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Abstract

There is growing interest in the use of DNA barcoding and metabarcoding approaches to 

aid biological assessments and monitoring of waterbodies. While biodiversity measured by 

morphology and by DNA often has been found correlated, few studies have compared DNA 

data to established measures of impairment such as multimetric pollution tolerance indices used 

by many bioassessment programs. We incorporated environmental DNA (eDNA) metabarcoding 

of seston into a rigorous watershed-scale biological assessment of an urban stream to examine the 

extent to which eDNA richness and diversity patterns were correlated with multimetric indices 

and ecological impairment status designations. We also evaluated different filtering approaches 

and taxonomic classifications to identify best practices for environmental assessments. Seston 

eDNA revealed a wide diversity of eukaryotic taxa but was dominated by diatoms (36%). 

Differentiation among sites in alpha and beta diversity was greater when operational taxonomic 

units (OTUs) were classified taxonomically, but coarse resolution taxonomy (kingdom) was more 

informative than finer resolution taxonomy (family, genus). Correlations of DNA richness and 

diversity with multimetric indices for fish and macroinvertebrates were generally weak, possibly 

because Metazoa were not highly represented in our DNA dataset. Nonetheless, sites could be 

differentiated based on ecological impairment status, with more impaired sites having lower 

eDNA diversity as measured by the Shannon index, but higher taxonomic richness. Significant 

environmental drivers of community structure, as inferred from constrained ordination analyses, 

differed among kingdoms within the eDNA dataset, as well as from fish and macrobenthos, 

suggesting that eDNA provides novel environmental information. These results suggest that even 

a simple seston eDNA filtering protocol can provide biodiversity information of value to stream 

bioassessment programs. The approach bears further investigation as a potentially useful rapid 

assessment protocol to supplement more intensive field sampling efforts.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).
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1. Introduction

Biological assessments of aquatic communities, or bioassessments, are approaches to 

evaluating the condition of waterbodies by surveying the composition, distribution and/or 

abundance of resident biota, often in conjunction with measures of physical habitat (US 

EPA, 2011). Over many decades, they have proved effective for assessing the level of 

anthropogenic disturbance in aquatic ecosystems, as well as for measuring progress of 

restoration efforts (Karr, 1981; Yoder and Rankin, 1995; Simon, 2002; Carlson et al., 2018). 

Various assemblages may be evaluated, but surveys in lotic systems have focused on the 

fish, benthic macroinvertebrate and, to a lesser extent, periphyton (biofilm) and amphibian 

communities (Ruaro and Gubiani, 2013). Benthic macroinvertebrates, including many insect 

larvae, are particularly sensitive to anthropogenic disturbances and form the basis of many 

stream bioassessment programs (Resh et al., 1995; Buss et al., 2014).

While bioassessments have become a critical component of water quality monitoring in the 

US and elsewhere, bioassessments have important limitations. Sampling for biota in aquatic 

systems can be labor intensive and specimen identifications are often highly dependent on 

trained taxonomy experts. As a result, many groups, including many microeukaryotes that 

may be functionally important such as microfungi (Gessner and Chauvet, 1994) are typically 

not assessed for lack of resources or taxonomic expertise. Other important groups, such as 

aquatic insect larvae, require careful microscopic examinations for identifications that set 

limits on realistic sample sizes and add to processing time and costs (Pfrender et al., 2010; 

Stein et al., 2014). These resource limitations necessitate compromises in the number of 

organisms identified and counted per sample, taxonomic precision of identifications, as well 

as where and how often samples are collected. Finally, inter-laboratory comparison studies 

have shown that taxonomic disagreements among experts can be significant (Stribling et al., 

2008; Haase et al., 2010). Each of these factors impacts the utility of bioassessment results 

for adaptive resource management.

DNA-based specimen identification has been proposed as an approach that could increase 

throughput, precision, and taxonomic breadth of bioassessments (Pfrender et al., 2010). 

Indeed, several studies have shown that DNA-based approaches can enhance taxonomic 

identifications of larval invertebrates (Pilgrim et al. 2011, Hajibabaei et al. 2012; Carew 

et al., 2013, Gibson et al., 2015; Elbrecht et al. 2017), possibly at comparable cost (Stein 

et al., 2013). Nonetheless, DNA-based approaches also have limitations and uncertainties 

that hinder greater adoption of these methods. Standard “DNA barcoding” approaches that 

identify single specimens based on individual DNA sequencing reactions (e.g., Pilgrim et 

al., 2011) require as much time and effort to sample and sort organisms as traditional 

methods do, providing little time savings at higher cost (Cameron et al., 2006). On 

the other hand, ”DNA metabarcoding” (Taberlet et al., 2012) approaches which attempt 

to characterize whole communities in bulk samples are hindered by primer bias and 

Bagley et al. Page 2

Ecol Indic. Author manuscript; available in PMC 2020 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



competition in the PCR, causing some species to be absent from the measured species 

pool (false negatives) and estimates of relative abundances of others to be biased relative 

to biomass (Elbrecht and Leese, 2015). Reliance on databases to match DNA sequences to 

taxonomic names that are often sparse (Kvist, 2013; Trebitz et al., 2017; Leese et al., 2018) 

and sometimes inaccurate (Collins and Cruikshank, 2012) also cause significant concerns for 

interpretation of biodiversity patterns and environmental condition from DNA.

To date, few studies have directly compared results of DNA-based biodiversity analyses 

with assessments of aquatic ecosystem condition obtained from established bioassessment 

protocols. Such studies are critically important to the acceptance of these new methods in 

established biomonitoring programs. We sought to determine whether a simple protocol for 

filtering seston DNA (environmental DNA or “eDNA” represented in suspended particulate 

matter) followed by high throughput 18 s rRNA gene sequencing could provide data of value 

to stream bioassessment programs. This approach allows a broad survey of diversity and is 

different than previous studies that evaluated DNA of individual or bulked macroinvertebrate 

specimens which had been netted and then manually separated from other biota and 

organic matter (Stein et al., 2014; Elbrecht et al. 2017). It is unreasonable to think that 

this simple protocol could duplicate or replace the biodiversity information obtained by 

traditional bioassessment programs. For one thing, because eDNA methods lack the rich 

history of ecological research that led to development of sensitive multimetric indices and 

empirical models, they currently must rely on simplistic richness and diversity statistics 

that provide only a coarse assessment of biological condition. Nonetheless, eDNA methods 

could enhance efforts that are anchored in rigorous morphological specimen identification 

and enumeration. For example, DNA information can provide a snapshot of biodiversity 

information for the many taxa that are not amenable to morphological identification. If DNA 

metabarcoding provides information that correlates to traditional bioassessment metrics used 

to estimate environmental condition, it could be used as a rapid method to provide further 

spatial context by expanding to additional areas, providing more complete geographic 

coverage. Similarly, this approach could provide a rapid-turnaround assessment that can be 

deployed between traditional assessments or in target areas where environmental problems 

are suspected and may need quick management action.

