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Multiple antibiotic resistances among Shiga
toxin producing Escherichia coli O157 in
feces of dairy cattle farms in Eastern Cape
of South Africa
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Abstract

Background: Shiga toxin–producing Escherichia coli (STEC) O157:H7 is a well-recognized cause of bloody diarrhea
and hemolytic-uremic syndrome (HUS). The ability of STEC strains to cause human disease is due to the production of
Shiga toxins. The objectives of this study were to determinate the prevalence, serotypes, antibiotic susceptibility
patterns and the genetic capability for Shiga toxin production in Escherichia coli (STEC) strains isolated from dairy cattle
farms in two rural communities in the Eastern Cape Province of South Africa.

Methods: Fecal samples were collected between March and May 2014, from individual cattle (n = 400) in two
commercial dairy farms having 800 and 120 cattle each.
Three hundred presumptive isolates obtained were subjected to polymerase chain reactions (PCR) for identification of
O157 serogroup and Shiga toxin producing genes (stx1, stx2) on genomic DNA extracted by boiling method.
Susceptibility of the isolates to 17 antibiotics was carried out in vitro by the standardized agar
disc-diffusion method.

Results: Based on direct PCR detection, 95 (31.7 %) isolates were identified as O157 serogroup. The genetic repertoire
for Shiga toxin production was present in 84 (88.42 %) isolates distributed as stx1 (37), stx2 (38) and stx1/2 (9) respectively
while 11 of the isolates did not harbor Shiga toxin producing genes. Multiple antibiotic resistances were observed
among the isolates and genetic profiling of resistance genes identified blaampC 90 %, blaCMY 70 %,
blaCTX-M 65 %, blaTEM 27 % and tetA 70 % and strA 80 % genes among the antimicrobial resistance determinants
examined.

Conclusion: We conclude that dairy cattle farms in the Eastern Cape Province are potential reservoirs of antibiotic
resistance determinants in the province.
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Background
Escherichia coli is an important pathogen in cattle, medi-
cine and public health [1], and Shiga toxin-producing
strain (STEC) have emerged as important food-borne path-
ogens, especially serotype O157:H7. Human diseases

caused by this serotype that produces STEC ranges from
mild diarrhoea to haemorrhagic colitis and haemolytic
uraemic syndrome (HUS) and typically it affects children,
the elderly, and immunocompromised patients [2]. Healthy
domestic ruminants such as cattle, sheep, and goats can
harbor STEC and E. coli O157:H7 in their faeces and are
thus natural reservoirs of these pathogens [3–5]. The
pathogenicity of STEC resides in a number of virulence
factors, including Shiga toxins (Stx1 and Stx2), intimin,
enterohaemolysin, and the STEC autoagglutinating
adhesin (Saa) [6]. Shiga toxin–producing (STEC) and
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enteropathogenic Escherichia coli (EPEC) represent two of
the six different categories of diarrheagenic E. coli that can
cause disease in humans [1]. STEC, which is defined by the
production of two Shiga toxins, Stx1 and/or Stx2, is a zoo-
notic pathogen that is a major cause of diarrhea worldwide.
Stx2 is more closely related to these diseases than stx1 [7].
There are three Stx1 subtypes (Stx1a, Stx1c, and Stx1d)
and seven Stx2 subtypes (Stx2a, Stx2b, Stx2c, Stx2d, Stx2e,
Stx2f, and Stx2g) according to the subtyping nomenclature
proposal put forth at the 7th International Symposium on
Shiga Toxin (Verocytotoxin)–Producing Escherichia coli
Infection, held in Buenos Aires, in 2009.
The use of antimicrobial in animal feeds as growth

