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A B S T R A C T

Objectives: Conventional MRI is not sensitive to many pathological processes underpinning multiple sclerosis
(MS) ongoing in normal appearing brain tissue (NABT). Quantitative MRI (qMRI) and a multiparameter mapping
(MPM) protocol are used to simultaneously quantify magnetization transfer (MT) saturation, transverse re-
laxation rate R2* (1/T2*) and longitudinal relaxation rate R1 (1/T1), and assess differences in NABT micro-
structure between MS patients and healthy controls (HC).
Methods: This prospective cross-sectional study involves 36 MS patients (21 females, 15 males; age range
22–63 years; 15 relapsing-remitting MS - RRMS; 21 primary or secondary progressive MS - PMS) and 36 age-
matched HC (20 females, 16 males); age range 21–61 years). The qMRI maps are computed and segmented in
lesions and 3 normal appearing cerebral tissue classes: normal appearing cortical grey matter (NACGM), normal
appearing deep grey matter (NADGM), normal appearing white matter (NAWM). Individual median values are
extracted for each tissue class and MR parameter. MANOVAs and stepwise regressions assess differences between
patients and HC.
Results: MS patients are characterized by a decrease in MT, R2* and R1 within NACGM (p < .0001) and NAWM
(p < .0001). In NADGM, MT decreases (p < .0001) but R2* and R1 remain normal. These observations tend to
be more pronounced in PMS. Quantitative MRI parameters are independent predictors of clinical status: EDSS is
significantly related to R1 in NACGM and R2* in NADGM; the latter also predicts motor score. Cognitive score is
best predicted by MT parameter within lesions.
Conclusions: Multiparametric data of brain microstructure concord with the literature, predict clinical perfor-
mance and suggest a diffuse reduction in myelin and/or iron content within NABT of MS patients.

1. Introduction

Multiple sclerosis (MS) is a chronic immune-mediated disease of the
central nervous system (CNS). The course of the disease seems driven
by two distinct clinical phenomena: the alternation of relapses and
remissions on the one hand, and the steady and irreversible worsening
of the clinical status, or progression, on the other hand (Reich et al.
2018). These processes are differently expressed in individual patients
leading to the identification of relapsing–remitting MS (RRMS), sec-
ondary progressive MS (SPMS) and primary progressive MS (PPMS)
(Miller and Leary 2007; Reich et al. 2018).

In clinical practice, Magnetic Resonance Imaging (MRI), albeit

sensitive to focal lesions on T2-weighted sequences, does not usefully
characterize normal appearing grey and white matters (NAGM and
NAWM, respectively) and is insensitive to most pathological processes
underpinning MS (Filippi et al. 2012; Zivadinov and Leist 2005). Con-
sequently, correlations between total lesion load and clinical measures
are generally modest (Barkhof 2002). Quantitative MRI potentially
overcomes these limitations by a direct noninvasive quantification of
microstructural changes in normal appearing brain tissues (NABT),
particularly pronounced and diffuse in progressive MS (PMS) (Enzinger
et al. 2015; Kutzelnigg et al. 2005).

This prospective cross-sectional study aims at revisiting differences
in microstructure in three tissue classes of NABT (normal appearing
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cortical and deep grey matters - NACGM and NADGM, respectively, and
NAWM), between MS patients (both RRMS and PMS) and healthy
controls (HC), using a multiparameter mapping (MPM) protocol which
simultaneously quantitates MT saturation, R2* and R1 with high re-
solution and whole brain coverage (Callaghan et al. 2014; Draganski
et al. 2011; Tabelow et al. 2019; Weiskopf et al. 2013). We also explore
whether these parameters predict motor and cognitive functions in MS
patients.