Here, we compare biodiversity information obtained from eDNA in the water column of 

an urban stream to bioassessment data and impairment status designations obtained from 

a morphological-taxonomy based survey of fish and macroinvertebrates. Our goal was 

to determine whether the information collected from this simple eDNA filtering protocol 

is similar to and can complement information obtained from a bioassessment based on 

morphology, and whether it could be used to differentiate sites by level of biological 

impairment inferred from this traditional bioassessment. Because we ultimately want to 

design an efficient, informative, and transferable assay, we evaluated several parameters 

that could affect biodiversity estimates, including filter pore size and month of sampling. 

We also evaluated the importance of taxonomic resolution, or using taxonomy at all, 

in correlating DNA-based biodiversity metrics to traditional bioassessment endpoints, as 

precise taxonomic information for DNA sequences is unavailable for many groups and could 

limit the utility of this approach.
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2. Materials and methods

2.1. Study Location

The Mill Creek watershed encompasses 42,994 ha within southwestern Ohio, USA (Fig. 

1). The mainstem of Mill Creek flows south ~45 km from headwaters in rural-suburban 

plots through industrialized sections of the city of Cincinnati until it empties into the Ohio 

River. It is a low gradient, low volume, but flashy system, dropping 107 m over its length, 

with a median daily flow of 0.54m3s−1. Historically, Mill Creek has been designated highly 

impaired for aquatic life use, recreation (primary contact) and fish consumption due to 

extensive pollution from municipal point sources, storm water runoff, sewer overflows, and 

legacy contaminated sediments (Ohio E.P.A, 1994). Habitat is impaired in many areas and 

portions of the waterway are extensively modified, including concrete channel hardening of 

a portion of the mainstem and a barrier dam near the Ohio River for flood control. Over 

the last two decades, the city and watershed action groups have initiated actions to restore 

the stream by reducing chemical pollutant loadings, improving habitat, and removing toxic 

materials adjacent to the stream. Recently, there is evidence of significant success in many 

parts of the watershed, as documented by a return of many native fish and macroinvertebrate 

species (MBI, 2011, 2016). Nonetheless, many areas of the watershed remain impaired 

due to siltation, hydrological modifications, nutrients, chlorides, and polycyclic aromatic 

hydrocarbons (PAHs). In its current state, Mill Creek provides a strong gradient of physical 

habitat, water quality, and biological condition (see Supplementary Table 1) that makes it 

very useful for evaluating bioassessment metrics, DNA-based biodiversity measures and 

environmental correlates.

2.2. Sample collection

We sampled 26 sites within the watershed, including 21 sites on the mainstem of Mill 

Creek and five on two of the larger tributaries (East Fork and West Fork). Two 1-L water 

samples were collected once per site in early August and then again in mid-September 

2016 by carefully submersing sterile bottles and capping them under water. One of the 

samples was filtered onsite using a portable vacuum pump attached to a 250-ml disposable 

filter funnel (Thermo Scientific) fitted with a 3-μm pore size cellulose nitrate (CN) filter 

(MilliporeSigma); the filter was then transferred to a 2-ml microcentrifuge tube containing 

95% ethanol before being stored at −20 °C. The other water sample was transported on 

ice to the EPA laboratory in Cincinnati OH, where it was stored overnight at 4 °C before 

filtering with a similar filter funnel but fitted with an 0.4-μm pore size polycarbonate (PC) 

filter, then preserved in 95% ethanol and stored at −20 °C. The 0.4-μm PC filters were prone 

to clog before the full 1-L sample was filtered; in these cases, a second filter was used 

to increase the volume filtered. Still, for 25 samples, the total volume filtered was < 1 L, 

ranging between 500 and 950 ml. Each day that a sample was collected, molecular biology 

grade water was poured into two 1-L bottles at one of the sites visited and processed along 

with other samples as field blanks.

Water column chemistry, sediment chemistry, and fish and macroinvertebrate sampling are 

described elsewhere (MBI, 2016). Briefly, water column chemistry was characterized by 

grab samples collected 6 times at each site between June 16-October 15, 2016. Sediment 
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chemistry was determined from samples of the upper 4 in. of bottom material, collected 

once per site in October of that year. Fish were sampled by electroshocking once from 

late July to early August and again in early to mid-October; fish species, composition, 

abundance, and condition were then used to calculate an Index of Biotic Integrity (IBI; 

Karr et al., 1986) for each site. Benthic macroinvertebrates were sampled using modified 

multiple-plate artificial substrate (Hester-Dendy) samplers for quantitative samples and dip 

net sampling for qualitative samples following Ohio EPA methodology (Ohio E.P.A., 2015); 

these data were then used to calculate an Invertebrate Community Index (ICI; DeShon, 

1995) for each site. Artificial substrates were colonized over 6 weeks from mid-July to 

mid-September 2016 before removal, disassembly, fixation of biological specimens and 

subsequent taxonomic identification at MBI’s laboratory. Sites that did not meet minimum 

stream flow requirements for Hester-Dendy samplers were assigned a qualitative ICI based 

on dip net samples. For purposes of analysis, we assigned quantitative values for the 

qualitative ICI scores as the midpoint of the applicable quantitative range for that score: 

“Very Good” = 43; “Good” = 35; “Marginally Good” = 27. IBI and ICI scores are used 

as numerical biocriteria and each site was assessed as fully, partially, or not attaining its 

designated aquatic life use (MBI, 2016). Aquatic life use designations are tiered in Ohio, 

ranging from “limited resource” to “exceptional” for warm water habitat. In Mill Creek, all 

sites were previously classified as Warm Water Habitat (WWH) or Modified Warm Water 

Habitat-Channelized (MWH-C) by Ohio EPA. Thus, the combination of aquatic life use 

designation and attainment status within each aquatic life use describes an environmental 

degradation gradient.

