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Abstract

The distribution of chromatin within the mammalian nucleus is constrained by its organization into chromosome territories
(CTs). However, recent studies have suggested that promiscuous intra- and inter-chromosomal interactions play
fundamental roles in regulating chromatin function and so might define the spatial integrity of CTs. In order to test the
extent of DNA mixing between CTs, DNA foci of individual CTs were labeled in living cells following incorporation of Alexa-
488 and Cy-3 conjugated replication precursor analogues during consecutive cell cycles. Uniquely labeled chromatin
domains, resolved following random mitotic segregation, were visualized as discrete structures with defined borders. At the
level of resolution analysed, evidence for mixing of chromatin from adjacent domains was only apparent within the surface
volumes where neighboring CTs touched. However, while less than 1% of the nuclear volume represented domains of inter-
chromosomal mixing, the dynamic plasticity of DNA foci within individual CTs allows continual transformation of CT
structure so that different domains of chromatin mixing evolve over time. Notably, chromatin mixing at the boundaries of
adjacent CTs had little impact on the innate structural properties of DNA foci. However, when TSA was used to alter the
extent of histone acetylation changes in chromatin correlated with increased chromatin mixing. We propose that DNA foci
maintain a structural integrity that restricts widespread mixing of DNA and discuss how the potential to dynamically
remodel genome organization might alter during cell differentiation.
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Introduction

Within the nucleus of higher eukaryotic cells [1–3] individual

chromosomes are folded to occupy spatially discrete chromosome

territories (CTs) (reviewed in [4–6]). DNA foci, which typically

contain 250–1,000 kbp of DNA, provide the fundamental subunits

of higher order chromatin folding within CTs. Though the

molecular mechanisms that define the structure of foci are unclear,

it has been known for many years that discrete foci are stable

entities over many cell generations and that they contain multiple

units of DNA synthesis, which are replicated together at specific

times of S phase [7,8]. This temporal regulation of replication,

within defined cohorts of DNA foci, emphasises the importance of

links between chromosome structure and function, while preserv-

ing epigenetic information during cell proliferation [9,10].

As stable structures of higher-order chromatin folding, DNA

foci might be expected to suppress DNA mixing [11,12]. In fact,

the dynamic mobility of chromatin within mammalian CTs is

generally constrained at less that 1 mm and once nuclei are

formed, following mitosis, the relative spatial distribution of CTs is

largely preserved [4,5]. The structure of individual CTs is however

plastic [13,14], so that chromatin within individual territories

might assume a variety of alternative configurations [15]. Extreme

examples of alternative patterns of chromatin folding are most

evident in gene-rich chromosomal domains - such as the human

MHC locus - which are able to form extended chromatin loops

that spread away from the linked CT when gene expression is

induced [16]. However, dynamic analysis of defined endogenous

loci has not been possible and, as a result, large artificially-tagged

ectopic repeats have been used to analyze chromatin mobility in

mammalian cells [17].

Over the past few years an alternative view of chromosome

structure has emerged, which challenges the idea that CTs are self-

contained and proposes that significant mixing of DNA can occur

[2,18]. Clear evidence for long-range chromatin looping evolved

from the analysis of intra-chromosomal interactions during gene

expression, using chromosome conformation capture (3C) tech-

nologies. More surprisingly, while evaluating the extent of the

regulatory interaction it became clear that genes from different

CTs were also able to co-associate at common sites of gene

expression [19,20]. However, validation of specific inter-chromo-

somal interactions within individual cells typically demonstrated

that only ,10% of the loci in question were co-associated when

transcribed [19,21,22]. Nevertheless, recent innovations in analysis

of genome-wide interaction networks or functional ‘interactomes’,

have placed unprecedented emphasis on understanding how

chromatin dynamics facilitate the formation of gene interactions

networks, which in turn might contribute to the regulation of gene

expression in mammalian cells [18,23].
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If long-range chromosomal interactions make a significant

contribution to the regulation of gene expression in higher

eukaryotes, it is important to understand the range and extent of

interactions that this involves. To address this issue, we have used

single cell imaging techniques to monitor chromatin mixing in

human HeLa cells. DNA foci were pulse-labeled using fluorescent

dNTP analogues that incorporate during replication and remain

stably associated with labeled CTs for at least 14 days. After

labeling, mitotic segregation reveals discrete chromatin domains

with clearly defined DNA foci, so that the dynamic properties of

foci and interactions between foci of neighboring CTs can be

assessed. We show that while individual foci are spatially dynamic

their DNA is generally locally constrained and so limits mixing

between neighboring CTs.

Results

Chromosome territories are discrete structures
We tested the extent of DNA mixing between CTs using

established protocols that allow CTs and individual DNA foci to

be visualized in living cells [24,25]. Cells were pulse-labeled with

AF488-dUTP, grown for 24 h and then pulse-labeled with Cy3-

dUTP and grown for a further 1–2 days (Fig. 1). Because

replication is semi-conservative and mitotic chromosome segrega-

tion is random, this protocol yields cells that contain uniquely red

or green labeled CTs together with a minority of CTs that are

unlabeled (Fig. 1A).

Live cell analysis (Fig. 1B and video S1) showed that the identity

of CTs is preserved for many hours with little or no interaction

between neighboring CTs. However, as resolution is limited by the

low levels of illumination used during live cell imaging we also

performed imaging on fixed cells (Fig. 1C). Post-fixation analysis,

in the absence of processing that might perturb chromosome

structure at the resolution analyzed by light microscopy, allows the

structure of the differentially labeled chromatin domains and

distribution of their foci to be visualized (Fig. 1Ci; projections of

complete Z stacks are shown). With this type of analysis, the

structure of DNA foci is clearly preserved and foci are clustered

into local domains that represent individual or small groups of

CTs. Notably, the boundaries between adjacent green and red

domains are clearly defined (see isolated channels in Fig. S1) and

regions of apparent co-localization between the differentially

labeled regions (yellow regions; high magnification views in

Fig. 1Civ–v) were restricted to these boundary domains. However,

rotation of the 3D image suggested that many sites of apparent

localization resulted from the spatial overlap of adjacent foci in

projections of optical sections and not true co-localization within

individual voxels of the 3D image (Fig. 1D and videos S2 and S3).

To address this issue, we next attempted to place numerical limits

on the low-level co-localization seen by measuring both the

nuclear volume occupied by the co-localized regions and the

amount of labeled DNA within these domains of chromatin

mixing.

Quantitative measurement of inter-chromosomal mixing
A number of strategies have been described for monitoring

levels of co-localization in confocal images (reviewed in refs

[27,28]). Pearson’s and Mander’s coefficients provide a qualitative

insight into degrees of co-localization on double stained confocal

images. The Mander’s coefficient is scaled from 0 to 1, where a

value of 1 represents complete co-localization and a value of 0 no

overlap between the imaging channels. For the Pearson’s

coefficient (PC) the scale is 1 to 21. On this scale, 1 represents

complete co-localization and negative numbers represent exclu-

sion, with 21 representing samples with no overlap at all.