promoters is common worldwide. Across the globe, a
variety of antimicrobial agents are available for thera-
peutic use or as growth promotion in animals. Many
studies have supported the claim that with the increased
use of antimicrobial agents in animals and humans, an
increased prevalence of resistant strains may be selected
as a direct consequence of the antimicrobial use [8, 9].
Humans, via the food chain, ingest a lot of bacteria ori-
ginating from food-producing animals, which have been
recognized as major reservoirs of E. coli habouring
CTX-M β-lactamase an enzyme that confers resistance
to β-lactam antibiotics [23]. Sasaki [10] have reported a
high prevalence of CTX-M β-lactamase encoding gene
among Enterobacteriaceae in stool specimens from
healthy asymptomatic volunteers in a rural community
in Thailand. Concerns exist about the potential spread
of the β-lactam-CTX-M genes from food animal prod-
ucts to humans through the food chain. CTX-M β-
lactamase genes have been reported in E. coli from
various food-producing animals worldwide raising a
potential threat to public health [11–16]. Giving the
frequent occurrence of O157 STEC as foodborne patho-
gen in North America and some parts of the western
world, there is a clear need to gather data on the preva-
lence and distribution of STEC producing E.coli and the
antibiotic resistance profiles of isolates of this organism
recovered from faecal samples from commercial dairy
cattle farms in the Eastern Cape of South Africa where
pastoral farming is a major source of income for many
families. This study therefore aimed at characterizing
E.coli O157 isolates from fecal samples of two dairy
cattle farms in the Eastern Cape Province of South
Africa. Ability of isolates to produce Shiga toxin and
their antibiotic susceptibility patterns as well as presence
of some resistance determinants were screened by mo-
lecular approaches.

Methods
Ethical clearance
Ethical clearance was obtained from the University of
Fort Hare ethics committee prior to sample collection

and permission was sought from farmers from whose
farms samples were collected.

Study population and sampling
Details on the study population and sampling proce-
dures are as follows. Briefly, samples were collected from
commercial dairy cattle farms in Nkonkobe District of
Eastern Cape Province, South Africa. A total of 400 sam-
ples from two commercial dairy farms were collected for
the study. Rectal fecal grab samples of approximately 10 g
were collected from individual cattle using sterile gloves
into appropriate capped containers. After collection, sam-
ples were shipped on ice to the University of Fort Hare
Microbiology laboratory for immediate processing.

Preliminary sample processing
Approximately 1 g of each fecal sample was mixed in
9 ml of Trypticase soya broth (TSB) with 20 mg/L novo-
biocine and incubated for 6–8 h at 37 °C. This was
streaked out onto sorbitol MacConkey agar (SMAC) sup-
plemented with 1 mg/L potassium tellurite and incubated
for 18–24 h at 37 °C. A pale colony each (sorbitol non-
fermenters) was picked as presumptive E. coli O157 per
sample. The pure colonies were each inoculated into
separate TSB and incubated for 24 h at 37 °C from which
glycerol stock was made and then stored at −80 °C for
further analyses.

DNA extraction
Bacterial DNA was prepared as previously described by
Bai [17]; briefly, bacterial culture from glycerol stock
was resuscitated by an overnight growth in trypticase
soya broth (TSB) (Oxoid Ltd, London, UK) at 37 °C with
slight agitation. From this culture, 2 ml was centrifuged
for 5 min at 14,000 rpm and the pellet was washed with
normal saline (0.85 % NaCl). After the addition of 150 μl
of rapid lysis buffer (100 mM NaCl, 10 mM Tris-HCl
pH8.3, 1 mM EDTA pH9.0; 1 % Triton X-100), the sus-
pension was votexed, boiled for 15 min, centrifuged at
10,000 rpm, supernatants collected in a DNase free
Eppendorf tube and stored at −20 °C. These were then
used as templates in all the polymerase chain reactions
(PCRs) that were performed in this study.

Molecular serotyping and virulence typing
Molecular serotyping using the O-unit flippase gene
(wzx) was performed: primers used for detection of
O157 strains are shown in Table 1. E. coli O157:H7
ATCC 35150 served as the positive control. Specific
primers were used to detect the presence of virulence
genes encoding the Shiga-toxins (stx1 and stx2) as previ-
ously described by [17, 18]. Amplification was performed
using 25 μl of PCR mix containing 5 μl of bacterial
DNA purified as described above, 12 μl of 2X Dream
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Taq Master Mix (Thermo Scientific), 10pmol of both
forward and reverse primers and 6 μl of water of PCR
grade. The conditions for PCR amplification performed
in a thermal cycler (BioRad) were 94 °C for 3 min,
followed by 35 cycles of 93 °C for 60 s, either 55 °C for
60 s and 72 °C for 60 s. The final cycle was followed by
an extension step at 72 °C for 7 min. The amplified
products were visualized by standard gel electrophoresis
using 5 μl of the PCR product on 2 % agarose gels in
0.5X TBE buffer (0.1 M Tris, 0.1 M boric acid and
0.002 M NaEDTA). Gels were stained using ethidium-
bromide (1 mg/ml) and photographed under UV light in
a transilluminator (ALLIANCE 4.7).