2.3. DNA sequencing

Filters from water samples in this study were processed along with filters from 85 other 

aquatic samples from the region to help build a consistent regional database. Total genomic 

DNA was extracted using a modification of the Sambrook et al. (1989) phenol-chloroform

isoamyl alcohol (PCI) method. Filters in 2- ml microcentrifuge tubes were incubated 

overnight with agitation at 56 °C in 900 μl of lysis buffer (10 mM NaCl, 0.5% SDS, 100 

mM EDTA, 100 mM Tris 8.0) supplemented with 400 mg proteinase K (Fisher Scientific). 

The tubes were heated to 91 °C for 10 min to inactivate the proteinase then centrifuged at 

15,000g for 1 min to pull the filters to the bottom of the tubes. Following addition of 900 μl 

PCI (25:24:1; Fisher Scientific), the tubes were vortexed for 5 s to create an emulsion and 

centrifuged at 15,000g for 5 min. Aliquots of 700 μl from the aqueous layer were transferred 

to new 2 ml microcentrifuge tubes containing 700 μl chloroform-isoamyl alcohol (24:1), 

vortexed for 5 s, then again centrifuged at 15,000g for 5 min. Aliquots of 500 μl were 

transferred to fresh 2-ml microcentrifuge tubes along with 20 μl of 5M NaCl and 1.25 ml 

chilled ethanol, then inverted to mix and allowed to precipitate overnight at −20 °C. Samples 

were then centrifuged at 15,000g at 4 °C for 10 min to pellet the DNA before decanting 

the liquid, washing the pellet with 1 ml 70% ethanol, decanting again and vacuum drying 

the DNA pellet at 45 °C for 15 min or until no visible liquid remained. DNA samples were 

rehydrated in 200 μl TE (10 mM Tris, 1 mM EDTA) and concentrations estimated using 

Picogreen on a BioTek Microplate Reader before 1:100 dilution for PCR.
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We used a dual-index PCR strategy to provide template for Illumina MiSeq sequencing 

(Kozich et al., 2013). In the first round of PCR, we used primers targeting the V4 

region of the 18S rRNA gene (SSU_F04 GCTTGTCTCAAAGATTAAGCC and SSU_R22 

GCCTGCTGCCTTCCTTGGA; Creer et al. 2010) and incorporating 5′ adapter sequences 

for a second round of PCR by dual indexing (5′-ACACTGACGACATGGTTCTACA-3′ and 

5′TACGGTAGCAGAGACTTGGTCT-3′, respectively). The first round PCR contained 2 μl 

DNA template, 2 μl 10X PCR buffer, 0.6 μl MgCl2 (25 mM), 2 μl dNTPs (10 mM), 0.5 

μl each 18S primer with 5′ adapter (10 mM), 4 μl 1X BSA and 0.1 μl Taq polymerase 

(5U/μl; Qiagen) and 9.9 μl ultrapure water. PCR was performed under cycling conditions 

consisting of an initial 2.5-min denaturing step at 94 °C, followed by 32 cycles of 30 s at 

94 °C, 1 min at 50 °C, and 1 min at 72 °C and a final elongation step of 10 min at 72 

°C. Agarose gel electrophoresis was used to confirm the absence of visible amplification 

products in all field blanks and to confirm the correct size of amplification products in test 

samples. PCR products were purified with the Qiagen Qiaquick 96 PCR Purification kit and 

quantified with Picogreen on a BioTek Microplate reader before normalizing to l0 ng/μl with 

Qiagen EB buffer. The second round of PCRs used index primers homologous to amplicon 

adapters (1 μl each), 1 μl of PCR amplicon and 17 μl Accuprime Master Mix (Thermofisher 

Scientific). Index PCRs were performed as follows: 95 °C for 3 min followed by 8 cycles 

of 95 °C for 30 s, 55 °C for 30 s; and 72 °C for 30 s; followed by a final extension step 

of 72 °C for 5 min. Index PCR products were then purified using the AM-Pure XP kit 

(Beckman Coulter Life Sciences), quantified with picogreen as before and normalized to 

the lowest nanomolar concentration in Qiagen EB buffer. Normalized Index PCR plates 

were then pooled into a single sample by combining 3 μl from each well into a 1.5 ml 

microcentrifuge tube. Amplicons were then sequenced using a 2 × 300 600-cycle Illumina 

MiSeq sequencing kit according to manufacturer’s protocols. Raw sequence data have been 

deposited in the NCBI Short Read Archive under Bioproject PRJNA542144, Biosample 

accessions SAMN11613569-SAMN11613667.

2.4. Read filtering and taxon assignment

We used a Usearch (v9.2; Edgar 2010) bioinformatic pipeline to process demultiplexed reads 

for 184 of 314 samples that came off a single MiSeq DNA sequencing run (other samples 

were not relevant to this study). Approximately 7.2 M paired reads were merged and primers 

removed with Cutadapt v 1.14 (Martin 2011). Full-length sequences that were smaller than 

341 bp or possessed one or more expected errors based on cumulative Phred quality scores 

were filtered out, leaving 5.1 M sequences. Remaining sequences were dereplicated and 

unique sequences (1.8 M) were identified; those with < 4 observations in the total data 

set were removed as possible sequencing artifacts. The remaining sequences were then 

screened to remove chimeras and clustered into 2854 Operational Taxonomic Units (OTUs) 

of 97% similarity or more, after which all quality-filtered reads were mapped to these OTUs. 

Following removal of sequences from the 85 regional samples that were not relevant to 

this study (see Section 2.3), 3.3 million sequences were mapped to 2006 remaining OTUs 

distributed among 99 samples. On average, 33 thousand reads per sample were mapped to 

OTUs, with a minimum of 23,711 and a maximum 47,246 reads per sample.
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Several approaches were employed to obtain taxonomic classifications for OTUs. First, 

OTUs were compared to the SILVA ribosomal RNA reference database (SSU Ref NR 128, 

September 2016) using SINA Online (Pruesse et al. 2012) to identify the lowest common 

ancestor within an identity threshold set at 0.8. Classifications based on the EMBL database 

using SINA Online were also retrieved. Two other approaches made use of a reference 

database of NCBI sequences composed of sequences with 80% or better identity to OTUs 

over their full sequence length which were obtained using Blast + (Camacho et al., 2009). 

