/ml; Aβ+, Aβ ≤ 192 pg/
ml; APOE, apolipoprotein E; ε4+, carrier of one or two ε4 alleles; ε4−, without any ε4 allele.

F. Falahati et al. NeuroImage: Clinical 16 (2017) 418–428

419

http://adni.loni.usc.edu
http://www.adni-info.org


psychiatric illness, no significant unstable systemic illness or organ
failure, and no history of alcohol or substance abuse or dependence
were required for all three groups. MRI information was not used for
the diagnosis. The complete inclusion and exclusion criteria are de-
scribed by Petersen et al. (2010).

2.3. MRI data acquisition

1.5T MRI data was collected from a variety of MR-systems with
protocols optimized for each type of scanner. The MRI protocol in-
cluded a high resolution sagittal 3D T1-weighted MPRAGE volume
(voxel size 1.1 × 1.1 × 1.2 mm3) acquired using a custom pulse se-
quence specifically designed for the ADNI study to ensure compatibility
across scanners (Jack et al., 2008a).

2.4. Longitudinal MRI processing

MRI scans were automatically processed with the FreeSurfer pipe-
line (version 5.3.0), http://freesurfer.net/. The Freesurfer longitudinal
stream (Reuter et al., 2012) was used to extract regional cortical
thickness and subcortical volumetric measures. The longitudinal pro-
cessing pipeline includes three steps. Initially all baseline and follow-up
time points were cross-sectionally processed with the default workflow.
Then an unbiased within-subject template volume (Reuter and Fischl,
2011) was created from all time points using inverse consistent regis-
tration (Reuter et al., 2010). Afterwards, all time points were long-
itudinally processed. In the latter step, the unbiased template was used
as initial guess of several segmentation and reconstruction steps for
processing each time point. Since segmentation and parcellation pro-
cedures are highly sensitive to algorithm initialization, using the un-
biased template reduces the random variation in the processing pro-
cedure and increases reliability and robustness of the overall
longitudinal analysis (Reuter et al., 2012).

Finally, for each time point 55 MRI measures including 34 regional
cortical thickness measures and 21 regional subcortical volumes were
extracted. Both cortical and subcortical regions are involved in AD and
the combination of the two has previously been shown to give the best
results for discriminating between AD and CN as well as predicting
future conversion to AD from MCI (Lerch et al., 2008; Li et al., 2012;
Westman et al., 2013). Measures from the left and right sides of the
brain were averaged. All subcortical volumetric measures from each
subject were normalized by the subject's intracranial volume
(Voevodskaya et al., 2014), which was estimated based on an affine
transform in FreeSurfer. Cortical thickness measures were not normal-
ized and were used in their raw form (Westman et al., 2013). Data was
processed through the hive database system (theHiveDB) (Muehlboeck
et al., 2014).

2.5. APOE genotyping and CSF Aβ

APOE genotyping was performed at screening using DNA obtained
from subjects peripheral blood samples (Saykin et al., 2010). Based on
the APOE ε4 status subjects are divided in two groups, carrier subjects
(ε4+) with one or two ε4 alleles and non-carrier subjects (ε4−) without
any ε4 allele.

The concentration levels of CSF Aβ at baseline were available for
392 subjects (for 79 out of 145 MCI subjects with 36 moths of follow-
up). The details of the measurement method are provided elsewhere
(Shaw et al., 2009). A cut-off value equal to 192 pg/ml was used to
divide subjects in two groups (Shaw et al., 2009), Aβ negative subjects
(Aβ−) with concentration levels> 192 pg/ml, and Aβ positive subjects
(Aβ+) with concentration levels ≤ 192 pg/ml.

2.6. Data analysis

An age correction method was applied to MRI measures prior to any

statistical analysis to eliminate the confounding effect of age, pre-
viously described in detail (Falahati et al., 2016). Briefly, the age-re-
lated structural changes are estimated as a linear association between
each MRI-derived variable and age at baseline, in the CN group only.
The age correction is based only on the CN group to remove age related
changes, while keep the changes related to disease. Then, the age-re-
lated changes were detrended from all individuals by subtracting the
estimated linear trend. Afterwards, pre-processing was performed on
the unbiased age corrected MRI data using mean-centering and unit
variance scaling in order to transform the data into a suitable form
(Eriksson et al., 2013). In addition, all data (including CN, MCI and AD
subjects) was tested using a scatter plot of the first and second PCA
components and Hotelling's T-squared elliptical range with 95% and
99% confidence intervals, to reveal the homogeneity, check whether
data was normally distributed and detect outlier samples.