While Pearson’s and Mander’s coefficients are used routinely for

analysis of signal co-localization it is important to recognise that

these values are heavily influenced by the way in which noise and

background labeling in the sample is treated. Quantitative image

processing is notoriously challenging, principally because of

uncertainties in setting threshold values that reliably define true

signal from various sources of noise [26]. However, the labeling

protocol applied here avoids traditional sources of background

staining (such as those that arise during immuno-labeling), as the

fluorescent replication precursor analogues are incorporated

directly into DNA. By the time imaging is performed, essentially

all fluorescent molecules added to cells are covalently bound to

DNA and make no contribution to background.

Another challenge of image analysis is that raw images often

contain electronic noise, which is characterized by isolated voxels

with high signal intensities. Imaging software provides different

strategies to remove such noise. Gaussian filtering averages the

signal in neighboring voxels and so smoothes noise and allows

extraneous signal to be subsequently removed by thresholding. For

quantitative analysis, however, one limitation of this approach is

the incorporation of unreal voxel intensity values into the data set,

which tend to degrade the signal and compromise the integrity of

structures by spreading of their edges. Median filtering provides an

alternative strategy in which each voxel in the image is assigned

the median value of all of the immediately adjacent voxels. Hence,

isolated high-intensity voxels will be eliminated, while voxels

storing real signal are essential unaltered by the filtering step.

After labeling (Fig. 1A), maximum projections of complete Z

series were collected (Fig. 1Ci; taken using a 1006 lens). Individual

nuclei with classical patterns seen during early S phase were then

selected for detailed analysis based on the balance of labeling in

the red and green channels (Fig. 1Cii shows an electronic zoom of

the selected cell from Fig. 1Ci). Prior to image analysis, low level

electronic noise in the zoomed image was extracted using a

median filter (36363 voxels). We then applied an empirical

approach for manual background adjustment and found that

within our samples the best estimate of background was

represented by a signal corresponding to the standard deviation

of the average signal intensity across all labeled voxels in the image

(Fig. S1). Ten nuclei like the typical sample shown (Fig. 1Cii) were

then analyzed to monitor levels of channel co-localization

(Table 1). Across this sample, all approaches yielded a negative

average Pearson’s coefficient and low Mander’s coefficient,

consistent with very low levels of co-localization between the two

imaging channels.

We also performed co-localization analysis after selecting

regions of interest to exclude the contribution of black voxels that

lie outside the nucleus (Fig. 1Civ–vi). Importantly, for this analysis

we selected nuclear regions with the highest levels of apparent co-

localization with adjacent red and green chromatin domains

(Fig. 1Civ). Within these regions, the average Pearson’s coefficient

within such cropped regions (n = 10; vol = 28.5 mm3) was 20.07

60.04 and the Mander’s coefficient was 0.05 60.04 and 0.08

60.06 in the green and red channels, respectively. Within the

selected regions of interest, the average co-localized volume

covered 0.2860.24 mm3 occupying 0.96%60.85 of the cropped

box. The green signal occupied on average 17.3%67 of the

imaging voxels and the red signal 11.4%63, so the labeled space

represents ,30% of the volume in these selected regions. By

analyzing the most highly intermingled chromatin domains within

individual nuclei, this analysis provides an upper limit for the

DNA Mixing between Chromosome Territories
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Figure 1. DNA foci are discrete higher-order chromatin structures. DNA foci within HeLa cells were labelled in two consecutive cell cycles -
using AF488-dUTP in the first cycle and Cy3-dUTP in the second – and grown for a further 1–2 days to resolve the labeled DNA foci into uniquely
labeled nuclear domains (A). In this context, the domains represent clusters of CTs as individual CTs cannot be resolved with confidence. Labeled cells
were analyzed using 3-D time-lapse microscopy (DeltaVision) for up to 24 h (B; time-lapse frames are taken from Supplementary video S1), to confirm
that chromosome in mitosis are labeled with either the red or green fluorescent precursor. Cells like those shown (B) were also fixed and imaged
(Zeiss LSM510META) without further processing (C). For image analysis, cells with similar intensities in the two imaging channels were manually
selected (Ci - white box), confocal Z stacks collected and 3-D projections generated (Cii). Nuclei like that shown in Cii were used for co-localization
analysis, using all voxels within the image (Ciii). For this example, co-localization analysis using Imaris software (Ciii), gave a Pearson’s coefficient
(20.0194) consistent with very weak co-localization. The region highlighted in Cii (white box) contained the majority of voxels containing signal from
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proportion of the total nuclear volume in which inter-chromo-

somal mixing of the labeled chromatin is seen.

Co-localization analysis is most reliable when the two imaging

channels are labeled with similar intensities and signal fills the full

dynamic range of the detectors used. Hence, for the preliminary

analysis shown (Fig. 1 and Table 1) co-localization analysis was

performed on manually selected images with similar intensities and

label distribution in the two imaging channels. However, as image

selection might bias analysis, we next analyzed larger data sets

without prior sample selection (Fig. 2A).

The local chromatin environment defines the integrity of
DNA foci

As part of a detailed analysis of the structure of DNA foci in

untreated cells, we also evaluated if the integrity of foci was

influenced by the local chromatin environment. Molecular

mechanisms that define the higher order structure of chromatin

domains are unknown. However, as foci within the euchromatin

and heterochromatin compartments – which are labeled at defined

times of S phase – persist over many cell generations it is

reasonable to suggest that the chromatin environment contributes

to the preservation of these structures. To evaluate if the epigenetic

status of chromatin influences the structure of DNA foci, we

analyzed foci in cells treated with the histone deacetylase (HDAC)

inhibitor TSA [29]. As before, replicating DNA was labeled using

double-pulse strategies and individual CTs resolved through

random mitotic segregation during cell proliferation. Cells with

discrete foci were then treated with TSA and imaging performed

24 h later (Fig. 2).

As discussed above, for detailed quantitative analysis, double-

labeled cells were randomly selected and 3D images stack

generated (Fig. 2A–B); as before, only nuclei with labeled early

S phase foci (i.e. euchromatic) were used for subsequent analysis.

Cell populations were processed either as raw images or after

filtering and thresholding as described (Fig. S1) and statistical tests

performed (not shown) to establish that the analysis of 50 cells/

sample was sufficient to ensure reliability of the data. In parallel

samples, cells were treated using 2 concentrations of TSA (Fig. 2),

which were selected based on the extent of changes in acetylation

of histones H3 and H4 (Fig. 2C). Untreated (control) samples

contained discrete DNA foci that were distributed in distinct

domains with regions of co-localization restricted to the bound-

aries of adjacent domains. In this data set, cropped regions with

the highest levels of co-localization contained only 0.55+/20.6%

of co-localized voxels when, on average, 27.8% of voxels in the

selected regions were labeled (Table 2).