NCBI sequences obtained (downloaded Nov 14, 2017) were trimmed to the length of 

aligned OTUs and their associated taxonomy information was downloaded using Entrez 

efetch (Kans 2017). This database was then queried using the USEARCH sintax and RDP 

v1.9.1 (Wang et al. 2007) taxonomic classifiers.

To create a consensus taxonomy, the lowest taxonomic rank was retrieved from each of 

the four classifications (SINA-SILVA, SINA-EMBL, sintax-NCBI, RDP-NCBI) for each 

OTU and analyzed with the classification function in the R package taxize (version 0.9.4, 

Chamberlain and Szöcs, 2013), using NCBI’s taxonomy database. The function provided 

a full rank taxonomy using a standardized set of taxonomic ranks, allowing evaluation of 

taxonomic precision of different classifiers as well as conflicts among them. If there were 

no conflicts between classifications, the most precise (lowest level) taxonomy was assigned 

the consensus taxonomy for the OTU, unless the classification was to genus or lower and the 

identity score was < 0.95, in which case a family level resolution was used. In cases where 

the classifiers gave conflicting results, taxonomies were generally moved to the lowest rank 

in which there was no conflict. Exceptions were made if one of the classifiers had an identity 

score of 1.0, in which case it was used, or when one of the classifiers had an identity 

score ≥0.95 while the conflicting classifier had < 0.90 identity. For comparisons of different 

taxonomic ranks, taxa that do not have taxonomic names at a rank were treated as distinct 

from other taxa at that rank if they were distinct at lower ranks. This had the possible 

effect of over-splitting some taxa at higher ranks but was judged to be more acceptable than 

lumping distinct taxa together at these ranks simply because an accepted name does not 

exist. For purposes of comparing metrics for different taxonomic ranks, a suffix-associated 

rank (e.g., supra-, infra-, sub-) was substituted for a main rank if it was not available. 

If a kingdom was not identified by the classification function, a higher-level rank (e.g., 

Opisthokonta or Stramenopiles) was substituted, if available.

2.5. Biodiversity analyses

Counts of each OTU in each sample were divided by sample totals to provide relativized 

OTU abundances, which were the basis of all biodiversity analyses. The Shannon index and 

taxa richness (rarefied to the minimum sample size) were calculated with the functions 

diversity and rarefy of the R package vegan (version 2.5–2, Oksanen et al. 2018), 

respectively. These alpha diversity estimates were normalized using Tukey transformations 

with the transformTukey function of the R package rcompanion (version 2.0.0) prior to 

evaluation by mixed model analysis. Mixed models were constructed with the R packages 

lme4 (version 1.1–17) and lmerTest (version 3.0–1), treating filter type and sample month 

as fixed effects and sample sites as random effects. Conditional and marginal coefficients of 

determination for these models were calculated with the function r.squaredGLMM in the R 
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package MuMIn (version 1.42.1). Additional models included impairment status (designated 

aquatic life use and biocriteria attainment) as a fixed effect, with sample sites nested within. 

For this analysis, a single site classified as partially meeting the MWH-C designation was 

grouped with other sites that fully meet the MWH-C designation. Impairment status was 

then ordinally classified as MWH-C, MWH-nonattainment, MWH- partial attainment, and 

MWH-full attainment. Spearman rank correlations were used to compare the Shannon index 

and taxa richness estimates for each site based on molecular analysis with biodiversity 

metrics based on morphological analyses. For these analyses, the conditional mode of the 

alpha diversity metric for each site was extracted from the mixed model described above 

using the function ranef of the lme4 package, providing a single estimate for each site after 

accounting for fixed effects of filter type and date.

Assessments of beta diversity patterns were performed with the R package vegan. 

We Hellinger-transformed (square root of relative frequency in sample) abundances for 

unclassified OTUs and for OTUs classified at each taxonomic rank to reduce the importance 

of rare taxa on analyses. Transformed abundances were converted to pairwise matrices 

of Bray-Curtis dissimilarities for unclassified OTUs and for each taxonomic rank before 

a PERMANOVA was conducted using the adonis function to examine effects of filter 

type, month of sampling, environmental impairment status, and site differences on sample 

differentiation. Multivariate homogeneity of group variances was evaluated using the 

function betadisper. In addition, the Bray-Curtis matrix was evaluated graphically with 

nonmetric multidimensional scaling (NMDS) using the metaMDS function. We then 

performed redundancy analysis (RDA) on Hellinger-transformed abundances for each site 

in vegan to evaluate the explanatory power of abiotic variables on the distributions of 

taxonomic groups. To compare metabarcoding data to traditional bioassessment methods, we 

also performed RDA on Hellinger-transformed abundances of sampled macroinvertebrates 

and fish. Water chemistry, sediment chemistry, and spatial variables were included in the 

RDA to determine which factors best explained diversity patterns. This was followed by a 

partial RDA to determine whether chemistry effects were significant when spatial effects 

(drainage area, stream gradient) were controlled. To quantify and compare responses of 

taxonomic groups to different environmental dimensions, we performed separate RDAs 

for macroinvertebrates, fish, and the most common kingdoms identified by metabarcoding, 

using forward model selection to identify the linear combinations of abiotic variables that 

were useful in explaining variation in measured biodiversity patterns for each taxonomic 

group. Blanchet et al.’s (2008) double stopping criterion was used to minimize model overfit 

in developing these parsimonious RDA models.

3. Results

Following sequencing and bioinformatic analysis, all 2006 OTUs retrieved were classified 

as Eukaryota, 1476 of the OTUs were assigned to 38 kingdoms, 1339 of the OTUS were 

assigned to 106 phyla, 1288 of the OTUs were assigned to 162 classes, 1091 OTUs were 

assigned to 269 orders, 900 OTUs were assigned to 365 families, and 748 OTUs were 

assigned to 489 genera or species (Table 1). Of the 3.3 million sequences mapped to 

OTUs, 95.6% could be classified to phylum level and 69.0% to either genus or species. 