Antimicrobial drug susceptibility testing
We determined antimicrobial drug susceptibility by the
disk-diffusion method on Mueller-Hinton agar plates as
recommended by the Clinical Laboratory Standard Insti-
tute [19]. We tested the following antimicrobial agents:
ampicillin 10 μg, tetracycline 30 μg, oxy-tetracycline
30 μg, which were used in the farms and the following
agents used in the management of E.coli infections;
amoxicillin/clavulanic acid 10 μg, cephalothin 30 μg,
cefotaxime 30 μg, ceftazidime 30 μg, imipenem 10 μg,
norfloxacin 10 μg, ciprofloxacin 5 ug, enrofloxacin 5 μg,
amikacin 30 ug, chloramphenicol 10 μg, kanamycin
30 μg, streptomycin 10 μg, gentamicin 10 μg and sulfa-
methoxazole/trimethoprim (cotrimoxazole) 25 μg (Mast
Diagnostics). Results obtained were used to classify iso-
lates as being resistant or susceptible to a particular anti-
biotic using standard reference values [19].

PCR profiling of resistance genes
Template DNA was prepared as previously stated above.
The β-lactamase genes blaTEM, blaSHV, blaCMY-2, bla-
CTX-M, bla-CTX-M1, bla-CTX-M9 and bla-ampC and two of
the genes responsible for resistance to streptomycin

(strA) and tetracycline (tetA) respectively were tested
using specific primers in Table 2 as described previously
in literatures (Forward et al., 2001, Guillaume et al., 2000,
Thong et al., 2010). PCR was performed in a 25-μl mix-
ture of 12 μl of 2X Dream Taq Master Mix (Thermo Sci-
entific, Pittsburgh, PA, USA), 10 pmol of each forward
and reverse primer and 6 μl water of PCR grade. The PCR
mixture was subjected to a 3-min denaturation step at
94 °C, followed by 35 cycles of 45 s at 94 °C, 45 s at 55 °C/
57 °C/50 °C depending on the primer set, and 60 s at 72 °
C, and a final elongation step of 7 min at 72 °C. PCR

Table 2 Primers used to profile β-lactamases, tet(A) and strA
genes in Escherichia coli

Gene
detected

Primer sequence
(5′- 3′)

Size (bp) Reference

blaTEM CF- TCG GGG AAA TGT
GCG CG

DR-TGC TTA ATC AGT
GAG GCA CC

971 [20]

blaSHV OS-5 F- TTA TCT CCC TGT
TAG CCA CC

OS-6R-GAT TTG CTG ATT
TCG CTC GG

795 [21]

blaCTX-M MA-1 F-SCS ATG TGC AGY
ACC AGT AA

158

MA-2R- CCG CRA TAT GRT
TGG TGG TG

[20]

blaCTX-M gp 9 M9UF-ATG GTG ACA AAG
AGA GTG CA

863

M9LR-CCC TTC GGC GAT
GAT TCT C

[20]

blaCTX-M gp 1 M13UF-GGT TAA AAA ATC
ACT GCG TC

863

M13LR-TTG GTG ACG ATT
TTA GCC GC

[20]

blaampC AmpC1F-AAT GGG TTT TCT
ACG GTC TG

AmpC2R-GGG CAG CAA ATG
TGG AGC AA

191 [22]

blaVEB casFF-CGA CTT CCA TTT CCC
GAT GC

casBR -GGA CTC TGC AAC
AAA TAC GC

1052 [23]

blaCMY CF1F-ATGATGAAAAAATCG
TTATGC

CF2R-TTGTAGCTTTTCAAGA
ATGCGC

507 [24]

tet(A) TetA-F-GGCCTCAATTTCC
TGACG

TetA-R-AAGCAGGATGTAG
CCTGTGC

372 [25]

strA strA-F-CTTGGTGATAACG
GCAATTC

strA-R-CCAATCGCAGAT
AGAAGGC

548 [26]