When cells were treated with TSA a clear increase in channel

co-localization was seen (Fig. 2 and Table 2). When Pearson’s

correlation coefficient was used as an indicator of co-localization,

differences were statistically significant when cells were treated

with TSA at 100 ng/ml and an intermediate level of co-

localization was seen when 50 ng/ml was used (Fig. 2D and

Table 3). Importantly, the same trends were seen when analysis

was performed on raw images, without processing, or after median

filtering and thresholding (Fig. 2Di). However, as Pearson’s

correlation coefficient provides an abstract indicator of channel

cross-talk or co-localization, we also deconstructed images and

used a volex level co-localization analysis to calculate the volume

of voxels that contained both labels (Fig. 2Dii and E). This analysis

confirmed that the co-localized volume in the nuclei of untreated

control cells was restricted to ,6 mm3, representing 0.3% of the

nuclear volume, whereas following treatment with TSA at

100 ng/ml the co-localized volume increased to ,24 mm3

(Table 2).

Many experiments support the idea that euchromatic and

heterochromatic DNA foci have distinct characteristics that

contribute to the spatial organization of CTs [4–6]. To assess

the red and green channels and was selected for further analysis. A high magnification view of the cropped region shows the local structure of
chromatin domains, both in the entire Z series (Civ) or individual sections (Cv), with discrete patches of red and green labeling and little mixing
(yellow) of signal from the two channels. Co-localization analysis using Imaris software without background adjustment (Cvi) showed this typical
sample to have a Pearson’s coefficient of 20.0437. A surface rendered video simulation of chromatin domains in the cell from Cii was also generated
to show the distribution of interaction interfaces within the sample (D; see Supplementary video S2 to section though the 3-D reconstruction). High-
power views of the 3-D region highlighted (white box in Di) are shown (Dii–iii). This modeling demonstrates the complex structure of interaction
surfaces, with many surface protrusions from one chromatin domain interdigitating with folds or channels within the neighboring domain. Two snap-
shots from the 3-D reconstruction (Supplementary video S3) are shown. Scale bars of 10, 3 or 1 mm are shown on individual panels.
doi:10.1371/journal.pone.0027527.g001

Table 1. Analysis of different approaches for signal co-localization.

Summary
10 nuclei No threshold Thresholded

Coloc. Metric PC Mander’s PC Mander’s

Green Red Green Red

Raw files (no filtering) 20.03646 0.18368 0.05448 20.05216 0.09689 0.0401

Median Filter 36363 20.07823 0.11228 0.01549 20.10285 0.04953 0.01616

Gaussian Filter 0.08 mm 20.04365 0.5957 0.42345 20.11055 0.1041 0.07763

A variety of automatic and manual protocols were tested to monitor levels of co-localization in samples generated throughout this study. Confocal series were collected
(with sequential imaging in the labeling channels) and data files imported into image analysis software (Imaris suite). Pearson’s and Mander’s coefficients were used as
indicators of the extent of co-localization between different channels (see text). Entire confocal series for 10 different nuclei (like those shown in Fig. 1C) were used to
analyze apparent co-localization between the imaging channels using the different conditions identified in the Table, as discussed in the text. It is notably that the
different conditions used have only a superficial impact of levels of co-localization, with very weak co-localization seen in all cases. Simple median filtering improves the
quality of the images and decreases apparent co-localization relative to the unprocessed images. However, using Gaussian filtering as an alternative dramatically
increases the apparent co-localization, by spreading the edges of the labeled structures (this is evident from differences in the respective Mander’s coefficients).
Thresholding after preliminary processing (filtering) eliminates low-intensity volexs but reduces levels of co-localization only slightly.
doi:10.1371/journal.pone.0027527.t001
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Figure 2. Chromatin epi-states define foci structure. AF488- and Cy3-dUTP were incorporated into DNA foci are described in the legend to
Figure 1. Prior to imaging, cells were treated with TSA (24 h) at the concentrations shown (A–E). For imaging, samples were fixed and confocal Z
series collected (Zeiss LSM710) and processed (A–B); imaging was performed on double-labeled nuclei but without selection for labeling intensity.
Changes seen in the structure of DNA foci following treatment with TSA (Bi–ii) correlated with changes in global histone acetylation by Western Blot
analysis using specific antibodies to pan-Ac+ histones H3 and H4 (C). Image processing of the confocal projections (n = 50 per sample) was performed
using Fiji and jacop software. Analysis was perform on raw images, without processing, and on the same images after processing as describe in the
legend to Figure 1 (D). As seen in Figure 1, untreated cells (A) gave a negative Pearson’s coefficent (Di) consistent with low levels of colocalization in
the sample. Following TSA treatment (B), a significant increase in Pearson’s coefficient was recorded, demonstrating increased co-localization (Di). In
order to develop quantitative estimate of channel co-localization, voxel-level channel intensities were extracted and the volume (mm3) of co-localized
voxels calculated (Dii). Finally, the co-localized volumes were calculated as a proportion (%) of the total nuclear volume (whole nuclei) and the
volume of the most highly labeled regions (cropped regions – the boxed region in Bi shows a typical example) of individual nuclei (E; Table 2). Small
red boxes on the box plots represent the mean value for each distribution. Scale bars of 5 mm are shown on individual panels.
doi:10.1371/journal.pone.0027527.g002

Table 2. Comparison between co-localization results for entire nuclei and cropped regions.

Vol Coloc. (mm3) % Coloc. % Green % Red PC M Green M Red %occupied

Nuceli n = 50

TSA2 6.0364.49 0.3060.22 8.4862 4.7361.7 20.02060.01 0.0360.02 0.0560.02 13.21

TSA+ 50 12.23610 1.0160.8 12.0664.2 7.7162.5 20.01560.02 0.0760.04 0.1160.07 19.77

TSA+ 100 23.90619 0.9860.8 6.8662.33 9.7562.7 0.00660.05 0.1260.08 0.0960.07 16.61

ROIs n = 50

TSA2 0.3660.4 0.5560.6 13.8764.3 13.9365.6 20.09960.03 0.0360.03 0.0460.03 27.81

TSA+ 50 1 60.6 1.861.6 1968.3 1965.7 20.1360.07 0.0860.06 0.0960.06 39

TSA+ 100 1.5562.7 2.1562.07 17.5064.5 21.9765.6 20.108760.08 0.1260.1 0.160.1 40

Data from experiments described in Figure 2 are shown. Cells were labeled and processed as described and 50 whole nuclei of selected cropped regions (ROIs) from
each nucleus were analyzed. Cropped region of the same surface area were selected to contain the most highly co-localized nuclear region. A typical example is
highlighted in Figure 2Bi (boxed area) in which a regions of substantial chromatin mixing (yellow) lies at the junction of discrete red and green chromatin domains. The
total volumes of nuclei and selected cropped regions were 19536946 mm3 (n = 150) and 6567 mm3 (n = 150), respectively. No statistically significant differences in the
nuclear volume of TSA treated cells were seen.
doi:10.1371/journal.pone.0027527.t002
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how these specialized chromatin states contribute to CT structure,