2. Materials and methods

2.1. Patients

Seventy-two participants took part in this study, which was ap-
proved by the local ethic committee (approval number
B707201213806). Written informed consent was obtained from all
participants. Thirty-six patients were recruited at the specialized MS
outpatient clinic of the CHU Liège, Belgium, with a diagnosis of MS
according to McDonald criteria 2010 (Polman et al. 2011). The inclu-
sion criteria were (1) age between 18 and 65 years, (2) Expanded Dis-
ability Status Scale (EDSS) inferior or equal to 6.5; (3) absence of re-
lapse within the previous 4 weeks; (4) Compatibility with MRI. Patients
were classified as relapsing-remitting MS (15 RRMS) or progressive MS
(primary and secondary progressive – 21 PMS). Twenty-one patients
were receiving disease-modifying treatments (DMTs; 11 first lines,
8 second lines, 2 non-validated therapies). Thirty-six healthy control
(HC) participants, matched for age and gender, free from neurological
or psychiatric disease, followed the exact same experimental protocol.
Demographic data appear in Table 1.

Patients with MS were scored by a qualified MS specialist (EL) on
the EDSS, Time 25-Foot Walk (T25FW), 9-Hole Peg Test (9-HPT) of
both hands, oral Symbol Digit Modalities test (SDMT) and five recalls of
California Verbal Learning Test (CVLT). Z-scores for T25FW, 9-HPT,
SDMT and CVLT were standardized to HC summary statistics and
transformed to make improvement a positive number. Finally, a motor
([ZT25FW+Z9-HPT dominant hand+ Z9-HPTnon dominant hand]/3) and

cognitive ([ZSDMT+ ZCVLT]/2) composite scores were computed.

2.2. MR image acquisition

MRI data were acquired either on a 3 T head-only MRI-scanner
(Magnetom Allegra, Siemens Medical Solutions, Erlangen, Germany) or
on a 3 T whole-body MRI-scanner (Magnetom Prisma, Siemens Medical
Solutions, Erlangen, Germany). The whole-brain MRI acquisitions in-
cluded a MPM protocol, developed in the framework of an international
collaborative effort (Draganski et al. 2011; Tabelow et al. 2019). This
protocol consists of three co-localized 3D multi-echo fast low angle shot
(FLASH) acquisitions at 1× 1×1mm3 resolution and two additional
calibration sequences to correct for inhomogeneities in the RF transmit
field (Lutti et al., 2010, 2012). The FLASH data sets were acquired with
predominantly proton density (PD), T1 and MT weighting, referred to
in the following as PDw, T1w and MTw echoes. All three had high
bandwidth to minimize off-resonance and chemical shift artifacts. Vo-
lumes were acquired in 176 sagittal slices using a 256×224 voxel
matrix. GRAPPA parallel imaging was combined with partial Fourier
acquisition to speed up acquisition time to approximately 20min. De-
tails of the MPM protocol used for this study are available in supple-
mentary data. An additional FLAIR sequence was recorded with spatial
resolution 1×1×1mm3 and TR/TE/TI= 5000ms/516ms/1800ms.

2.3. MRI imaging processing

All data analyses and processing were performed in Matlab (The
MathWorks Inc., Natick, MA, USA) using SPM12 (www.fil.ion.ucl.ac.
uk/spm) and three additional dedicated SPM-extension toolboxes: LST
version 1.2.3 (www.statisticalmodelling.de/lst.html) (Schmidt et al.
2012), hMRI (http://hmri.info) (Tabelow et al. 2019) and USwithLesion
(https://github.com/CyclotronResearchCentre/USwLesion).

MT saturation, R2* and R1 quantitative maps were estimated using
the hMRI toolbox, which also generates proton density map (PD*). We
chose not to use the latter, due to a potential residual T2* weighting.
Echoes for T1w, PDw and MTw were extrapolated to TE= 0 to increase

Nomenclature

BPF Brain Parenchymal Fraction
GMF Grey Matter Fraction
HC Healthy Controls
LF Lesion Fraction
MPM Multiparameter mapping
MRI Magnetic Resonance Imaging
MS Multiple Sclerosis
MT Magnetization Transfer
MTR Magnetization Transfer Ratio

NABT Normal Appearing Brain Tissue
NACGM Normal Appearing Cortical Grey Matter
NADGM Normal Appearing Deeps Grey matter
NAWM Normal Appearing White Matter
NAGT Normal Appearing Grey Tissue
RRMS Relapsing-Remitting Multiple Sclerosis
PMS Progressive Multiple Sclerosis
R1 Longitudinal Relaxation Rate R1 (1/T1)
R2* Transverse Relaxation Rate R2* (1/T2*)
TIV Total Intracranial Volume

Table 1
Demographic data.