Stramenopiles (heterokonts) accounted for slightly more than half (52.4%) of all sequences, 
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while Metazoa (animals), Viridiplantae (plants), and Fungi accounted for 12.6%, 12.4% 

and 6.6%, respectively (Table 1). Diatoms (Bacillariophyta) accounted for the majority 

of stramenopiles and for 36.0% of all sequences. Green algae (Chlorophyta) dominated 

among plants and represented 12.1% of all sequences. Among the metazoans, arthropods, 

nematodes, gastrotrichs, and bryozoans were the most dominant phyla at 3.6%, 3.2%, 2.3%, 

and 1.5% of all sequences, but Platyhelminthes, Mollusca, Annelida, Rotifera, Porifera, 

Cnidaria, Nemertea, Chordata, and Entoprocta sequences were also observed. The relative 

abundance of stramenopiles tended to increase moving downstream (Supplementary Fig. 1). 

Metazoans were most abundant in one tributary (East Fork), especially downstream of a 

wastewater treatment plant on the tributary, and were relatively rare farther downstream on 

Mill Creek.

3.1. Alpha diversity

Filter type strongly impacted both the Shannon index and taxonomic richness, with the 

3-μm CN filter demonstrating higher diversity than the 0.4-μm PC filter for all taxonomic 

ranks (Supplementary Table 2). Both the Shannon index and richness tended to be higher 

in August compared to July, but differences were not significant for some taxonomic ranks. 

Within kingdoms, only diversity of Fungi and Viridiplantae was not affected by filter type, 

while only Metazoa and Viridiplantae were not affected by sample month (Supplementary 

Table 3).

An important objective of our study was to evaluate how important taxonomic resolution of 

DNA identifications is for discriminating sites based on biological condition. To investigate 

this, we estimated variance due to sites for the Shannon index and richness at each 

taxonomic rank. Greater variance among sites with greater taxonomic resolution would 

infer better ability to discriminate site-to-site differences. Fig. 2 shows these variances 

as a proportion of total variance for different levels of taxonomic resolution (see also 

Supplementary Table 2), after accounting for effects of filter type and month of sampling. 

Results for neither index suggest greater variance among sites with increasing taxonomic 

resolution. In fact, for taxonomic richness, site variance was only significantly different from 

zero for kingdom-level richness and for OTU richness. Variance among sites was larger 

for the Shannon index and was significantly greater than zero at each taxonomic rank. 

However, as was the case for richness, variance among sites was proportionally highest 

at the kingdom level and site variance for OTUs was higher than for family and genus

species taxonomic ranks. Among different kingdoms, OTUs for Fungi had particularly high 

site-to-site variation, with more than 60% of variance for the Shannon index and richness 

attributable to site differences (Supplementary Table 3).

Spearman rank correlations among Shannon index values and among richness values for 

different taxonomic ranks were positive and significant (Fig. 3). Few correlations with 

traditional bioassessment metrics were significant, the major exceptions being correlations 

between Shannon index and ICI, which were positive and relatively high for higher 

taxonomic ranks, as well as correlations between the number of EPT species (insects in 

the orders Ephemeroptera, Plecoptera, and Trichoptera) and the Shannon index, which were 
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also positive (Fig. 3, Supplementary Fig. 2). Negative correlations were observed between 

ICI and richness at kingdom and phylum levels.

We added impairment status to the mixed model as a fixed effect, with random sites nested 

within, to see how DNA-based alpha diversity measures corresponded. For this analysis, we 

focused only on the kingdom rank and on taxonomically unclassified OTUs, as previous 

results suggested they had larger site-to-site variation for taxonomic richness than other 

ranks. Alpha diversity of kingdoms as measured by the Shannon index was smaller for sites 

classified as biologically impaired (MWH-C) than for sites classified as in better biological 

condition (fully or partially meeting WWH biocriteria; p < 0.05). Differences in Shannon 

diversity based on OTUs were not significant, however. In contrast, taxonomic richness was 

significantly higher for the more impaired MWH-C sites (p < 0.05), and this was true both 

for analyses based on kingdoms and for OTUs (Fig. 4).

3.2. Beta diversity

Compositional patterns in OTU relative abundances assessed by PERMANOVA were 

similar to alpha diversity patterns (Supplementary Table 4). Filter type and sample month 

contributed to differentiation among samples but had smaller impacts on sample variation 

than impairment status (9.5%) and sample sites (36%). Applying taxonomy to OTUs 

increased model informativeness, as measured by the size of residuals (Supplementary 

Table 5). Taxonomy at the genus through phylum level provided relatively similar 

model informativeness, mostly by increasing the amount of differentiation due to sites, 

while differentiation at the kingdom level was most informative, with filter, month, 

impairment status and sample sites explaining 68% of differences, and impairment status 

alone explaining 14.1%. NMDS plots demonstrated substantial overlap in ordination 

space for groups classified by impairment status (Supplementary Fig. 3). Differences in 

multivariate group dispersions at least partially explained the impairment status differences 

in PERMANOVA results (p < 0.001 for all taxonomic ranks), with less dispersion among the 

more impaired MWH-C sites and more dispersion among WWH sites, especially for those 

that fully or partially met biocriteria.

The RDA model using kingdom-level taxonomy was able to explain much of the site 

to site differentiation (adjusted R2 = 0.70), with the first 2 axes being significant (p < 

0.015). Ordinations using other taxonomic ranks were slightly less informative (0.58 ≤ R2 

≤ 0.62), while unclassified OTUs were least informative (R2 = 0.52). In comparison, RDA 

models for macroinvertebrates and fish collected from Mill Creek were substantially less 

predictive, with adjusted R2 s of 0.40 and 0.29, respectively. Fig. 5A shows the ordination of 

environmental variables with kingdoms. On the first axis, several sediment metals and PAH 

are associated with drainage size (e.g., lower watershed) while nutrient-related factors are 

associated with stream gradient (upper watershed). The second axis indicated dispersion 

between dissolved oxygen, sediment iron, and lead. Only those kingdoms with large 

projections (more dispersion) are shown in the figure; most were intermediate, indicating 

little relation to the environmental factors projected, and not shown for clarity. A subsequent 

partial RDA that controlled for geographic drainage and gradient factors was still significant 

(p = 0.011) and generally separated sediment chemistry from water chemistry (Fig. 5B). 
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Viridiplantae and Cryptophyta were associated with sediment metals and PAHs while 

Rhizaria∣Cercozoa were more closely associated with nutrients and other water column 

chemistry. Stramenopiles, Fungi, and Metazoa were less strongly associated with chemistry 

data. Similar ordinations for macroinvertebrates and fish are shown in Fig. 5C and D, 

respectively. Note that quantitative macroinvertebrate samples could only be collected at 21 

of the 26 sample sites, and therefore this is based on more limited data. The most pollution 

tolerant organisms (Oligochaeta, Cricotopus bicinctus) segregated with sediment metals in 

this ordination while mildly intolerant organisms (Ceratopshche morosa, Chimarra obscura) 

segregated with several water chemistry parameters. Fish identified in Fig. 5D are generally 

considered moderately pollution tolerant.