Orthogonal projection to latent structures (OPLS) (Bylesjö et al.,
2006; Trygg and Wold, 2002), a supervised multivariate data analysis
method was used to classify AD patients and CN individuals as well as
to predict progression in the MCI patients. The OPLS method is an ex-
tension to the projection to latent structures (PLS) method (Wold et al.,
1984). PLS has been developed for the purpose of modelling complex
data based on the assumption that there are latent variables that gen-
erate the observed data. PLS extracts these latent variables by max-
imizing the covariance between two sets of data, descriptor and re-
sponse variables. In OPLS, the systematic variation in descriptor data is
separated into two blocks, predictive variation correlated to response
data and non-predictive variation orthogonal to response data. This
separation improves the model transparency and reduces the model
complexity. For the two-class discriminant problem OPLS has an ad-
vantage over PLS that provides only one single predictive component
(first component) and the other orthogonal components (if any) are not
important for class separation. Accordingly, one single loading vector
describes the class discriminating variables. The OPLS model generates
an index (the SI) for each subject which is the estimated value of the
response variable. The generated index is a scalar value in the range of
−1 to 2, which is close to one for AD subjects and close to zero for CN
subjects.

In this work, the extracted data from baseline AD and CN scans is
used to train an OPLS model. The performance of the OPLS model was
quantified by the goodness of fit (R2) and the goodness of prediction
(Q2) parameters (Eriksson et al., 2013). R2 shows how well the model
fits the training data and Q2 shows how reliable the model predicts new
data. In addition the receiver operating characteristic (ROC) curve
(Metz, 1978) and the area under the ROC curve (AUC) were used as a
performance metric of the classification model.

Following the training phase, the trained model is used to predict
the rest of the scans (i.e. baseline and follow-up MCI scans as well as
follow-up AD and CN scans). Correspondingly, a SI is assigned to each
predicted subject, where a SI close to 1 displays a pattern similar to AD
(AD-like) and a SI close to 0 displays a pattern similar to CN (CN-like).
We used the distribution of the baseline SI of CN subjects (in the
training model) to calculate the cut-off for labeling subjects as AD-like
or CN-like. A Gaussian distribution model fitted to baseline SI of non-
progressive CN subject (excluding 11 subjects who progressed to MCI or
AD within 36 months follow-up). The cut-off was through this proce-
dure set to 0.372 (mean SI of CN subjects = 0.172 + one standard
deviation = 0.2). We based the calculation of the cut-off on a previous
study for determining deviation from normality to define cognitive
impairment (Busse et al., 2006). The authors reported that the criteria
based on a 1 SD cut-off to define MCI lead to the highest relative pre-
dictive power for the development of dementia (Busse et al., 2006).

Vertex analysis using the FreeSurfer software was performed to
compare cortical thickness between AD-like and CN-like MCI subjects.
In this approach a general linear model is fitted at each vertex, where
the dependent variable is cortical thickness and diagnostic group is the
independent variable. In order to correct for multiple comparisons,
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Monte Carlo Null-Z simulations were used with a cluster-forming
threshold of p < 0.05 (two-sided).

Mixed ANOVA/ANCOVA with Bonferroni adjustment for multiple
comparisons were conducted to study time effect, group effect and
time × group interaction on longitudinal SI changes. A Greenhouse-
Geisser correction was applied when the assumption of sphericity was
violated. All mixed ANOVA analyses were adjusted for age and gender
as covariates. The results of tests are reported in terms of F-statistic as:
F(df-variable, df-error) = F-value, p-value. Linear regression analyses were
conducted to study the associations between the SI and MMSE as well as
their changes. The MMSE score as the dependent variable and the SI,
baseline age and gender as independent variables were included in the
regression models. To compare regression models, the interaction of the
SI and predicted diagnosis were included in the model. Linear regres-
sion results were reported as: standardized coefficient, p-value.

3. Results

Initially, an OPLS model was trained with baseline CN and AD
scans. The trained model resulted in cross validated classification ac-
curacy = 87.2%, sensitivity = 91.3% and specificity = 83.8%. The
classification model resulted in R2 = 0.887 and Q2 = 0.609. Fig. 1A
shows the histograms of the baseline SI for CN and AD subjects. Fig. 1B
shows the receiver operating characteristic (ROC) curve for the trained
model, with the area under ROC curve of 0.95.