All patients (n=36) RRMS (n=15, 41.6%) SPMS (n=7, 18.4%) PPMS (n=14, 38.8%) HC (n=36)

Age, y, mean (SD) 45.69 (11.85) 36.53 (9.32)a,b 50.14 (6.46) 53.28 (9.78) 45.86 (12.45)
Sex, n (%)
Males 15 (41.7) 6 (40) 0 (0) 9 (64.3) 16 (44.44)
Females 21 (58.3) 9 (60) 7 (100) 5 (35.7) 20 (55.55)

Disease duration, y, median (range) 13 (0.5–35) 6 (0.5–28) 21 (9–35) 12.5 (2–35) N/A
Baseline EDSS, median (range) 4 (1–6.5) 2 (1–5.5)a 4 (3.5–6) 4.75 (3–6.5)
Number of relapses, median (range) 1.5 (0–10) 4 (1–6) 10 (2–10) 0

Abbreviations: RRMS= relapsing-remitting multiple sclerosis, SPMS= secondary progressive multiple sclerosis, PPMS=primary progressive multiple sclerosis,
PMS=progressive multiple sclerosis (SPMS and PPMS), HC=healthy controls.
a Difference between RRMS and PMS statistically significant (alpha value of 0.05).
b Difference between RRMS and HC statistically significant (alpha value of 0.05).

E. Lommers, et al. NeuroImage: Clinical 23 (2019) 101879

2

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.statisticalmodelling.de/lst.html
http://hmri.info
https://github.com/CyclotronResearchCentre/USwLesion


the signal-to-noise ratio and get rid of the otherwise remaining R2* bias
(Balteau et al. 2018; Weiskopf et al. 2014). The resulting MTw and T1w
(TE=0) images were used to calculate MT saturation and R1 quanti-
tative maps. R1 maps were corrected for local RF transmit field in-
homogeneities and imperfect RF spoiling using the approach described
by Preibisch and Deichmann (Preibisch and Deichmann 2009) which
was adapted to the FLASH acquisition parameters used here. The MT
saturation map differs from the commonly used MT ratio (MTR, percent
reduction in steady state signal) by explicitly accounting for spatially
varying T1 relaxation time and flip angles. MT saturation shows a
higher brain contrast to noise ratio than the MTR, leading to improved
and more robust segmentation in healthy subjects (Helms et al. 2010).
The R2* map was estimated from all three multi-echo series using the
ESTATICS model (Weiskopf et al. 2014). Example maps are shown in
Fig. 1. Note that these MR sequences at 3 Tesla are not sensitive to
cortical lesions as described in (Filippi et al. 2013; Hulst and Geurts
2011) although a few lesions at the cortico-subcortical border (cortical
lesions Type I) were detected. Quantification of cortical parameters is
thus confounded by a minority of voxels potentially located within
cortical lesions.

Quantitative maps of MS patients were segmented with the
USwithLesion toolbox, in different cerebral tissue classes: normal ap-
pearing cortical grey matter (NACGM), normal appearing deep grey
matter (NADGM), normal appearing white matter (NAWM) and lesions.
The presence of focal demyelinated lesions required improvement of
automated segmentation procedure available in SPM software that uses
the tissue contrast in the image(s) and a priori tissue probability maps
(TPM) (Ashburner and Friston 2005). We followed a multi-step proce-
dure for each patient individually (Phillips et al., 2017). A preliminary
lesion mask was generated from FLAIR and T1 weighted images by the
lesion growth algorithm (Schmidt et al. 2012) as implemented in the
LST toolbox. Optimal initial threshold kappa was determined by visual
inspection. Manual corrections were performed when necessary. Based
on this binary lesion mask, the USwithLesion toolbox generated a patient
specific TPM by adding an extra lesion tissue class to MPM dedicated
TPM (Lorio et al. 2016) and updating the white matter prior map ac-
cordingly (Moon et al. 2002). The individual number lesions impinging
upon the cortical ribbon was so low that we did not update the grey
matter TPM. Importantly small inaccuracies in this preliminary mask
were smoothed out during the update of the TPM. A multi-channel
unified segmentation approach (Ashburner and Friston 2005) using
multiple contrast images (FLAIR, MT, R2*, R1) was then applied to MR
images with these updated patient-specific TPM. The outputs were the