Table 1 Primers used in PCR detection of Shiga toxin genes
and determination of serotypes

Target gene Primer sequences 5′-3′ Size of
product (bp)

Reference

stx1 STx1-F TTC GCT CTG CAA
TAG GTA

555 [18]

STx1-R TTC CCC AGT TCA
ATG TAA GAT

stx2 STx2-F GTG CCT GTT ACT
GGG TTT TTC TTC

118 [18]

STx2-R AGG GGT CGA TAT
CTC TGT CC

rfbE(O157) rfbE-F TTT CAC ACT TAT
TGG ATG GTC TCA A

88 [17]

rfbE-R CGA TGA GTT TAT
CTG CAA GGT GAT
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products were separated by 120-V electrophoresis in a 2 %
agarose gel containing ethidium bromide for 45 min, visu-
alized in Alliance 4.7 transilluminator (ALLIANCE 4.7,
Cambridge, United Kingdom) and photographed.

Results
Serotyping
PCR-based molecular serotyping using primers designed
for detection of O157 group identified 95 positive iso-
lates as O157 serotype (gel not shown) out of the 320
presumptive isolates.

PCR-based detection of virulence genes
The 95 molecularly confirmed E.coli O157 isolates were
analyzed by PCR for their Shiga toxin producing capabil-
ities. Table 3 shows PCR results of the different virulence
genes for 84 (88.45 %) isolates detected among the 95
confirmed O157 isolates. The remaining 11 (11.55 %)
though belonging to O157 serogroup, did not harbor
Shiga toxin genes and were therefore regarded as non-
STEC strains.
Distribution of virulence genes among the 84 STEC

strains showed that 37 (44 %) isolates possessed the stx1
gene as shown in Fig. 1, 38 (45.3 %) possessed the stx2
gene Figure not shown while 9 (10.7 %) had both stx1
and stx2.

Antibiotic sensitivity patterns
Disk-diffusion susceptibility testing indicated high preva-
lence of multi-resistance to various antimicrobial agents
among the 95 isolates: chloramphenicol 89.5 %, ampicillin
94.74 %, tetracyclin 96.84 %, oxytetracyclin 94.74 %, cefur-
oxime 82 %, ceftazidime 32 %, cephalothin 94.74 %,
streptomycin 84.2 %, amikacin 6.3 %, kanamycin 5.3 %,
amoxicillin/clavulanate 84.2 %, trimethoprim/sulfametha-
zole 84.2 %, norfloxacin 10.5 %, enrofloxacin 7.4 %,

ciprofloxacin 12.6 %, and gentamycin 8.4 % while all the
isolates were susceptible to imipenem as shown in Table 4
below. All isolates showed reduced susceptibility to several
antimicrobials agents in the panel.

PCR profiling of resistance genes
Prevalence of AMR genes
Results of genetic profiling of the observed phenotypic
resistances among the isolates showed predominance of
blaampC 90 %, blaCMY 70 %, blaCTX-M 65 %, and blaTEM
27 %, among the isolates that were resistance to ampicil-
lin, amoxicillin/clavulanate, cephalothin, cefuroxime, cef-
tazidime. PCR amplification of the blaSHV, blaVEB,
blaCTX-Mgroup1 and blaCTX-Mgroup9 did not yield any
amplicon. The tet(A) and strA resistance genes were
amplified from 70 % and 80 % respectively of the isolates
that were phenotypically resistant to tetracycline, oxy-
tetracycline and streptomycin.
Altogether, AMR genes were detected in all E. coli iso-

lates. The most frequent resistance genes were tet(A),
str(A), bla-ampC, bla-CMY-I (Table 5). With a very few
exceptions, susceptibility test results were consistent
with genotyping results. Gel photographs of some of the
amplified resistance genes are shown in Figs. 2, 3 and 4.
Overall, AMR genes were identified in 92 % of the O157
isolates recovered from studied samples. Resistance
genes detected from isolates as shown in Table 5.