we analyzed DNA foci within isolated CTs that were labeled with

biotin-dUTP (early S phase) and BrdU (mid/late-S phase) using a

pulse-chase-pulse strategy (Fig. 3). After labeling, cells were grown

for 5 days to reveal isolated CTs, treated with TSA for 24 h and

the structure of DNA foci and CTs analyzed. In comparison with

untreated control cells from the same labeled population (Fig. 3A),

the DNA foci of cells treated with TSA were clearly swollen and

dispersed (Fig. 3B–C), consistent with the local mixing of adjacent

foci seen along the boundaries of neighboring CT (Fig. 2B).

However, despite the clear structural deterioration and associated

.2-fold increase in CT volume (Fig. 3D) widespread mixing of the

early and late chromatin domains was not seen (Fig. 3), suggesting

that even following TSA treatment some residual higher-order

structure is preserved. Based on these observations, we propose

that the chromatin environment has a significant influence on the

structure of DNA foci and that patterns of interaction between foci

contribute to the spatial architecture of CTs.

Analysis of completely labeled CTs
Fluorescently labeled replication precursor analogues have

distinct technical advantages for image analysis (Figs. 1 and 2)

but are limited by the extent of incorporation achieved; under

conditions used here, which do not compromise the rate of DNA

synthesis, the modified precursors are only incorporated into

growing replication forks for ,15 min before the labeled

precursor dNTPs are consumed. This limitation means that

alternative strategies must be used to provide global estimates of

DNA mixing within mammalian nuclei.

We considered two strategies for estimating genome-wide levels

of inter-chromosomal DNA mixing. First, because euchromatin

and heterochromatin occupy discrete nuclear domains the

distribution of these chromatin compartments is non-uniform

[4–6]. Hence, even in nuclei with partially labeled genomes it

should be possible to estimate the maximum extent of DNA

mixing locally using volumes of the nucleus in which the majority

of DNA foci are labeled. This approach was tested above (Figs. 1

and 2) using crops of the most highly labeled nuclear regions.

Within these highly labeled domains, typically ,30% of the

cropped nuclear volume was occupied by labeled DNA.

Moreover, as 50% or less of the nuclear volume is occupied by

chromatin [30], we can estimate that .60% of the chromatin

space present in the selected regions will be labeled. Given the

short duration of labeling with modified dNTPs this might seem

surprising. However, when the structure of DNA foci that had

been pulse-labeled with biotin-dUTP were compared with foci

labeled with BrdU throughout S phase no significant differences

were seen (Fig. 4). This shows that when the DNA within

individual foci is only partially labeled the plasticity of chromatin

folding means that the labeled and adjacent unlabeled regions

cannot be resolved. In fact, as typical foci have 3–5 replicons and

so 6–10 extending replication forks, it is not surprising that the

labeled and unlabeled regions cannot be resolved by confocal

microscopy.

For the second approach we analyzed cells with DNA that had

been labeled with BrdU throughout S phase. Prior to this analysis

we performed an extensive analysis of labeling specificity [31], and

found that DNA foci labeled with BrdU or biotin-dUTP could be

distinguished with good sensitivity and without cross-talk between

the imaging channels. A pulse-chase-pulse-chase labeling strategy

(Fig. 4D) was used to monitor the interaction between DNA foci of

neighboring Br and biotin-containing nuclear domains (Fig. 4E).

As before (Figs. 1 and 2) regions of co-localization were clearly

restricted to boundaries between these neighboring domains. In

the cropped region highlighted (Fig. 4Ei), the Pearson’s coefficient

is 20.3036, consistent with exclusion of signal in the two labeling

channels (Fig. 4Ev). As in this typical example, even when

individual CTs are completely labeled with BrdU, we see that only

,1% of the nuclear volume contains both Br and biotin-labeled

DNA.

Chromatin dynamics in living cells
In seminal studies on CT dynamics, Cy3-labeled DNA foci in

HeLa and SH-EP N14 (a neuroblastoma cell line) cells were shown

to undergo constrained random diffusion with rare examples of

directional motion correlating with changes in cell shape [13].

Later, a more sophisticated analysis of temporal dynamics was

performed using a ,10 Mbp artificial repeat that was able to bind

lacI-GFP [17,32]. However, largely because of technical limita-

tions, we have only limited understanding of dynamic changes that

Table 3. Statistical Analysis of co-localization results.

Pair-wise Mann-Whitney

Nuclei

TSA+50 ng/ml TSA+100 ng/ml

Pearson’s Coefficient

TSA2 6.2E-01 5.5E-06

TSA+ 50 ng/ml x 1.83E-03

Co-localized Volume

TSA2 2.482E-04 9.457E-12

TSA+ 50 ng/ml x 8.154-05

Co-localized Percentage

TSA2 7.616E-10 4.923E-11

TSA+ 50 ng/ml x 8.931E-01

ROIs

TSA+50 ng/ml TSA+100 ng/ml

Pearson’s Coefficient

TSA2 5.88E-03 3.519E-02

TSA+ 50 ng/ml x 4.645E-01

Co-localized Volume

TSA2 3.705E-08 5.922E-11

TSA+ 50 ng/ml x 1.564E-01

Co-localized Percentage

TSA2 8.593E-09 1.544E-10

TSA+ 50 ng/ml x 6.951E-01

Kruskal-Wallis test

Nuclei ROIs

Pearson’s Coefficient

3.88E-05 1.481E-02

Co-localized Volume

1.166E-11 1.13E-11

Co-localized percentage

1.68E-12 1.513E-11

As the distributions of the values from the three different treatments are not
normal, non-parametric methods were used. The Mann-Whitney test was used
for pair-wise tests and the Kruskal-Wallis test for multiple comparisons.
doi:10.1371/journal.pone.0027527.t003
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occur when DNA foci engage DNA or RNA polymerases to

function as a synthetic template [13,14,32–34].