segmented tissue classes (a posteriori tissue probability maps, including
lesions) and spatial warping into standard template space (Fig. 2). For
HC, multi-channel unified segmentation was applied with the same
MPM specific TPM (Lorio et al. 2016).

For each participant, a set of three qMRI parameters (MT, R2*, R1)
were extracted from all voxels of the 3 tissue classes (NACGM, NADGM,
NAWM), based on a 90% probability to belong to the tissue class.
Lesions were considered as an additional tissue class for patients. The
brainstem and cerebellum were excluded because of unsatisfactory GM
segmentation. Summary measurements were computed for each subject
as median values for each tissue class and each qMRI parameter
(Table 2). In addition, the following measures of brain volume were
generated: Total intra-cranial volume (TIV)= volume (NAWM +
GM+CSF+ lesions), brain parenchymal fraction (BPF)= volume
(NAWM + GM+ lesions)/TIV, GM fraction (GMF)= volume (GM/
TIV), lesion fraction (LF)= volume (lesion/TIV) (Table 2).

2.4. Statistical analyses

Statistical analyses were computed using SAS software, Version 9.4
(SAS Institute Inc., 2013).

For demographic data, group differences in brain volume, age and
disease duration were assessed using one-way analyses of variance
(ANOVA). Between-group differences in gender ratio were estimated by
χ2. RRMS and PMS differences for clinical data were investigated with
Wilcoxon rank-sum test (EDSS) and ANOVA (motor and cognitive
score).

Due to the influence of normal aging on brain microstructure
(Callaghan et al. 2014; Draganski et al. 2011), quantitative parameters
were all first corrected for age. Residuals of this preliminary analysis
were used in subsequent statistical analyses.

Three two-way multivariate analyses of variance (MANOVA), one
for each parameter (MT, R2* and R1), estimated the effects of group
(HC, RRMS, PMS) and tissue class (NACGM, NADGM, NAWM), with
scanner as independent variable of no interest. Tukey's post-hoc ana-
lyses were performed when necessary to explore significant principal
effects. We consider an alpha level for statistical significance at 0.05.

The relationship of qMRI parameters to volumetric data was eval-
uated using Bravais-Pearson's correlation coefficient in the two MS
groups. Inferences were performed at an alpha level for statistical sig-
nificance at 0.01.

A stepwise regression including age (forced), scan (forced), gender,
disease duration, lesion fraction and all qMRI features, looked across all

Fig. 1. Example of MPM quantitative maps for a specific MS patient.
From left to right: 3 MPM quantitative maps (MT, R1, R2*), standard FLAIR sequence image, and FLAIR image overlaid with the estimated lesion mask.
MT=magnetization transfer saturation, R1= longitudinal relaxation rate (1/T1), R2*= effective transverse relaxation rate (1/T2*). Lesion mask=posterior
probability map of lesion tissue thresholded at 90%.
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patients for the best predictors of clinical scores (motor score, cognitive
score and EDSS).

2.5. Data availability

MR data supporting the results of this study are available from the
corresponding author, on a collaborative basis.