The trained model was used to assign a SI to each MCI subject at
baseline and follow-up time points as well as follow-up time points of
CN and AD subjects. Fig. 1C shows the boxplot of the SI at different time
points and diagnoses. As expected, the average SI was the highest in AD

subjects followed by MCI and then CN subjects.
Fig. 2A shows the variables of importance for AD vs. CN classifi-

cation model. The most influential measures in class separation were
structures in medial temporal lobe such as hippocampus, entorhinal
cortex and amygdala. The cortical thickness map of AD-like and CN-like
MCI subjects from vertex analysis (Fig. 2B) showed that AD-like MCI
subjects had reduced thickness in entorhinal cortex, fusiform, temporal
pole as well as superior-, middle-, and inferior-temporal gyrus.

Table 2 summarizes the number of correctly predicted MCI-p sub-
jects at different time points. Using the baseline SI, 95.7% of the MCI-p
subjects that progressed during the first year of follow-up were cor-
rectly identified as AD-like, 78.1% of subjects who progressed during
the second year and 60% of the subjects that progressed during the
third year (totally 56 out of 70, i.e. 80%). Using the baseline SI, 43 MCI-
s subjects (57.3%) were predicted as CN-like and 32 as AD-like (42.7%).
Based on 3 years follow-up diagnosis, the baseline SI resulted in an
accuracy = 68.3%, sensitivity = 80% and specificity = 57.3% for
prediction of progression from MCI to AD.

A mixed ANOVA was conducted to compare changes in the SI in
MCI-p and MCI-s subjects over 36 months. A significant time × group
interaction was observed (F(2,294) = 39.5, p < 0.001) where the SI of
MCI-p subjects increased faster compared to MCI-s (Fig. 3A). Further,
MCI-p and MCI-s subjects were stratified by the predicted patterns of
atrophy (i.e. AD-like and CN-like) using the baseline SI. Within both the
AD-like and CN-like group, significant time × group interactions were
observed (F(2,168) = 14.9, p < 0.001 and F(2,120) = 4.9, p= 0.006,
respectively) where the SI increased faster in MCI-p subjects compared
to MCI-s, independently of MCI subjects being AD-like or CN-like
(Fig. 3B).
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Fig. 1. A) Histograms and normal curves
fitted to the histograms of the baseline SI
for CN and AD subjects. B) The receiver
operating characteristic (ROC) curve for
classification of CN and AD subjects. The
area under ROC curve is equal to 0.95. C)
The boxplot of the SI in different diagnostic
groups at baseline and follow-up. The SI of
the CN and AD subjects at baseline were
generated by the cross-validated classifica-
tion model. The SI of the CN and AD sub-
jects at the different time points as well as
the SI of MCI subjects were predicted by the
training model.
SI, disease severity index; AD, Alzheimer's
disease; CN, cognitively normal subjects;
MCI, mild cognitive impairment; PDF,
probability density function.
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The longitudinal changes of the SI were compared with regard to
the time of progression of MCI-p subjects and the predicted patterns
(AD-like or CN-like) of MCI-s subjects. The mixed ANOVA showed a
significant time × group interaction (F(8,287) = 10.7, p < 0.001).
Bonferroni corrected post hoc tests showed that the SI of subjects who
progressed at month-12 were significantly higher than subjects who
progressed at month-36 and MCI-s with an AD-like pattern (p = 0.026

and p= 0.032, respectively). Interestingly, no significant differences
were observed between subjects who progressed at month-24, subjects
who progressed at month-36 and MCI-s with an AD-like pattern. The SI
of MCI-s subjects with CN-like pattern was significantly lower than the
rest of the subjects (p < 0.001). Fig. 3C shows the average SI of MCI-p
subjects that progressed within the first, second and third year of
follow-up.