Discussions
The prevalence of STEC O157 serogroup in fecal sam-
ples collected from commercial dairy cattle was investi-
gated. Escherichia coli O157:H7 (O157) is the Shiga
toxin-producing E. coli (STEC) serotype most frequently
isolated and most often associated with hemolytic
uremic syndrome (HUS) in the United States [2]. Ac-
cording to the U.S. Centers for Disease Control and
Prevention, an estimated 265,000 STEC infections occur
each year in the United States. STEC O157 causes about
36 % of these infections and non-O157 STEC cause the rest
[2]. STEC inhabits in the guts of ruminant animals, includ-
ing cattle, goats, sheep, deer, and elk [2]. The major source
for human illnesses is cattle and around 5–10 % of those
who are diagnosed with STEC infection develop a poten-
tially life-threatening complication known as hemolytic

Fig. 1 Gel image of amplified PCR products from study isolates with primers designed for stx1 virulent gene. Lane 1 is the MWM (100 bp), lane 2
is the negative control (PCR mix without DNA) with lane 3 as positive control (E. coli ATCC 35150) while lanes 4 to 13 are stx1 (555 bp) gene
amplified from O157 isolates

Table 3 Prevalence of Shiga toxin genes among the STEC O157
isolates

Serogroup stx1 stx2 Prevalence of Shiga toxin genes

O157 (N = 84) + - 37 (44 %)

- + 38 (45.3 %)

+ + 9 (10.7 %)
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uremic syndrome (HUS) with young children and the
elderly more likely to develop severe illness and hemolytic
uremic syndrome (HUS) than others.
In this study, a total of 400 fecal samples were col-

lected from two commercial dairy farms in the Eastern
Cape Province of South Africa. These samples were ana-
lyzed for the presence of O157 E.coli strain. A total of
95 isolates confirmed by PCR targeting the O-unit flip-
pase gene (wzx) were delineated to be O157 isolates.
Results of the determination for the presence of Shiga
toxin encoding gene (stx1 and stx2) among the 95 iso-
lates showed that 35 (36.84 %) harbored the stx1 gene,
26 (27.4 %) were positive for stx2 while 9 (9.5 %) har-
bored both stx1 and stx2 genes. Twenty five (26.3 %) of
the isolates were commensals as no Shiga toxin genes
were detected in them.
According to Gyles [3], ruminants especially cattle and

sheep are the major reservoir of STEC and individual
animal could carry more than one serogroups of STEC.
During processing, meat derived from infected animals
may become contaminated by STEC contained fecal ma-
terials if they are mistakenly mixed with it. Barlow and
Mellor [27] had reported the presence of STEC in fecal
samples of cattle from Australia where a prevalence of
10 % was observed with E.coli O157 accounting for
1.7 % of all the isolates. It is possible for fresh farm pro-
duce to be contaminated with STEC where irrigation

water or soil treated with farm effluent or manure is
used in growing them. A prevalence as high as 33.5 % of
STEC in bulk milk has been reported internationally
[28]. It is also possible for STEC to survive for a long
time in soil applied with manure from cattle and sheep.
The possibility of water sources being contaminated by
STEC is also very high as fecal materials of animal origin
could be washed through storm drains into fresh water-
bodies thus posing health challenges to the people who
depend on such waterbodies for several uses. WHO [29]
had reported waterborne transmission of STEC in both

Table 5 PCR targeted genes and their percentage occurrence
among the isolates

Resistance gene profiled Percentage of amplified genes

bla-ampC 90 %

bla-CMY 70 %

blaCTXM 65 %

Tet(A) 70 %

strA 80 %

blaTEM 27 %

blaSHV 0 %

blaVEB 0 %

blaCTXMgroup1 0 %

blaCTXM-group9 0 %

Table 4 Antibiotic susceptibility pattern of E. coli O157:H7 (n = 95)

Antibiotics class Antimicrobial agents Code Potency (μg) R S

N (%)

Tetracycline Tetracycline T 30 92 (96.8) 3 (3.3)

Oxytetracycline OT 30 90 (94.7) 5 (5.3)

Penicillin Ampicillin AMP 10 90 (94.7) 5 (5.3)