3. Results

Patients and HC did not differ by age (F (1,70)= 0.00, p= .95).
However, RRMS patients were younger than PMS patients and HC (F
(2,69)= 9.26 p < .001). The three groups matched in terms of gender
(χ2= 0.26, p= .88). Disease duration was similar in the two patient
groups (F (1,34)= 3.72 p= .06) (Table 1). PMS patients were clinically
more impaired than RRMS patients with higher EDSS (S=174
p < .001) and lower motor (F (1,34)= 13.62 p= .01) and cognitive (F
(1,34)= 5.76 p= .02) composite scores. We observed a principal
group effect on BPF (F (2,69)= 4.76, p= .01) and GMF (F
(2,69)= 20.81, p < .001) with lower volumes in PMS patients than
HC. No significant differences were observed for RRMS although these
two volume fractions tend to be reduced compared to HC, at a lower
extend than PMS. Progressive patients had higher LF than relapsing
remitting ones (F (1,34)= 5.64, p= .02) (Table 2).

Two-way MANOVAs testing for group differences revealed that
vector of means was different across groups for each parameter: MT
[Wilks' Lambda=0.50, F (6,128)= 8.92, p < .001, R2=0.50], R1
[Wilks' Lambda= 0.67, F (6,128)= 4.77, p < .001, R2= 0.33], R2*
[Wilks' Lambda=0.64, F (6,128)= 5.39, p < .0001, R2=0.36].

More specifically, MT in NACGM and NAWMwas lower in patients than
in HC, suggesting a demyelination in these normal appearing tissue
classes. Patient groups did not significantly differ from each other, al-
though MT in these two tissue classes tended to be lower in PMS group.
In NADGM, MT was lower in PMS patients than in HC (Fig. 3). R2* and
R1 from NACGM and NAWM were lower in patients than in HC sug-
gesting reduction of myelin and/or iron content. Patient groups did not
significantly differ from each other (Fig. 3). We did not observe any
increase of R2* in NADGM between HC and patients. The group by scan
interaction was significant for R2* [Wilks' Lambda= 0.80, F
(6,128)= 3.06, p < .007, R2=0.20], due to a simple, or ordinal, in-
teraction in NACGM and NAWM for R2*.

There was no significant correlation between qMRI parameters and
LF in the RRMS group. In PMS patients, R1 was negatively correlated to
LF in NACGM (r=−0.7, p < .001) and in NAWM (r=−0.72,
p < .001). Regarding BPF, we observed positive correlation with MT in
NACGM (r=0.65, p < .001), NADGM (r=0.63, p= .002) and
NAWM (r=0.62, p= .002). Positive correlations with BPF were also
noted for R1 in NADGM (r=0.62, p= .002), R2* in NACGM (r=0.65,
p= .001) and R2* in NAWM (r=0.64, p= .004).

Stepwise regression identified that LF and R2* in NADGM are the
best predictors of motor score. It also revealed that cognitive score is
best predicted by LF and MT parameter within lesions. Finally, R2* in
NADGM and R1 in NACGM predict EDSS (Table 3). Simple linear re-
gressions illustrate these relationships (Fig. 4). Slopes did not differ
between groups of patients except for motor score with lesion load. This
simple linear regression was stronger in RRMS (R2= 0.58, p= .001)
than PMS patients (R2= 0.1, p= .24). By contrast, simple regression
between EDSS and R2* in NADGM was significant in the PMS group

Fig. 2. Example of USwithLesion toolbox application on a specific MS patient.
(A) 3 MPM quantitative maps (MT, R1, R2*); (B) FLAIR-weighted MR images; (C) approximate binary lesion mask; (D, E) updated WM and lesion prior probability
maps; (F-I) a posteriori probability maps for CSF, lesion, WM and GM tissue classes.
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(R2= 0.23, p= .03) but not in the RRMS group (R2= 0.003, p= .9).