As expected, drainage area and gradient accounted for most of the variation in the 

parsimonious RDA model of relative abundances of kingdoms, but water column zinc and 

nitrate concentrations were also significant (Table 2). These variables also were commonly 

explanatory in RDA models of OTU relative abundances within individual kingdoms. Other 

significant variables were restricted to single kingdoms: water column lead was explanatory 

for Stramenopiles, sediment PAHs were significant for Rhizaria∣Cercozoa, sediment copper 

was significant for Metazoa and sediment iron was significant for Viridiplantae. In 

comparison, sediment copper and sediment iron, as well as conductivity were explanatory 

for macroinvertebrates, while only drainage area was explanatory for fish.

4. Discussion

DNA barcoding and metabarcoding approaches have long been offered as ways to increase 

the accuracy and precision of aquatic biological assessments, as well as to provide a 

path to lower costs (Pfrender et al., 2010; Hajibabaei et al., 2011; Stein et al., 2014). 

There is now overwhelming evidence that sampled DNA can reveal biodiversity data 

relevant to these assessments (Shelton, 2016; Deiner et al., 2017). Yet, to date, few studies 

have attempted to directly compare biodiversity metrics derived from sampled DNA to 

endpoints that established bioassessment programs use to describe levels of environmental 

impairment, such as multimetric fish and benthic invertebrate indices. Information on the 

complementarity, efficiency, redundancy, and novelty of DNA indicators will be required 

before existing bioassessment programs are likely to fully incorporate these new methods. 

Those studies that have evaluated biotic indices have either evaluated DNA barcodes of 

individually picked macroinvertebrate specimens (Stein et al., 2014) or compared bulked 

specimens obtained from sieved or netted macroinvertebrate samples (Aylagas et al., 2016; 

Elbrecht et al., 2017). These studies found good correlations between morphological and 

DNA-based taxonomic identifications but still require substantial manual field sampling and 

sample processing effort.

This study sought to determine whether a simple seston DNA (eDNA) sampling protocol, 

requiring minimal field labor and no presorting of specimens, could provide information 

relevant to a stream bioassessment. The state of Ohio uses tiered aquatic life use 

designations in which Modified Warmwater Habitat represents a more degraded condition 

than Warmwater Habitat (Yoder and Rankin, 1995). Standard alpha diversity and beta 

diversity metrics for eDNA clearly differentiated these levels of impairment within an 
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urban stream. Further, multivariate analyses of seston community structure pointed to 

different environmental drivers than for traditional bioassessment endpoints (fish and benthic 

macroinvertebrates), suggesting that it provides nonredundant information. Of course, our 

protocol was not entirely simple, as the laboratory and bioinformatic procedures were 

complex, but these are procedures that can be easily standardized and, to a large extent, 

automated.

The depth and breadth of biodiversity that can be screened using DNA approaches is largely 

determined by the DNA barcode primers deployed. Studies that aim to differentiate taxa 

within the macroinvertebrate and fish communities often target the mitochondrial gene 

COI, as it has been shown to have high species-level discriminatory ability (Hebert et al., 

2003). The hypervariable V4 region of the small subunit of the 18S rRNA gene that we 

targeted provides greater taxonomic breadth, but at a cost of reduced depth of information 

on metazoans (Drummond et al., 2015). There is not yet consensus on which region of 

the 18S rRNA gene is most suitable for standardized DNA barcode development, although 

the V2, V4 and V9 regions appear most informative (Hadziavdic et al., 2014). Choosing 

among primers that target these regions involves trade-offs in terms of the universality 

of the primers (primer bias), taxonomic depth available for assessment, and suitability to 

different sequencing platforms (amplicon length). The primer set we used has been deployed 

frequently in aquatic biodiversity surveys and we have found it to perform well in a recent 

lake plankton survey (Banerji et al., 2018). Nonetheless, other 18S rRNA primer sets may 

provide better representation of seston DNA diversity; research into optimized primers 

continues (e.g., Hugerth et al., 2014; Bradley et al., 2016) and empirical comparisons will be 

useful in future biodiversity surveys.

We identified relatively few fish and invertebrates, and relatively few metazoans in general, 

with our approach. Instead, our seston DNA dataset was dominated by stramenopiles, 

particularly diatoms, which may partially explain why alpha diversity of unclassified 

OTUs was not strongly correlated with alpha diversity and associated metrics for 

benthic invertebrates and fish. It is not clear that use of DNA barcode primers that 

target mitochondrial loci would have enhanced assessment of macrobenthos since our 

sampling was in the water column. Nonetheless, stream seston DNA integrates biodiversity 

information over a broad geographic area (Deiner et al., 2016) and is likely to reflect, at 

least partially, organisms that reside in the water column. As such, it presents a valuable 

contrast to assessment data for macrobenthos. The greater taxonomic breadth of 18S rRNA 

compared to mitochondrial genes also provides potential advantages since the component 

biota reflect a greater range of niche diversity, and therefore may be responsive to a wider 

array of environmental stresses.

The relative paucity of taxonomic information in DNA databases for non-metazoan 

eukaryotic kingdoms is a potential drawback to their use in bioassessments. High taxonomic 

resolution has been found useful to enhancing ecological signal (Lenat and Resh, 2001; 

Waite et al., 2004; Feio et al., 2006, Bennett et al., 2014) and most bioassessment programs 

strive to balance costs of taxonomic precision with environmental discriminating power. 

Knowing this, we invested effort in using multiple classification approaches and databases 

to taxonomically classify OTUs to the highest resolution possible. Interestingly, we did 
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not find great value in high-resolution taxonomic classifications for this 18S rRNA gene 

dataset. Generally, sites could be differentiated nearly as well with unclassified OTUs as 

with taxonomic classifications. This suggests utility for development of “taxonomy-free” 

eDNA biomonitoring approaches (e.g., Apothéloz-Perret-Gentil et al., 2017) that calculate 

ecological values directly from OTU occurrences or relative abundances, and therefore avoid 

data limitations due to poorly resolved taxonomies.