Amoxicillin/Claculanic acid AUG 10 80 (84.2) 15 (15.8)

Cephalospirines Cephalothin KF 30 90 (94.7) 5 (5.3)

Ceftazidime CAZ 30 30 (32) 65 (78)

Cefuroxime CXM 30 78 (82) 17 (18)

Carbapenems Imipenem IMI 10 0 (0) 95 (100)

Phenicols Chloramphenicol CIP 10 85 (89.5) 10 (10.5)

Aminoglycosides Amikacin AK 30 6 (6.3) 89 (93.7)

Kanamycin K 10 5 (5.3) 90 (94.7)

Streptomycin S 10 80 (80.2) 15 (15.8)

Gentamycin GM 10 8 (8.4) 87 (91.6)

Quinolones Ciprofloxacin CIP 5 12 (12.6) 83 (87.4)

Norfloxacin NOR 10 10 (10.5) 85 (89.5)

Enrofloxacin ENR 10 7 (7.4) 88 (92.6)

Foliate pathway inhibitor Sulfamethazole/Trimethoprim TS 25 80 (80.2) 15 (15.8)

R Resistant, S Susceptible, T Tetracycline, OT Oxytetracycline, AMP Ampicillin, AUG Amoxilcillin/clavulanic acid, KF Cephalothin, CXM Cefuroxime, CAZ Ceftazidime,
C Chloramphenicol, IMI Imipenem, AK Amikacin, K Kanamycin, S Streptomycin GM Gentamycin, CIP Ciprofloxacin, NOR Norfloxacin, ERN Enrofloxacin,
TS Sulphamethoxazole/Trimethoprim
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drinking and recreational water indicating the animal
fecal matters are capable of transmitting STEC produ-
cing E.coli.
There are increasing concerns about the use of anti-

microbial products in food-producing animals and focus
has been on human food safety because foods of animal
origin are sometimes identified as the vehicles of food
borne disease as well as resistant food borne pathogens
carrying resistant genetic materials. We profiled the anti-
microbial susceptibility of E.coli O157 isolates recovered
from commercial dairy cattle that are constantly receiv-
ing (tylosin, advocin, ampicillin, tetracycline) antimicro-
bial agents. We observed a very high level of multiple
antimicrobial resistances among the isolates and the
most common resistance was to tetracycline. This is not
surprising since tetracycline is often used as a first-line
antimicrobial in disease prevention and growth promo-
tion in food animals and its widespread use has likely
contributed to high rates of resistance [30]. The fre-
quency of tetracycline resistance among the E. coli iso-
lates from the farms that we investigated was 96.8 %,
which is within the range of values described in previous
reports (68 to 93 %) [31, 32]. Genetic profiling of the
resistance determinants showed that the resistances were
encoded by blaampC, blaCMY, blaCTXM, blaTEM genes for
the ESLBs (extended spectrum β-lactamases), while tetA
and strA genes were responsible for tetracycline and
streptomycin respectively. High prevalence of CTX-M β-
lactamase–encoding genes in Enterobacteriaceae has
been reported in stool specimens from healthy asymp-
tomatic volunteers in a rural community in Thailand
[11]. The fact that bacteria which infect animals could
also establish infections in humans poses concerns about

the potential spread of the bla-CTX-M genes from food
animal products to humans through the food chain.
CTX-M β-lactamase has been increasingly reported in E.
coli from various food-producing animals worldwide
raising a potential threat to public health with the earli-
est account of CTX-M β-lactamase of food animal origin
from Spain, where a CTX-M-14–producing E. coli was
isolated from healthy chickens [33]. Since then, E.coli
harboring CTX-M β-lactamase encoding gene has been
reported from healthy cattle from Japan [34] and Hong
Kong [35], and from sick or healthy cattle from France
[36, 37] and in the United States [38, 39]. Similarly,
E.coli strains isolated from pigs that have the genetic
repertoire to produce CTX-M-β-lactamase have also
been reported from Hong Kong [40], China [41], Spain
[42], and France [36]. In this study, genetic resistance
determinants were however not amplified from some of
the isolates and this could be attributed to the fact that
the genetic elements targeted in our PCR profiling were
not responsible for the observed phenotypic resistances
as there are numerous arrays of genes that encodes for
resistances to the drugs. Besides, there are many resist-
ance mechanisms like the efflux pump, intrinsic resist-
ance, innate resistant or acquire resistance to one or few
classes of antimicrobial agents. Our findings also showed
that most of the isolates were susceptible to imipenem,
amikacin, kanamycin, the quinolones (norfloxacin, cipro-
floxacin and enrofloxxacin) and gentamicin. This finding
is curious as regards the susceptibility to the quinolones
because the farms that were sampled uses advocin
(danofloxacin) which is a synthetic fluoroquinolone in
the treatment of respiratory disease in chickens, cattle
and pigs and ought to have selected for other quinolone