In the next step the association between the SI and cognitive per-
formance (thorough MMSE score) was studied in MCI subjects. At
baseline, a significant association (β = −0.325, p = 0.001) was ob-
served. The associations became stronger at follow-up, where the
strongest association was seen at month-36 (β = −0.605, p < 0.001)
followed by month-24 (β = −0.561, p < 0.001) and month-12
(β = −0.507, p < 0.001). Moreover, the association between the
changes in the SI and in MMSE over 36 months was calculated which
resulted in an even stronger association (β = −0.663, p-value<
0.001). Further, the association between MMSE change and SI change
over 36 months was compared between MCI subjects with AD-like and
CN-like pattern (Fig. 4), where a significant difference (p-
value = 0.001) was observed between regression coefficients of sub-
jects with AD-like patterns (β = −0.631, p-value< 0.001) and sub-
jects with CN-like patterns (β = −0.206, p-value = 0.221).

Fig. 2. A) Loadings plot of the variables of importance for AD vs. CN classification model. A variable with a higher magnitude is more influential in group separation than a variable with
low magnitude. A variable with a positive covariance has a higher value in AD patients compared to CN subjects and a variable with negative covariance has a lower value in AD patients.
B) The cortical thickness map from vertex analysis between AD-like and CN-like MCI subjects. Significant differences in cortical thickness were observed in entorhinal cortex, fusiform,
temporal pole as well as superior-, middle-, and inferior-temporal.

Table 2
Number of correctly predicted MCI-p subjects. The SI prior to each follow-up was used to
predict MCI subjects as AD-like or CN-like. At each time point, the number of MCI-p
subjects that are correctly predicted as AD-like are reported.

Predicted by Progressed during

Baseline to
month-12
(MCI-p = 23)

Month-12 to
month-24
(MCI-p= 32)

Month-24 to
month-36
(MCI-p = 15)

Baseline to
month-36
(MCI-p = 70)

SI at baseline 22 (95.7%) 25 (78.1%) 9 (60.0%) 56 (80.0%)
SI at month-12 22 (95.7%) 27 (84.4%) 11 (73.3%) 60 (85.7%)
SI at month-24 – 27 (84.4%) 11 (73.3%) 61 (87.1%)
SI at month-36 – – 13 (86.6%) 66 (94.2%)

SI, disease severity index; MCI, mild cognitive impairment; MCI-p, progressive MCI.
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The change of the SI in MCI subjects was studied with regard to the
presence of the APOE ε4 allele and levels of CSF Aβ (Fig. 5). This was
investigated in two separate mixed ANCOVAs since the reduced size of
some of the subgroups did not allow testing for a triple interaction, i.e.
time × APOE group × Aβ group. The mixed ANCOVA showed a sig-
nificant time × APOE group interaction (F(2,156) = 5.1, p = 0.006,
adjusted for Aβ group as covariate), where the SI increased faster over

time in ε4+ compared to ε4− (Fig. 5A). Likewise, a significant
time × Aβ group interaction was found (F(2,156) = 3.9, p= 0.021,
adjusted for APOE group) where Aβ+ subjects had a faster increase of
the SI compared to Aβ− subjects (Fig. 5B).

Next, the MCI subjects were divided into AD-like and CN-like and
analogous mixed ANOVA were performed to evaluate the effect of
APOE and Aβ within each group. The results showed a significant
time × APOE group interaction within AD-like subjects (F(2,92) = 6.2,
p = 0.003, Fig. 5C), which indicated a faster increase of the SI in ε4+

(n = 53) compared to ε4− (n = 35). Also a significant time × Aβ
group interaction was found within AD-like subjects (F(2,92) = 6.0,
p = 0.004, Fig. 5D) that indicated a faster increase of the SI in Aβ+
subjects (n = 43) compared to Aβ− subjects (n = 9). No significant
effect of APOE or Aβ was observed within CN-like subjects. Fig. 6 shows
the SI at baseline and month-36 for each MCI individual with abnormal
Aβ and an AD-like structural pattern. This figure illustrates the change
of the SI over 36 months follow-up at the individual level. Additional
analyses were conducted on CN subjects to compare the effect of APOE
genotype and Aβ levels, which resulted in no significant differences
(Supplementary Fig. S1).