For taxonomically classified OTUs, biodiversity measures tended to be at least as good 

at differentiating site-to-site variation when based on relative abundances of kingdoms as 

when based on lower taxonomic ranks, including genus level classifications. Just why 

kingdoms assorted by environmental differences as well or better than component phyla 

and other taxonomic ranks is unclear. While only 69% of OTUs could be classified to 

genus or species, this still represented 748 taxa available for analysis, which is quite 

large. It is possible that taxonomic classifications at lower taxonomic ranks (e.g., family, 

genus, species) were more error-prone due to the slow evolutionary rate, and thus coarser 

taxonomic resolution, of the 18 s rRNA gene. However, this is unlikely to explain why, 

for example, kingdom-level classifications were better able to discriminate site-to-site 

differences in richness than phylum, class, or order-level classifications, as taxonomic 

resolution for these ranks should be well within the capabilities of this barcode gene. It 

may be that the strong environmental gradient in this urban watershed created a strong 

kingdom sorting mechanism. There is some evidence to suggest that strong disturbance 

gradients decrease the importance of high taxonomic resolution for uncovering ecological 

signal (Bowman and Bailey, 1997; Olsgard et al., 1998; Marshall et al., 2006). The pattern 

we uncovered in beta diversity analyses in which communities residing in the most impaired 

sites were much more similar to each other than were communities residing in less impaired 

sites is consistent with this interpretation. Clearly, additional studies are needed to judge 

the generality of these results. If our finding that high taxonomic resolution of OTUs is not 

necessary can be replicated in other studies, the implications for bioassessment would be 

favorable, as it would suggest value in use of a seston DNA approach even without further 

enhancement of genetic taxonomy databases.

At the kingdom level, environmental quality, as determined by designated aquatic life use 

(MWH-C vs WWH), was easily distinguished by both the Shannon index and taxonomic 

richness. Although not significant, trends in both measures also were consistent with 

assessments of biocriteria attainment based on fish and macroinvertebrate multimetric 

indices (IBI, ICI). While the Shannon index for kingdoms increased with environmental 

quality, kingdom richness decreased with environmental quality. A similar response has been 

reported for benthic estuarine communities, in which the most polluted estuaries assessed 

by metabarcoding demonstrated the most richness (Chariton et al., 2015). The response may 

reflect a greater affinity for eutrophic or high sediment habitats of many microeukaryote 

kingdoms compared to the fish and benthic macroinvertebrates typically used to measure 

impairment. Of course, correspondence between our DNA-based indices and measures of 

biotic condition does not prove that they are useful (Hubert, 1971). Bioassessment programs 

rely either on biological indices built on key metrics of the biological assemblage that 

respond predictably to disturbance (e.g., IBI, Karr et al., 1986) or use empirical models to 

compare observed taxa to those that should be expected (O/E) in the absence of disturbance 
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(Wright, 2000). Further development and validation of seston DNA as a bioassessment tool 

will require development of similar environmental response profiles based on metabarcoding 

data (Pawlowski et al., 2018). Possible approaches to achieve this include (i) identification 

and analysis of sensitive indicator taxa, analogous to EPT taxa in traditional bioassessments; 

(ii) development of “taxonomy-free” approaches based on ecological correlations of OTUs 

(e.g., Apothéloz-Perret-Gentil et al., 2017); (iii) or use of phylogenetic relationships between 

OTUs and well-characterized indicator taxa to develop new biotic indices (Keck et al. 2018).

Beta diversity patterns can highlight environmental response profiles that may be valuable 

to future bioassessment metrics and models. Ordination analyses indicated that different 

taxonomic groups assorted along different environmental gradients with, for example, 

plants (green algae) and cryptophytes assorting with many sediment metals and cercozoans 

assorting with many water column parameters. This differentiation may be used to help 

determine ecological condition, as evidenced by the explanatory power of impairment status 

in the PERMANOVA model. Clearly, more work needs to be done to understand the 

causality of these relationships before they are implemented in bioassessment programs 

as, for example, it is counterintuitive that autotrophs did not align more closely with 

nutrient gradients. Further, the variables we selected may be proxies for other, unmeasured 

environmental drivers. The most parsimonious RDA model for OTUs within kingdoms 

suggests that biodiversity within each kingdom was associated with different sediment and 

water column factors (nitrogen, phosphorus, copper, sulfate, zinc, lead, iron, PAHs), and 

that these were different from responses of traditional macroinvertebrate and fish endpoints, 

although this requires more exploration with larger datasets to be definitive. The sorting 

of different OTUs within Rhizaria∣Cercozoa with phosphorus was particularly strong and 

merits further research as a potential indicator of nutrient impact.

An important operational decision is whether to collect water samples in the field then 

transport them to the laboratory for sterile filtration and downstream processing or to filter 

the samples in the field. Filtration in the field simplifies transport and avoids concerns 

about biodiversity changes that may occur in the sample between sampling and filtration 

(Goldberg et al., 2016), but can greatly lengthen time at each site, limiting the number 

of sites that can be visited in a day. For turbid or eutrophic sites, 0.4-μm filters clog and 

must be periodically replaced, which can significantly increase time on site. Use of a larger 

pore size significantly reduces filtration time, to < 5 min in our experience for 3-μm filters, 

without clogging. The tradeoff, of course, is that smaller cells and biological materials may 

not be retained. Modeling of different pores sizes suggests there should be slightly more 

eDNA capture from an 0.4-μm filter with our nominal water volumes (Turner et al., 2014); 

however, clogging and restriction on the number of filters per sample (maximum of two for 

our protocol) reduced actual volumes filtered by 0.4-μm PC filters, contributing to lower 

DNA recoveries overall. We found higher biodiversity with the 3-μm CN filters but did 

find that one moderately abundant genus in the class Xanthophyceae was absent from 3-μm 

filtered samples. In general, we feel that field filtering with the 3-μm CN filters performed 

better than lab filtering with 0.4-μm PC filters, but either method should be acceptable if 

applied consistently for all samples.
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Our study was limited to a single, highly disturbed watershed, and our results must be 

interpreted in that context. More studies are needed that evaluate DNA-based approaches 

in relation to bioassessment criteria and these studies need to evaluate different biotic 

community selection techniques (e.g., sieves, filters, centrifugation) and environmental 

matrices (e.g., sediment, biofilm), as well as different ecological resources (e.g., waterbody 

types, ecoregions). Spatial and biological relationships between seston DNA, benthic DNA, 

and traditional bioassessment metrics, in particular, merit further study. Studies are also 

needed to assess how best to transition these methods into established programs to optimize 

information content relative to resource and program management costs.