Fig. 3 Agarose gel image of amplicons obtained from PCR with primers designed for bla-ampC resistance gene of E. coli isolates recovered from this
study. Lane 1 is molecular size markers (100 bp), lane 2 is negative control (PCR mix without DNA) while lanes 3 to 18 are bla-ampC (198 bp) gene from
O157 strains isolated in this study

Fig. 2 Agarose gel images of amplicons obtained from PCR with primers designed for strA resistance gene of E. coli isolates recovered from this
study. Lane 1 is molecular size markers (100 bp), lane 2 is negative control (PCR mix without DNA) while lanes 3 to 18 are strA (548 bp) gene
from O157 strains isolated in this study
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resistances as they have similar structure and mode of
action.
To understand the bases of high tetracycline resistance

among our isolates, we screened for tet determinants.
The predominance of the tet(A) efflux gene observed in
our study is similar to that previously documented in co-
liforms (73 %) of human and animal origins by Marshall
[43]. In this study, we observed also a very high resist-
ance to streptomycin among the isolates which is in
partial agreement with the reported 53 % resistance of
E.coli O157 isolates from feedlots by Rao [44]. Also,
Sawant [45] reported a prevalence of 93 % of tetracycline
resistance in E.coli of dairy cattle with tet(B) accounting
for the resistance determinant in 93 % of their isolates
and this is similar to our finding though mediated by
different variants of the gene.
The fact that bacteria from animals spread to the food

products during slaughter and processing has been
extensively documented [46–49]. The detection of E.coli
resistant to antibiotic growth promoters (AGPs) in food
products derived from animals where AGPs have been
used therefore comes as no surprise. Resistant bacteria
and active antibiotics, or active metabolites of antibiotics
can also spread on farmland with manure. In this study,
we isolated toxigenic O157 E.coli strains carrying Stx1
and stx2 genes that were also multi-resistant to many
antibiotics some of which are medically important in hu-
man medicine. The possibility of these antibiotic resist-
ant strains being shed into the environment and the
eventual transmission of the resistance determinants to
nonpathogenic environmental bacteria is high. Such
transfer of resistance determinants could fuel the spread
of antibiotic resistant bacteria (ARB) that could have
grave implications on the health of humans and animals
thus increasing the burden of disease in the community.
There is therefore need for urgent policy formulations
on the prudent use of antimicrobials in both human and
veterinary medicine as failure in this regards could spell
doom in the nearest future.

Conclusions
In conclusion, this study demonstrated that antimicro-
bial resistant (AMR) determinants were present in dairy
cattle exposed to veterinary antimicrobials for both
therapeutic and as growth promoting agents. The overall
resistance rate was high and the isolates have the genetic
repertoires to survive antimicrobial pressure. Though
genetic capacity for Shiga toxins production have been
reported among E.coli nonO157 serogroups, we did not
profile for any other serogroups apart from O157 in the
fecal samples analyzed. The observed phenotypic mul-
tiple resistances among the isolates were also genetically
confirmed. There were high β-lactam resistances among
the isolates and this poses health implications as these
are the drugs of choice for the management of numer-
ous Gram negative infections. The results of this study
suggest that agricultural activities, specifically antimicro-
bial use may have a significant impact on AMR evolu-
tion in general. More studies with larger sample sizes
and more precise AMR genes typing by DNA sequen-
cing and molecular typing of bacterial strains are needed
to further throw more light in this regard.
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