4. Discussion

Structural MRI is an important examination in the clinical assess-
ment of patients with suspected dementia and AD (Falahati et al., 2015;
Frisoni et al., 2010). The proposed method for generating the SI sum-
marizes multiple MRI-derived structural measures of the brain in a
single score. The multivariate OPLS model that generates the SI is
trained using AD and CN subjects. Therefore, the model captures the
most discriminative patterns of AD and CN subjects. Based on the SI, the
MCI subjects can be divided into AD-like or CN-like. In the CN-like
group, the dominant structural patterns are close to the structural
patterns of CN subjects i.e. less atrophied structures and smaller ven-
tricles. On the other hand, the AD-like group expresses structural pat-
terns similar to AD, i.e. greater atrophy in medial temporal structures as

Fig. 3. A) The average SI in MCI-p and MCI-s
subjects over 36 months. The SI was higher and
increased faster in MCI-p (p < 0.001). B) The
average SI of MCI-p and MCI-s subjects stratified
by the predicted patterns (AD-like and CN-like).
Within both AD-like and CN-like groups, the SI
was higher and increased faster in MCI-p subjects
(p < 0.001 and p = 0.006, respectively). C) The
average SI of MCI-p stratified by time of con-
version. The average SI of subjects who pro-
gressed at month-12 was significantly higher
than the average of those who progressed at
month-36 (p = 0.026). There was no significant
difference between MCI-p that progressed at
month-24 and those who progressed at month-
36.
SI, disease severity index; AD, Alzheimer's dis-
ease; CN, cognitively normal subjects; MCI, mild
cognitive impairment; MCI-p, progressive MCI;
MCI-s, stable MCI; Error bars show 95% con-
fidence intervals.

Fig. 4. Scatter plot showing changes over time (36 month) in MMSE and the SI. MCI
subjects with a CN-like and AD-like pattern are shown in blue and green symbols re-
spectively. The blue and green lines show the linear regression lines that fitted to CN-like
(β= −0.206, p-value = 0.221) and AD-like (β= −0.631, p-value < 0.001) subjects.
SI, disease severity index; AD, Alzheimer's disease; CN, cognitively normal subjects;
MMSE, mini mental state examination. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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well as in other regions of the brain.
The potential of the SI as a tool for prediction of progression from

MCI to AD has been demonstrated previously (Aguilar et al., 2014;
Spulber et al., 2013). In this work the SI was studied longitudinally. The
average SI was higher in AD subjects compared to MCI and CN subjects.

The results in this study show that in AD and MCI subjects the average
SI increased over time, but in CN subjects, it remained stable. This is in
line with previous cross-sectional and longitudinal studies that reported
increased rates of regional and whole brain atrophy in MCI and AD
subjects (Jack et al., 2004; Leung et al., 2013; Schuff et al., 2012;
Sluimer et al., 2009; Spulber et al., 2012). A higher average SI was also
observed in MCI-p subjects compared to MCI-s subjects, which is in line
with previous findings of higher rates of atrophy in progressive MCI
subjects (Desikan et al., 2008; Jack et al., 2004; Jack et al., 2008b;
Orellana et al., 2016). The most influential variables in the classifica-
tion model of AD and CN subjects were measures of structures in medial
temporal lobe. Results from the cortical thickness map from vertex
analysis showed significant cortical thinning of similar regions in AD-
like MCI subjects compared to CN-like MCI subjects.

The accuracy of AD versus CN classification in this work was in the
level of the reported accuracies in previous studies using ADNI cohort
(between 80% and 90% (Falahati et al., 2014)), though higher classi-
fication accuracies are also reported (Liu et al., 2013b; Wee et al., 2013;
Westman et al., 2013; Wolz et al., 2011). Compared to a recent study
(Hu et al., 2016) that used a very similar longitudinal dataset, we ob-
tained a higher classification accuracy (87.2% compared to 84.1%). The
baseline SI showed a high sensitivity, 80% over a period of 3 years
(95.7% within the first year) for prediction of progression from MCI to
AD. The sensitivity of detecting progressive MCI individuals using
baseline SI is higher in the present study compared to the sensitivities
(65%–75%) which have been reported in previous studies (Liu et al.,
2013b; Wee et al., 2013; Wolz et al., 2011). The accuracy for predicting
conversion from MCI to AD was at the same level of these studies.

Fig. 5. Average SI in MCI subjects with regard to presence of APOE ε4 allele and levels of CSF Aβ. A) The SI increased faster in ε4+ subjects compared to ε4− subjects (p= 0.006). B) The
SI increased faster in Aβ+ subjects compared to Aβ− subjects (p = 0.021). C) Within AD-like subjects, the ε4+ group had a greater increase of the SI compared to the ε4− group
(p= 0.003), but there is no significant difference within CN-like subjects. D) Within AD-like subjects, Aβ+ had a greater increase of the SI compared to the Aβ− group (p = 0.004), but
there was no significant difference within CN-like subjects.
CSF, cerebrospinal fluid; SI, disease severity index; AD, Alzheimer's disease; CN, cognitively normal subjects; MCI, mild cognitive impairment, Error bars show 95% confidence intervals.