4. Discussion

In this prospective cross-sectional study, quantitative MRI (qMRI)
based on a multiparameter mapping (MPM) protocol derives fully
quantitative and reproducible (Weiskopf et al. 2013) high-resolution
maps of multiple parameters (MT, R2*, R1) from data acquired in a
single scanning session of clinically acceptable duration (Tabelow et al.
2019). Dedicated toolboxes for qMRI in the presence of lesions (hMRI
and USwithLesion) were successfully applied to the data. Expectedly,
median values of all parameters in HC are similar to those reported in
other studies evaluating the MPM protocol (Table 2) (Callaghan et al.
2014; Weiskopf et al. 2013). By contrast to volumetric analyses, mainly
interested in lesion topography and regional brain atrophy, the multi-
variate qMRI approach characterizes microstructural features in 4 dif-
ferent tissue classes (NACGM, NADGM, NAWM and lesions), providing
informative proxies about diffuse pathogenic changes such as demye-
lination or iron deposition. On average, MS patients are characterized
by a decrease in MT, R2* and R1 within NACGM and NAWM, whereas
in NADGM, MT decrease contrasts with normal R2* and R1 values.

Magnetization transfer is usually assessed by MTR, a semi-quanti-
tative estimation of the steady-state MRI signal attenuation by an off-
resonance MT pulse (Helms et al. 2010). Here we quantified MT sa-
turation, which differs from MTR by explicitly removing the bias in-
troduced by the spatially varying T1 relaxation time and B1-transmit
field (Helms et al. 2010). The reduction of NAWM and NACGM MT in
MS concords with similar observations based on MTR, which is reduced
in normal appearing brain tissues of MS patients, particularly in PMS
patients (Filippi and Agosta 2007; Jurcoane et al. 2016). MT was also
selectively decreased in PMS within NADGM. This result tallies with the
demyelination reported post-mortem within NADGM (Haider et al.

Table 2
Quantitative MR parameters.

Groups RRMS PMS HC

Scanner 1/Scanner 2 11/4 15/6 11/25
Volumetric Data, %, mean (SD)
BPF 84.99 (2.02) 83.67 (2.47)b 85.39 (1.75)
GMF 51.06 (2.11) 48.49 (3.16)b 52.76 (1.99)
Lesion F 1.21 (0.98)a 2.26 (1.50) N/A

Median MPM values, mean (SD)
MT (p.u)
NACGM 0.71 (0.09)c 0.68 (0.09)b 0.82 (0.09)
NADGM 0.91 (0.12) 0.83 (0.10)b 0.98 (1.13)
NAWM 1.49 (0.18)c 1.45 (0.16)b 1.68 (0.14)
Lesion 0.96 (0.26) 0.89 (0.24) N/A

R2* (Hz)
NACGM 15.20 (1.19)c 15.35 (1.17)b 16.62 (1.02)
NADGM 20.74 (2.63) 22.46 (2.94) 22.04 (3.10)
NAWM 20.08 (1.34)c 20.24 (1.27)b 21.60 (1.03)
Lesion 15.03 (2.23) 14.51 (2.30) N/A

R1 (Hz)
NACGM 0.62 (0.02)c 0.61 (0.03)b 0.64 (0.02)
NADGM 0.75 (0.05) 0.75 (0.05) 0.77 (0.06)
NAWM 0.99 (0.05)c 0.99 (0.05)b 1.04 (0.03)
Lesion 0.78 (0.12) 0.75 (0.10) N/A

Abbreviations: BPF= brain parenchymal fraction, GMF=grey matter fraction,
Lesion F= lesion fraction, NACGM=normal appearing cortical grey matter,
NADGM=normal appearing deep grey matter, NAWM=normal appearing
white matter, N/A=not applicable.
a Difference between RRMS and PMS statistically significant (alpha value of

0.05).
b Difference between PMS and HC statistically significant (alpha value of

0.05).
c Difference between RRMS and HC statistically significant (alpha value of

0.05).

Fig. 3. Violin plots and results of post-hoc analysis.
Plots and post-hoc results for each parameter (MT, R1, R2*) in each tissue class (NACGM, NADGM NAWM), across the 3 groups of subjects (HC, RRMS, PMS).
Statistical significance (*) set at p < .05.
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2014; Kutzelnigg et al. 2005; Schmierer et al., 2004, 2007) which
contributes to clinical deficits over and above cerebral cortical and WM
lesion burden (DeLuca et al. 2015; Haider et al. 2014).