As structural transitions related to chromatin function must

increase the probability of DNA mixing within the inter-chromatin

domain, we next wanted to evaluate if live cell imaging could be

used to define the structural stability of DNA foci. Because DNA

foci within euchromatin and heterochromatin have well-character-

ized nuclear organization [15] and dynamic properties [14], it is

possible to use foci labeled at different times of S phase as meta-

stable landmarks to map the relative movement of individual foci. A

typical example of this approach is shown in Figure 5. Replication

foci were labeled with AF488-dUTP during early S phase and Cy3-

dUTP 5 hours later (Fig. 5A). Using this labeling program, the

relative spatial stability of heterochromatic foci labeled during mid-

S phase (red) can be used as anchor points to align CTs at different

times during the imaging series and so increase the confidence with

which the location of individual foci can be assigned. In the example

shown, the overall shape of the CTs and local architecture of

individual foci is maintained throughout the imaging time-course

even though it is not unusual to see local transformations in the

shape of individual CTs; the example shown here is seen to rotate

around its vertical axis (Fig. 5B).

Even though the quality of foci is limited by the imaging set-up

(low laser power) used during live cell imaging, the type of data

shown in Figure 5 allows unambiguous identification of discrete

foci using image processing software (Fig. 5B). In this typical

example, individual foci are most obvious along the periphery of

CTs (Fig. 5B - regions highlighted in white ovoids). In such areas

of the sample, the ability to track and assign co-ordinates for

individual foci during time-lapse imaging allows the location and

movement of individual foci to be monitored with confidence. As

noted before [13,14], we found euchromatic foci to be locally

dynamic, typically moving ,0.5 mm over periods of 15 minutes

(Fig. 5D). However, dramatic directional movements were never

sustained for long periods. Instead, foci appeared to oscillate

within CTs so that individual territories maintained their relative

position and general shape for many hours. Relative to

euchromatic foci, heterochromatic foci were frequently clustered

and showed significantly reduced mobility (Fig. 5D). This

correlates with heterochromatic foci being preserved as temporally

stable clusters of structurally inert chromatin. The architecture of

mid/late replicating DNA foci correlates with the structural

polarization of CTs and corresponding programme of DNA

synthesis in mammalian cells [35].

Figure 3. The chromatin environment contributes to the local and long-range architecture of DNA foci and CTs. HeLa cells were pulse-
labeled with biotin-dUTP and BrdU either sequentially or with an unlabeled intervening chase of 5 h and then grown for 6–7 days to resolve
individual CTs by random mitotic segregation. Cultures were then divided into 2 and treated without (A) or with (B–C) 50 ng/ml of TSA for 24 h.
Simple visual inspection showed CTs to be visibly disorganized and expanded (C – shows an isolated CT from the sample in B) with notable
deterioration in the structure of DNA foci, which appeared irregular and diffuse relative to untreated controls. Expansion of CTs was confirmed by
measuring the diameter (long axis) of individual territories (D). Though the structural changes were obvious in pulse-labeled samples (compare A and
B) for this analysis we used cells that were labeled with BrdU throughout S phase so that the boundaries of individual CTs could be identified with
confidence. The diameter of CTs (D) within control cells (open bars; dia = 2.65 mm +/21.25; n = 100) was seen to increase by 1.59-fold in TSA treated
cells (closed bars; dia = 4.21 mm +/21.68; n = 90; t test 2p,1.3610–12). Under these conditions, there was no significant change in the average
nuclear volume of the two samples. Scale bars of 5 mm are shown on individual panels.
doi:10.1371/journal.pone.0027527.g003
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Discussion

Competing models of nuclear organization have addressed

how prevailing views of CT structure and chromatin dynamics

might be resolved [36–38]. Traditionally, fluorescent in situ

hybridization (FISH) has been used to define the distribution of

DNA from individual chromosomes. This ‘chromosome painting’

of intact nuclei showed CTs to be discrete structures [4].

However, quantitative analysis of low-level surface mixing is

technically challenging within the 3D volume of an entire CT. To

address this point, Branco and Pombo [39] applied routine FISH

techniques to ,200 nm cryosections. With this approach, the

borders of neighboring CTs were seen to contain extensive

domains of inter-chromosomal mixing. For example, when PHA

stimulated human lymphocytes were analyzed, ,40% of the

chromatin-rich compartment – corresponding to ,20% of the

nuclear volume - was estimated to contain DNA from more than

one chromosome.

In higher eukaryotes, we have limited information about the

range and scale of chromatin dynamics and the potential for inter-

chromosomal mixing in living cells. Individual CTs within

mammalian nuclei are known to be locally plastic [13,15] and

many have structures that change both locally [14] and at longer

range [16,40] in response to changes in gene expression. However,

Figure 4. Estimating global levels of chromatin mixing. Pulse-labeling with conjugated replication precursors such as Cy3- or biotin-dUTP
yields labeled DNA foci in which only about 15% of DNA contains the modified precursor. As we are able to measure DNA mixing at the boundaries
of such foci in highly labeled nuclear volumes, it is important to know if apparent volumes of foci are influenced by the extent of modified precursor
incorporation. HeLa cells were labeled as shown (A) and processed by indirect immuno-labeling. Confocal projection of double-labeled cells like that
shown (B) were collected and the diameters of foci measured (C) using Imaris software in selected regions as shown (a zoom of the boxed region in Bi
is shown as individual channels in Bii and Biii and Biv shown the channel merge). Foci that were pulse-labeled with biotin-dUTP had an average
diameter of 0.413+/20.087 mm (mean+/2SD; n = 100). Foci that were labeled for the entire S phase with BrdU had an average diameter of 0.414+/
20.081 mm (mean+/2SD; n = 100). Bars are 5 and 0.5 mm in low and high power images, respectively. To increase the extent of labeling in one
imaging channel, foci within individual CTs were labeled with either BrdU or biotin-dUTP using the labeling scheme shown (D). Samples were fixed
and processed to visualize site of incorporation by indirect immuno-labeling using secondary antibodies conjugated with QdotsTM; Qdots are very
stable during illumination and allowed sampling using 50 nm Z steps (92 slices in the examples shown) and multiple scans without bleaching.
Individual cells were selected and confocal projections generated (E). Regions from selected cells were analyzed to identify the extent of co-
localization between the two labeling channels. A 3-D reconstruction of the region highlighted in (Ei) was used for further analysis (Eii–Ev: Eii (green)
and Eiii (red) show signal in the separate labeling channels; Eiv an overlay of the red and green channels and Ev a co-localization analysis using Imaris
software). Note the discrete nature of the labeled sites in both labeling channels and almost complete lack of sites of overlap (yellow) in the channel
merge (Eiv) – in this typical example the co-localized volume was 0.96%. Scale bars are 5 and 0.7 mm in low and high power images, respectively.
doi:10.1371/journal.pone.0027527.g004
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detailed dynamic studies on specific endogenous loci have not

been reported. Moreover, with live imaging, it is extremely

difficult to reliably measure subtle changes in shape and intensity

of 3D structures based on fluorescent time-lapse imaging. Hence,

it is unclear how the structure of DNA foci changes when functions

such as DNA or RNA synthesis are performed (e.g. [13,14]).