Fig. 6. The SI of Aβ+ AD-like MCI subjects at baseline and month-36. Each line represents
a MCI individual with abnormal Aβ and an AD-like structural pattern.
SI, disease severity index.
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However, 3 years is relatively short follow-up time for MCI subjects. A
longer follow-up time is needed for reporting more accurate prediction
rates, particularly for MCI-s subjects.

Compared to our previous work, we used a lower cut-off which is
calculated based on the distribution of the SI in CN subjects (cut-
off = 0.372 instead of a strict arbitrary cut-off of 0.5). Since the current
cut-off is based on normal variation in a group of healthy controls, the
cut-off has better clinical applicability and should facilitate the use of
the SI as diagnostic tool. On the contrary, the previously used cut-off of
0.5 is dependent on variation within the AD. Variation within AD is
most likely to be larger than in normal healthy individuals. We know
from previous work that AD is a very heterogeneous disorder and
several subtypes have been defined with different patterns of atrophy
(Ferreira et al., 2015; Lam et al., 2013; Noh et al., 2014; Pereira et al.,
2014). Naturally, part of the variation in CN subjects is due to normal
aging, which is reduced by applying age correction. Further, with the
current cut-off we increase the sensitivity to 91.3% for classifying AD
subjects, which is in line with a previous study showing that around
10% of diagnosed AD subjects show no atrophy compared to controls
(Byun et al., 2015). With the current cut-off we can also classify 80% of
the MCI converters at baseline correctly. This number increases the
closer it gets to time of conversion to dementia. This supports the notion
that structural changes measured by MRI are a good progression marker
rather than a staging marker since they are so closely related to cog-
nitive function (Jack et al., 2013). Further, 43% of the stable MCI
subjects have an AD-like pattern of atrophy. Although a yearly con-
version rate of 10–15% from MCI to dementia is usually mentioned in
the literature (Farias et al., 2009), this figure ranges widely between
studies (4–36%) (Bennett et al., 2002). Taking this into account, our
stable MCI subjects with an AD-like pattern of atrophy will likely
convert to dementia in the future. This is further supported by the fact
the MCI-s subjects with an AD-like pattern had a very similar baseline SI
and SI progression as the MCI-p subjects whom converted at month 36.
However, we cannot confirm this with the current data and a longer
follow-up is needed. Finally, 57% of the stable MCI subject had a CN-
like pattern (30% of the total sample). These subjects could potentially
represent subjects that will never develop dementia (Bennett et al.,
2002).

The relation between brain structures and cognitive performance in
AD has previously been investigated and positive correlations between
MMSE scores and cortical and subcortical volumes and negative cor-
relations with the volume of the ventricles have been reported
(Ferrarini et al., 2008; Fjell et al., 2009; Orellana et al., 2016). In this
study, we observed strong negative correlations between the SI (as a
summary of structural measures) and MMSE score in MCI subjects at
baseline and follow-up. In addition, a strong correlation was observed
between the change of the SI and the change of MMSE scores during
36 months. This is in line with previous reports on the associations of
brain atrophy rates and ventricular enlargement with MMSE changes
(Evans et al., 2010; Orellana et al., 2016; Yao et al., 2012). The re-
gression coefficient was larger in AD-like MCI subjects compared to CN-
like subjects, which might indicate a higher risk of developing AD in
AD-like MCI subjects (Sluimer et al., 2008).

APOE genotype is the main genetic risk factor in sporadic AD. APOE
ε4 carriers have an increased risk of developing AD compared to ε3 and
ε2 carriers (Chartier-Harlin et al., 1994). The effect of APOE ε4 on
atrophy rates in AD and MCI subjects has been studied and increased
atrophy rates were reported in different brain structures particularly in
the medial temporal lobe and hippocampus (Goni et al., 2013; Li et al.,
2016; Soldan et al., 2015; Wahlund et al., 1999). In this work, a sig-
nificant higher average SI and a faster increase of the SI was observed in
ε4+ MCI subjects compared to ε4− MCI subjects. Since the measures of
medial temporal lobe structures are given greater weights in generating
the SI, this result intensify the previous findings that ε4 allele drives
atrophy to the medial-temporal lobe (Manning et al., 2014). However,
this result might also indicate that the presence of the ε4 allele affects

other brain areas. Interestingly, within AD-like MCI subjects a faster
increase of SI in ε4+ subjects compared to ε4− subjects was observed,
but not in CN-like MCI subjects. This suggests that the presence of the
ε4 allele accelerates atrophy in subjects with positive disease bio-
markers (Khan et al., 2017).