Effective transverse relaxation rate R2* is primarily affected by iron,
local myelin content, fiber orientation, and water content (Bagnato
et al. 2018; Cohen-Adad 2014). R2* is decreased in MS NACGM and

NAWM, suggesting a reduction in iron or myelin content, in keeping
with histopathological (Hametner et al. 2013) and MR evidence
(Bagnato et al. 2018; Hernández-torres et al. 2015; Neema et al. 2007;
Paling et al. 2012; Reitz et al. 2016). In contrast to previous reports
(Elkady et al. 2017; Khalil et al., 2009, 2011; Ropele et al. 2014), we
did not observe any significant increase in R2* parameter in NADGM in
MS patients. Although we do not have any clear explanation for this
negative result, it might arise from a residual effect age on R2*, RRMS
patients being younger than HC. However, age difference was not sta-
tistically significant between PMS patients and HC. In any case, the lack
of difference in R2* cannot be explained by atrophy in deep grey matter
(Hernández-torres et al. 2018), as our method is not confounded by
tissue class volume.

Longitudinal relaxation rate R1 is closely related to tissue myeli-
nation, particularly in NACGM and NAWM (Neema et al. 2007; Sereno
et al. 2013; Stüber et al. 2014), as well as water content and iron
concentration (Ogg and Steen 1998). In this study, we observed a re-
duction of R1 in NACGM and NAWM in both patient groups, indicating
a diffuse demyelination in these normal appearing tissues, as previously
reported (Gracien et al. 2016; Jurcoane et al. 2016; Neema et al. 2007;
Vrenken et al. 2006). No significant change in NADGM R1 was observed
either because there was no significant demyelination or iron deposi-
tion or because demyelination (which reduces R1) was compensated by
increased iron (which increases R1).

4.1. Relation to clinical measures and lesion fraction

This study probes both focal (FLAIR positive lesions) and diffuse
microstructural aspects (qMRI parameters) altered by MS, although the
latter are to some extent confounded by GM lesions to which MPM
protocol is insensitive at 3 Tesla.

Both focal and diffuse processes relate to disability in MS patients.
Stepwise regressions indicate that qMRI features are independent pre-
dictors of clinical status, supporting the role of diffuse microstructural
alterations in clinical impairment: EDSS is significantly related to R1 in
NACGM and R2* in NADGM; the latter also predicts motor score. The

Fig. 4. Interconnections between quantitative MR parameters and clinical scores across the entire group of MS patients.
(A) Simple linear regression between motor score and lesion fraction or R2* within NADGM; (B) simple linear regression between cognitive score and lesion fraction
or MT within lesions; (C) simple linear regression between EDSS and R2* within NADGM or R1 within NACGM. Statistical significance set at p < .05.

Table 3
Stepwise regression results (significant level for entry into the model 0.05).

Model F (4,31)=7.18 (p < .001)

Step Predictor ΔR2 R2 Adj R2 ΔF p Value

Motor score 1 Age and scannera 0.30 0.30 0.25 6.97 .003
2 Lesion F 0.11 0.4 0.35 5.82 .02
3 R2* NADGM 0.08 0.48 0.42 4.51 .04

Model F (4,30)= 11.99 (p < .001)

Step Predictor ΔR2 R2 Adj R2 ΔF p Value

Cognitive
score

1 Age and
scannera

0.22 0.22 0.17 4.42 .02

2 Lesion F 0.34 0.56 0.52 24.12 < .001
3 MT Lesion 0.06 0.61 0.56 4.32 .04

Model F (4,31)=8.33 (p < .001)

Step Predictor ΔR2 R2 Adj R2 ΔF p Value

EDSS 1 Age and scannera 0.35 0.35 0.31 8.70 < .001
2 R2* NADGM 0.09 0.44 0.39 5.27 .03
3 R1 NACGM 0.08 0.52 0.46 5.15 .03