The molecular mechanisms that define the structural properties

of DNA foci have not been explored in detail. It is known that

individual foci within euchromatin and heterochromatin are

discrete entities, implying that the local chromatin environment

contributes to their structure [12,15]. It is not clear if individual

foci have strictly defined boundaries or how possible boundaries

Figure 5. Differential dynamic behavior of DNA foci labeled during early and mid/late S phase. Early replicating euchromatic foci were
pulse-labeled with AF488-dUTP (green) and mid/late replicating foci with Cy3-dUTP (red) - an optimal pulse separation of 5 h was established
experimentally (A). Individual CTs were resolved by mitotic segregation for 7 days (A–C) and confocal time-lapse microscopy (Zeiss LSM510META)
performed over 1–2 h with sampling every 15 min. Raw images (B; upper panels) show maximum projections of Z stacks for a typical isolated CT
(from the cell highlighted in C). Raw images were imported into Imaris software in order to determine the mass centers of individual labeled sites
(DNA foci). Software-generated spheres (250 nm; B; lower panels), which represent the mass centers of discrete foci, were used to develop 3-D
coordinates to define changes in separation of paired neighboring foci (n = 42). For each time-lapse series used (B), 4 3-D projections were generated
at 15 min intervals and specific regions identified (white ovoids) where foci could be tracked without ambiguity. In each image, the separation
between all neighboring pairs of assigned foci (within each ovoid) was determined. Finally, the 4 data sets were used to calculate 3 relative
separations that define the change in separation of assigned foci in mm/15 min (mm in D). The relative dynamic properties shown relate to early foci
within early replicating chromosomal domains (G/G) and mid/late foci within mid/late replicating domains (R/R). Scale bars of 1 and 10 mm are shown
on individual panels.
doi:10.1371/journal.pone.0027527.g005
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might be formed. Even so, a recent study using an unbiased

genome-wide 3C approach – termed Hi-C - has demonstrated that

the analysis of cell populations shows DNA to be clustered into

,1,000 kbp chromatin domains [41]. The DNA domains that

were predicted during analysis of the Hi-C data show a strong size

correlation with DNA foci [8] and replication timing domains

[42]. Interestingly, bioinformatic analysis has predicted that at

least part of the structural organization of the higher-order

chromatin domains or globules correlates with the distribution of

the insulator protein CTCF on DNA [43,44] and the association

of active genes within common transcription factories [43–45].

Structural plasticity of CTs and DNA foci
In this study, we used a single cell approach to evaluate if the

structure and dynamic behaviour of CTs could be rationalized

with the formation of wide-scale genomic interaction networks,

which can be crudely defined by the extent of inter-chromosomal

mixing within nuclei. We used fluorescent thymidine analogues to

label DNA foci in living cells and then used light microscopy to

monitor both the structure and dynamic behaviour of individual

foci and CTs. Using this approach, we saw little evidence for

extensive zones of DNA mixing between the foci in adjacent

chromatin domains (Figs. 1, 2). Indeed, analysis of the co-

localization of DNA from neighboring CTs suggests that nuclear

domains in which chromatin from different CTs is freely mixed

represents a small fraction – probably no more than 1% - of the

chromatin space. The very limited mixing that we see agrees with

other reports [11,12] but appears at odds with the existence of

widespread chromatin domains within which DNA from different

chromosomes is mixed [39].

Whether this apparent discrepancy results from experimental

differences or innate differences in the cell systems used is presently

unclear. Our analysis is dependent on metabolic labeling during

DNA replication and transformed human HeLa cells are ideally

suited for this approach. Pombo and colleagues used freshly

isolated peripheral human lymphocytes, which in some cases were

activated by PHA treatment [39,46]. One possibility might be that

the observed differences reflect changes in higher-order chromatin

architecture in transformed and specialized cells. Various technical

limitations might also contribute to the differences seen using

different experimental strategies. Notably, our preferred analytical

strategy simply involves fixation and analysis of higher-order DNA

structures that were fluorescently labeled during DNA replication

(Fig. 2). Pombo et al. used technically elegant in situ hybridization

to visualize the distribution of CTs. Unlike our non-destructive

labeling, hybridization demands that the target DNA is denatured,

which even in fixed samples might involve some loss of local

structure. In addition, our metabolic labeling approach allows

visualization of DNA foci [8] in samples without background (i.e.

unincorporated) label. In contrast, when analysis is based on DNA

hybridization, samples often contain low-level background stain-

ing, which makes true signal difficult to define [36].

Dynamic DNA foci and chromatin looping
Our observations suggest that the chromatin in human HeLa

cells does not undergo wide-scale inter-chromosomal mixing

(Figs. 1, 2, 3, 4). From our analysis, we estimate that within

individual cells only ,1% of DNA is found to occupy nuclear sites

where DNA from different chromosomes is likely to be freely

mixed. This level of potential interaction does however reflect a

snap-shot in time and it is also important to emphasize that CTs

[13–16] and their constituent DNA foci [14,15] are dynamic and

able to engage in structural transformations (Fig. 5), so that

different loci might interact with numerous other loci at different

times. It is reasonable then to assume that such changes will

respond to the functional state of chromatin, and not difficult to

imagine how post-translational histone epi-states define a chro-

matin landscape, which also contributes to patterns of DNA

interaction. In addition, while specific patterns of inter-chromo-

somal interactions might form preferred steady-state structures in

differentiated cells it is important to consider how such interactions

might be influenced by the formation of chromosomes and their

CTs during cell division. Chromosome condensation will inevita-

bly disrupt inter-chromosomal DNA interactions that exist during

interphase and so reset the interaction networks to a structural

ground-state that will be based on local structure.

While DNA foci with ,1 Mbp of DNA are widely accepted as

fundamental higher-order features of chromosome structure

surprisingly little is known about the molecular principles that

regulate chromatin function within these structures. Though the

formation of foci is unlikely to reflect a single mechanism, it is

notable that the foci which form within the euchomatin and

heterochromatin compartments are distinct. This is consistent with

the local chromatin environment contributing to the structure and

stability of individual foci. To test this possibility, we perturbed the

local chromatin environment within DNA foci by manipulating

the acetylation status of histones using the histone deacetylase

inhibitor TSA. After treatment with TSA, under conditions that

increased global histone acetylation ,5-fold, clear changes in the

structure of DNA foci were seen (Figs. 2, 3). Notably, foci became

more open or dispersed and this correlated with a 4-fold increase

(Table 2) in the volume of nuclear domains where DNA from

adjacent chromosomes was intermingled. TSA-induced changes in

the structure of DNA foci also correlated with a more general

disorganization of CTs, which showed widely variable structures

and increased size (Fig. 3). These experiments show that the

chromatin environment contributes to the structure of DNA foci

so that when the chromatin environment is perturbed a

corresponding deterioration in the structure of DNA foci and

CTs is seen.