We believe that eDNA metabarcoding approaches can be complementary to traditional 

assemblage-focused (e.g., fish, macroinvertebrates, diatoms) bioassessments and would be 

best deployed in conjunction with those efforts, not in lieu of them. Use of the 18S rRNA 

gene sequencing analysis, in particular, provides a method to increase the taxonomic breadth 

of biodiversity surveys greatly with minimal additional field sampling. However, multiple 

barcode loci can and likely should be screened from the same filters, as combined screening 

of mitochondrial genes such as COI for Metazoa, the 16S rRNA gene for prokaryotes, 

and other genes (rbcL, ITS) likely will provide greater environmental informativeness (Stat 

et al., 2017). To the extent that relationships between traditional bioassessment data and 

eDNA are well-characterized, seston eDNA methods could be deployed as a supplementary 

rapid assessment approach to provide greater geographic and temporal context within a 

program that is anchored by more intensive traditional morphology-based bioassessments. 

This approach may provide a mechanism for more adaptive management, particularly at 

smaller scales of watersheds or municipalities, as target sites could be screened and assessed 

rapidly, allowing more rapid and effective management interventions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Location of sample sites in the Mill Creek watershed, Cincinnati, OH, USA. Shaded areas in 

the inset map represent areas of high urban intensity.
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Fig. 2. 
Proportion of total variance attributed to sample sites for Shannon index and Richness for 

each taxonomic rank. OTUs classified to genus or species were combined. Estimates that are 

significantly greater than zero are marked with asterisks (*: p < 0.05, **: p < 0.01, ***: p < 

0.001).
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Fig. 3. 
Spearman correlation coefficients between various morphological bioassessment metrics 

and DNA based alpha diversity measures for different taxonomic ranks. The first 9 rows 

represent morphological metrics while the rest are DNA metrics (SI: Shannon Index, RI: 

Richness). Correlation coefficients with significance greater than p ≤ 0.05 are color coded 

relative to the scale bar.
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Fig. 4. 
Least square means of alpha diversity statistics for different designated uses (MWH-C: 

Modified Warmwater Habitat - Channelized, WWH- Warmwater Habitat) and impairment 

status (nonattainment, partial or full attainment of biocriteria standards). One site designated 

MWH-C that was classified as partially attaining the biocriteria was combined with others 

that were fully meeting the biocriteria in this analysis. Bars that have different letters are 

significantly different (p < 0.05).
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Fig. 5. 
Redundancy analysis (RDA) ordination illustrating relationships among key spatial, water 

column, and sediment variables and sampled biological communities. A) Ordination for 

major kingdoms identified by metabarcoding; B) partial RDA for kingdoms identified by 

metabarcoding, controlling for effects of drainage and gradient; C) ordination for sampled 

macroinvertebrates; D) ordination for sampled fish. For clarity, taxa near the centroids that 

did not show strong relationships with environmental variables are not shown. Black open 

circles represent sample sites.
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Table 2

Coefficients of determination for full RDA models and parsimonious RDA models after forward selection of 

significant environmental variables. Presented are results for analyses of relative abundances of kingdoms, 

OTUs within individual kingdoms, macroinvertebrates collected from artificial substrates, and electroshocked 

fish. Chemistry results refer to water column chemistry unless otherwise stated.

Adjusted
Full
Model R2

Selected
Variables

Adjusted
Cumulative
R2

F P

Kingdoms 0.704 Gradient 0.467 22.86 0.001

Zinc 0.564 6.35 0.001

Drainage 0.658 7.35 0.001

Nitrate 0.705 4.53 0.001

Metazoan OTUs 0.352 Nitrate 0.156 5.61 0.001

Total
Phosphorus

0.272 4.83 0.001

Sediment
Copper

0.327 2.88 0.002

Fungal OTUs 0.451 Drainage
Area

0.157 5.65 0.001

Sulfate 0.243 3.75 0.001

Gradient 0.311 3.25 0.001

Nitrate 0.363 2.80 0.001

Zinc 0.390 1.91 0.011

Rhizaria∣Cercozoan OTUs 0.598 Total
Phosphorus

0.234 8.63 0.001

Drainage
Area

0.359 5.68 0.002

DO 0.421 3.45 0.007

Sediment
PAH

0.474 3.23 0.003

Gradient 0.511 2.58 0.009

Nitrate 0.556 3.02 0.004

Stramenopile OTUs 0.558 Gradient 0.251 9.36 0.001

Nitrate 0.353 4.79 0.001

Drainage
Area

0.436 4.39 0.001

Zinc 0.513 4.49 0.001

Lead 0.541 2.27 0.014

Alveolate OTUs 0.418 Total
Phosphorus

0.145 5.23 0.001

Gradient 0.225 3.48 0.002

Drainage
Area

0.299 3.42 0.001

Nitrate 0.371 3.51 0.001

Zinc 0.409 2.36 0.007

Viridiplantae OTUs 0.423 Gradient 0.226 8.28 0.001
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Adjusted
Full
Model R2

Selected
Variables

Adjusted
Cumulative
R2

F P

Drainage
Area

0.306 3.80 0.001

Zinc 0.376 3.58 0.001

Sediment
Iron

0.416 2.515 0.01

Macroinvertebrates 0.399 Sediment
Copper

0.125 3.862 0.001

Sediment
Iron

0.191 2.558 0.005

Conductivity 0.259 2.639 0.002

Gradient 0.314 2.355 0.009

Fish 0.289 Drainage
Area

0.155 5.407 0.001

Ecol Indic. Author manuscript; available in PMC 2020 January 01.


	Abstract
	Introduction
	Materials and methods
	Study Location
	Sample collection
	DNA sequencing
	Read filtering and taxon assignment
	Biodiversity analyses

	Results
	Alpha diversity
	Beta diversity

	Discussion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Table 1
	Table 2