Significant level for entry into the model= .05.
Abbreviations: NACGM=normal appearing cortical grey matter,
NADGM=normal appearing deep grey matter, Lesion F= lesion fraction,
EDSS= expanded disability status scale.
a Forced into the model.
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information added by qMRI parameters over and above lesion load
might here appear trivial in patients with fairly long disease durations.
However, the time course of microstructural alterations during disease
evolution might provide predictive information early on in the evolu-
tion of the disease, independently from lesion load. This has to be as-
sessed in future studies. Likewise, cognitive score was intriguingly re-
lated to MT within lesions. This finding suggests that cognition not only
depends on the spatial extension of the lesions (Giorgio and De Stefano,
2010) but also on the pathogenic mechanisms going on within them,
which putatively deteriorate axonal transmission to a variable extent.

By the same token, although cohort sizes did not allow us to con-
sider RRMS and PMS separately in our stepwise regression model,
simple regressions showed that the motor score depended significantly
more on LF in the RRMS group and EDSS more strongly on NADGM R2*
in PMS patients. Based on these findings, it is tantalizing to postulate
that focal demyelination primarily impacts RRMS clinical status
whereas diffuse inflammation and the resulting neurodegeneration
mainly cause disability progression in PMS. Specifically, data from lit-
erature highlight the role of NADGM involvement in disability accu-
mulation in MS, that tends to be even more evident in PMS (Eshaghi
et al. 2018; Haider et al. 2014; Mesaros et al. 2011; Ropele et al. 2014).
By contrast, no association between LF and qMRI parameters was ob-
served in RRMS, suggesting the partial independence of diffuse and
focal processes. Conversely, R1 in NACGM and NAWM was negatively
correlated to LF in PMS, implying that as lesion load increases, the focal
and diffuse changes become indistinguishable and jointly impact the
clinical status.

Finally, most qMRI parameters in NABT correlated with brain vo-
lume loss and might turn out to be useful markers of neurodegenera-
tion. As for the lesion load, future studies will assess whether alterations
of qMRI parameters precede atrophy. Importantly, quantitative re-
producible microstructural parameters might prove more reliable than
the estimation of atrophy (Amiri et al. 2018; Azevedo and Pelletier
2016).

4.2. Limitations of this study

This study is not without limitations. Beyond the small sample size,
significant differences in age were observed with older PMS than RRMS
patients. However, a linear effect of age was included in our statistical
models. Moreover, the disease duration was comparable in the 2
groups, minimizing any effect of this factor.

Although the use of 2 scanners might appear as a drawback, we
considered it as the opportunity to test the stability of qMRI parameters
across devices, all the more because there were minor differences be-
tween the two acquisition protocols due to optimization of several
parameters on the second scanner. We found a group by scanner in-
teraction only for R2* in NAGGM and NAWM. These were ordinal, or
simple, interactions: scanner data are not parallel across group but
never cross. In other words, the group effect can still reliably be dis-
cussed.

The automatic unified segmentation approach, with and without
WM lesions, ensures the systematic and reproducible processing of both
patients and controls data. Consequently, it may be affected by noise
and artifacts in the data, which would lead to the spurious classification
of a few voxels. Nevertheless, since the median over all the voxels
having a strong posterior probability (> .9) of being in a tissue class
(NACGM, NADGM or NAWM) is used to build the summary measure-
ments, for each subject and qMRI parameter, these should be fairly
insensitive to outlier values. At worst this would introduce some be-
tween participant variability reducing the sensitivity of the analysis.

5. Conclusion

This cross-sectional study demonstrates that simultaneous quanti-
tative estimation of multiple MR parameters can reliably assess NABT

microstructure in MS. Results suggest that diffuse pathology, as as-
sessed by this study, might play a significant role in determining irre-
versible disability and brain volume loss in MS. However, future large-
scale studies should evaluate the reproducibility and predictive values
of these results and explicitly discriminate the respective effects of
diffuse cortical pathology from focal cortical lesions. Because each
qMRI parameter is differentially sensitive to myelin and iron, this
multivariate qMRI approach might prove superior to any one single-
parameter relaxometry by characterizing each patient, tissue class or
voxel in a multidimensional quantitative space.
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