Inside the nucleus, DNA and RNA synthesis are performed

within the inter-chromatin compartment, and not within the

chromatin-rich DNA foci themselves [36–38]. Because of this

spatial separation, it is self-evident that chromatin loops must be

extruded from the foci towards the active sites during synthesis.

This requirement for movement of the chromatin fibre raises the

possibility that chromatin loops continually escape from the

surface of structural foci in order to probe the inter-chromatin

space where favourable synthetic environments might be encoun-

tered. During this process, extended chromatin loops from

neighboring territories might occupy the same nuclear space and

so have a high probability of interacting, for example by binding to

a common transcription factory. The analysis presented here

suggests that at any time the extended loops represent a very small

amount – ,1% or less - of the mammalian genome. Even so, it is

important to recognise that the single cell analysis used is unable to

explore the range (spread) of isolated chromatin fibres and it

remains an open question if extended chromatin fibres are able to

persist as a result of stable interactions within the inter-chromatin

space [1–3].

Our experiments imply that extended loops that spread from

the surface of CTs are generally short-range and probably short-

lived. If long-range (.mm) open loops are able to form in our

experimental system, these must be rare in individual cells or

below the level of detection of our analysis. In fact, chromatin

loops that extend well outside the normal boundaries of CTs are

not uncommon and provide an obvious means of increasing the

range of inter-chromosomal contacts while maintaining the
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normal higher-order packaging density of DNA [36]. While such

extruded loops provide one class of CT remodelling, we believe

that our observations support a model in which the majority of

inter-chromosomal contacts form locally at the boundaries of CTs,

in domains where chromatin architecture might be open and

dynamic. In this regard, it is notable that recent studies using

electron spectroscopic imaging [47] have suggested that the

majority of chromatin in mammalian cells is in the form of 10 nm

chromatin fibers, which in differentiated cells fold locally to form

higher-order DNA foci [30]. Interestingly, the chromatin fibers

within embryonic stems cells appear to be much more chaotic,

perhaps implying that ES and differentiated somatic cells have

quite different principles of higher-order chromatin organization.

Analysis of widespread chromatin dynamics in different cell

types supports this possibility. It is well-known that in differenti-

ated cells chromatin structure is spatially stable over long periods

of time [48] whereas similar experiments performed in ES cells

shows their genome organization to be extremely plastic [Thomas

Cremer, personal communication]. This implies that stable

higher-order structures seen following differentiation are not a

major chromatin feature in developmentally primitive cells. Even

so, indirect functional evidence does show that some level of

higher-order structure is present in stem cells. Notably, replication

timing domains that are seen following cell commitment correlate

with ,0.5–1 Mbp chromatin domains – the DNA foci [8] – and

similar replication structures are seen both in mouse ES cells and

in their committed and differentiated descendants [42].

Conclusions and perspectives
Genome-wide studies offer a promiscuous view of inter-

chromosomal interactions, which suggest a significant degree of

intermingling between DNA from different CTs (e.g. [41]).

However, to date such experiments have been performed on

large cell populations and provide a view of potential interactions

without having the power to predict the frequency of these

interactions within individual living cells. Moreover, unbiased

analysis of potential genome interactions using Hi-C clearly shows

that intra-chromosomal interactions within CTs are at least 2

orders of magnitude more frequent than inter-chromosomal

interactions (see Figure 2 in [41]); this level is consistent with the

potential for chromatin mixing described herein. Hence, while the

formation of extensive interaction networks within mammalian

cells appears to conflict with the idea that individual CTs are

spatially self-contained [4], dynamic changes at the interaction

interfaces of neighboring CTs (Fig. 5) can be sufficient to allow the

formation of widespread gene interactions while preserving CTs as

higher-order chromatin structures. As a growing body of evidence

supports the formation of cell type specific ‘interactomes’ during

cell differentiation [18–23], it is important to understand how

different patterns of gene expression correlate with the formation

of interaction networks and how these interactions define spatial

and temporal changes in genome structure and function within

individual cells.

Materials and Methods

Visualizing replication foci in human cells
HeLa cells were grown in the presence of different dTTP

analogues to label sites of DNA synthesis, as described in detail by

Maya-Mendoza et al. [49]. The following precursors were used:

AlexaFluor488-dUTP (AF488-dUTP); Cy3-dUTP; biotin-dUTP

and bromo-deoxyuridine (BrdU). AF488-dUTP and Cy3-dUTP

were visualized either in living cells using time-lapse light

microscopy or by confocal microscopy after fixation using routine

procedures. For fixation, cells growing on glass coverslips were

rinsed briefly in PBS (1 sec; 20uC to remove medium and fixed in

4% paraformaldehyde (15 min; 0uC). These fixation conditions

preserved the structure of chromatin domains present in living

cells and no changes in structure of the chromatin foci was seen

under the imaging conditions used. Fixed cells were washed 36 in

PBS, treated with 0.5% Triton 6100 in PBS, rinsed 36 in PBS,

incubated with 5 mg/ml Hoechst 33258 (Sigma) for 10 min, rinsed

36 in PBS and mounted with either Vectashield or Prolong

mounting media. Alternatively, DNA foci were labeled by indirect

immuno-fluorescence [49]. Where secondary fluorescent antibod-

ies were replaced by Qdots the following changes were applied: 1)

permeabilization was altered to 1% Triton 6100 for 10 min; 2)

Qdots (1/500 dilution) were applied to coverslips in 24 well plates

and incubation performed for 15 h at 4uC with shaking (orbital

rocker); fixation, primary antibody incubation and washes were as

for routine immuno-labeling. We note that in our hands the

performance of Qdots was very variable from batch to batch, with

some batches giving high background staining. Qdots were from

Invitrogen: streptavidin conjugated Qdot-525 was used to detect

biotin labeled CTs and secondary anti-rat antibody conjugated

with Qdot-605 to detect BrdU. TSA was purchased from Sigma.

Western blotting was performed as described [50] using

appropriate antibodies (Abcam), as shown.

For confocal imaging, samples were examined using a Zeiss

LSM510META confocal microscope following well-established

imaging protocols [27,28]. Labeling conditions were selected to

minimize background noise and the microscope configuration was

selected to reduce bleed-through between imaging channels to

negligible levels. In order to ensure optimal imaging performance,

instrument alignment was performed at regular intervals by Zeiss.