The longitudinal changes of the SI were also studied in relation to
CSF Aβ levels. AD is associated with deposition of Aβ in the brain,
which is reflected by low concentration of the Aβ peptide in the CSF
(Portelius et al., 2010). Low CSF Aβ levels are also associated with an
increased risk of progressing from MCI to AD (Hansson et al., 2006;
Herukka et al., 2005; Jack et al., 2010b). Our results show an increased
rate of atrophy in Aβ+ subjects compared to Aβ− subjects, which is
compatible with a previous study that reported a significant correlation
between lower Aβ levels and lower brain volume as well as larger
ventricular volume in progressive MCI subjects (Wahlund and Blennow,
2003). Moreover, a faster increase of the SI was observed in AD-like
Aβ+ subjects, suggesting that the abnormal Aβ levels can accelerate
brain atrophy. This result is analogous to the above findings about AD-
like ε4+ subjects. APOE genotype has a strong role in Aβ metabolism
where altered APOE alleles affect the Aβ deposition differently
(Castellano et al., 2011; Liu et al., 2013a). Because of limited number of
subjects with Aβ− and ε4+ we could not test for an interaction between
amyloid pathology and APOE genotype. Alternatively, APOE genotype
and Aβ group were included as covariates in the mixed ANCOVA. These
results suggest that disease-related structural brain changes are influ-
enced independently by APOE genotype and amyloid pathology.
However, unlike APOE genotype, the Aβ levels are variable and the
baseline levels here may become abnormal in the future. Further in-
vestigations on the association between longitudinal changes in CSF
biomarkers and the SI are necessary.

Additionally, the effect of APOE and CSF Aβ on SI was examined in
129 CN subjects with 36 months follow-up. Although similar trends
were visible, the effects of APOE and Aβ on the SI were not statistically
significant. This is compatible with previous studies that reported no
significant association of APOE and Aβ with hippocampal loss in CN
subjects (Khan et al., 2014; Schuff et al., 2009). Future studies with
longer follow-up time and larger sample sizes could be beneficial to
assess the effect of APOE and Aβ on the SI in CN subjects.

In this study, the SI is evaluated using a series of MRI scans that are
processed longitudinally. An advantage of the longitudinal processing
pipeline compared to cross sectional analysis is the increased reliability
and robustness of the overall image processing analysis (Reuter et al.,
2012). Consequently, the extracted MRI measures, the multivariate
model and finally the generated SI are more reliable. Moreover, a
longitudinal SI reflects changes in brain structures over a period of
time, not only at a single time point. This provides information on
disease dynamics rather than static information, which helps to monitor
progression in MCI subjects as well as finding diversities in this group.
This study is conducted in the ADNI cohort, which is a highly selective
cohort. Therefore, these results should be validated in other cohorts,
preferably in non-selected clinical data.

5. Conclusion

The SI and its longitudinal changes show great potential for iden-
tifying MCI patients at risk of progressing to AD. Progressive MCI pa-
tients evidenced a greater SI and a faster increase of the SI. The SI was
not only different between progressive and stable MCI, but we could
also clearly see differences in the index within the progressive group.
The value of the SI was significantly higher and the rate of decline was
faster depending on at which time point subjects converted. This is
important for prognosis and inclusion in clinical trials. A greater SI in
MCI patients was also as expected associated with worse cognitive
impairment. Further, MCI patients carrying the APOE ε4 allele and
abnormal CSF Aβ levels had greater SI and faster rate of atrophy. Our
results suggest that disease-related brain structural changes are
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modulated independently by APOE genotype and amyloid pathology.
Therefore, the SI has a great potential to be employed in clinical trials
as an inclusion criteria, monitoring disease progression or a simplified
outcome. Ultimately, we believe that the SI has the potential to be
implemented in clinical setup to aid early diagnosis and predict MCI
progression to AD.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2017.08.014.
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