Multi-coloured TetraSpeck florescent beads were used to monitor

point spread functions and correct chromatic shift; maximum

tolerated shifts were 50 nm in X-Y and 100 nm in Z. To minimise

chromatic aberrations, great care was also taken to balance

labeling intensities in different imaging channels. Confocal sections

were collected through a 1006 (1.45 NA) lens and 3-D images

generated using Z stacks and processed in ImarisH software. For

LSM510 image acquisition the following channel settings were

used: green 2488 nm laser line at 2% intensity with a BP 500–530

IR filter; red – 543 nm laser line at 32% of intensity and LP 545

filter. 4-D time-lapse imaging was performed using either a

DeltaVision microscope with a CoolSNAP-HQ2 camera and

Olympus objective (1006; 1.4 NA) or Zeiss LSM510META

confocal microscope using the settings detailed above. The

Deltavision system was used for long-term imaging experiments

(e.g. Fig. 1), with the intensity of light during imaging kept to 32%

using an acquisition speed of 100–200 ms. The conditions used

allow imaging for at least 2 days without influencing cell viability

or cell cycle parameters. Because of the zoom facilities, the Zeiss

system was used when foci-level resolution was required (Fig. 5). As

above, the light intensity was reduced to the minimum required to

resolve individual foci and the imaging conditions used were

shown not to prevent subsequent cell division.

For detailed co-localization analysis (Fig. 2), confocal imaging

was performed using a Zeiss LSM710 microscope using instru-

ment setting equivalent to those detailed above to minimize bleed-

through between channels and background levels. Z-stacks were

acquired for each sample with voxel dimensions of 0.860.860.34

microns, for X, Y and Z respectively with an XY resolution of

9886988 pixels and a pinhole setting of 1.0 Airy unit. Amplifier

and detector gain and offset were optimally chosen by the

instrument for each field acquired. For the Alexa-488 channel an

EF1 filter set was used with a SPI wavelength range from 493–
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543 nm. For the Cy3 channel an EF2 filter set was used with a SPI

wavelength range from 566–681 nm.

Image analysis and model building
3-D and 4-D images were analyzed using ImarisH software

(Bitplane). For confocal images, Z stacks were processed using

ImarisH software after applying a Gaussian or Median filter.

ImarisH software was used to process 3-D projections, identify

individual foci and assign coordinates for mass centers of each

focus. Individual channels were processed separately. Co-ordinates

of mass centers were used to define the spatial relationship

between adjacent foci, either within or between channels. The

mass centers can be represented by computer generated spheres

that correspond in size to average foci. Such images are artificial

and while providing an accurate representation of the positions of

foci are not intended to provide a realistic representation of the

foci themselves. ImarisH imaging software was used to isolate

cropped regions, with the same crop volumes used for equivalent

samples.

For high-throughput image analysis, in-house scripts were

developed using Fiji software [51] with the aid of the suite of 3-

D filters [52]. Co-localization analysis was performed with JACoP

[28] and co-localized volumes estimated by multiplying the

number of co-localized voxels by the volume covered by a single

voxel. Co-localized voxels where defined as voxels for which both

channels indicated values above a threshold point, equal to the

standard deviation of the distribution of pixel intensities in the

corresponding channel.

To visualize 3-D interactions between CTs (e.g. Fig. 2D),

coordinates of each of the fluorescent tags were exported

individually into Virtual Reality Modelling Language (VRML)

format using ImarisH software. VRML files were exported to 3ds

format using an open-source, platform-free 3d-design suite

(http://www.blender.org/). These files were imported into Auto-

deskH 3ds MaxH (www.autodesk.com/3dsmax) and imported files

merged in a single MAX file to facilitate image rendering, 3-D

modelling and animation. This procedure using 3ds built-in

compound modifiers models the 3-D shape of the chromatin

compartment using the continuity of labeled DNA foci to define

the chromatin space.

Supporting Information

Figure S1 Analysis of co-localization in cells labeled
with 488-dUTP and Cy3-dUTP. This figure demonstrates how

manual thresholding was used for quantitative channel co-

localization. The sample described in Figure 1 was used for

analysis and the specific nucleus shown in (Cii) use in this example.

As in Figure 1, LSM (Zeiss) data files were uploaded into Imaris

software and individual channels (3-D) isolated (A: three images on

top show the unprocessed green (left) and red (center) channels and

the channel merge (right; co-localized sites are shown yellow).

Data from the imaging files is extracted as a screen shot on the

right. Using data like this we performed a detailed empirical

analysis of the behavior of sites of co-localization, using co-

localization intensity plots (B). Using these plots, manual thresh-

olding was applied to eliminate background noise. Threshold

settings (shown by yellow lines in the intensity co-loclization plot

(B)) were adjusted sequentially in order to establish the minimum

level that eliminated noise that was clearly unrelated to the real

signal (define by nuclear location). Using this approach, the

minimum value for thresholding correlated with the standard

deviation of the data intensity in the separate imaging channels.

When voxels below this intensity were subtracted from the images

noise was essentially eliminated without degrading the structure of

the true signal (in A, compare raw images (top panel) and

equivalent images after noise reduction (lower panel)). Following

nosie reduction, the filtered images were analyzed to identify levels

of co-localization (data panel below). Finally, the voxels showing

co-localization after background subtraction were extracted (C),

for comparison with levels of apparent co-localization in the

primary image (A: yellow voxels, top right).

(TIF)

Video S1 Preservation of relative spatial architecture of
CTs in response to cell movement. Video showing the time-

lapse series that includes the individual images shown in Figure 1B.

Video rate - 1 frame/sec. 0 to 360 mins.

(MOV)

Video S2 Regions of apparent co-localization between
neighboring CTs result from foci that lie in close
juxtaposition in nuclear space. This video shows how co-

localization alters during Z sectioning of the space-filling model

presented in Figure 1Di. Note that while zones of apparent co-

localization often appear along the borders where neighboring

CTs meet (these appear yellow while panning through the image)

high-resolution analysis shows that these rarely represent true co-

localization. In fact, sectioning through the nucleus shows almost

complete separation of the green- and red-labeled DNA.

(AVI)

Video S3 CT architecture generates frequent regions of
interdigitation along the boundaries where neighboring
CTs meet. This video shows a high-magnification 3D rotational

view of the region shown in Figure 1Dii–iii(from the region

highlighted (white box) in Fig. 1Di). Note that domains protruding

from the surface of both CTs are able to pass into the neighboring

territory. However, while foci from the individual CTs interact

within the same nuclear space the structural integrity of the foci

appears to be preserved so that DNA interactions are restricted to

the surfaces where adjacent foci touch. Such experiments do not

support the existence of extensive nuclear domains where DNA

from two or more CTs is freely mixed, although it is important to

note that DNA within individual foci will also be dynamic so that

DNA at the surface of individual DNA foci will also change with

time.

(AVI)
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