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Abstract

Lycium barbarum and L. ruthenicum are extensively used as traditional Chinese medicinal plants. Next generation
sequencing technology provides a powerful tool for analyzing transcriptomic profiles of gene expression in non-model
species. Such gene expression can then be confirmed with quantitative real-time polymerase chain reaction (qRT-PCR).
Therefore, use of systematically identified suitable reference genes is a prerequisite for obtaining reliable gene expression
data. Here, we calculated the expression stability of 18 candidate reference genes across samples from different tissues and
grown under salt stress using geNorm and NormFinder procedures. The geNorm-determined rank of reference genes was
similar to those defined by NormFinder with some differences. Both procedures confirmed that the single most stable
reference gene was ACNTINT for L. barbarum fruits, H2B1 for L. barbarum roots, and EF 1o for L. ruthenicum fruits. PGK3, H2B2,
and PGK3 were identified as the best stable reference genes for salt-treated L. ruthenicum leaves, roots, and stems,
respectively. H2B1 and GAPDHI1+PGK1 for L. ruthenicum and SAMDC2+H2B1 for L. barbarum were the best single and/or
combined reference genes across all samples. Finally, expression of salt-responsive gene NAC, fruit ripening candidate gene
LrPG, and anthocyanin genes were investigated to confirm the validity of the selected reference genes. Suitable reference
genes identified in this study provide a foundation for accurately assessing gene expression and further better
understanding of novel gene function to elucidate molecular mechanisms behind particular biological/physiological
processes in Lycium.
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characterized in L. ruthenicum [5]. In addition, petunidin derivatives
account for 95% of the anthocyanins in L. ruthenicum fruits [1],
suggesting that metabolic flux was largely introduced into the
delphindin branch by F3'5"H enzymes while not into the cyanidin
branch by the F3'H enzyme. In the anthocyanin pathway, F3'5'H
enzymes compete with F3'H enzymes for the same substrate,
dihydrokaempferol, and the anthocyanin pathway in L. ruthenicum
fruit has been predicted (Fig. S1).

L. barbarum and L. ruthenicum are widely cultivated and
distributed in Northwest China because they are drought-,

Introduction

Lyctum belong to the Solanaceae family and include seven
Chinese species, L. chinense Miller, L. ruthenicum Murray, L. truncatum
Y. C. Wang, L. barbarum L., L. cylindricum Kuang et A. M. Lu, L.
truncatum Y. C. Wang, and L. yunnanense Kuang. Of those, L.
barbarum and L. ruthenicum have been extensively used as medicinal
and functional foods in China for more than 2000 years. Several
Chinese medicinal monographs depict their functions in nourish-
ing the liver and kidney, enhancing eyesight, enriching blood,

invigorating sex, reducing rheumatism, curing heart disease and
correcting abnormal menstruation. These health-promoting phy-
tochemical compounds, including anthocyanins and carotenoids,
accumulate in Lycium fruits [1,2]. At this time, anthocyanin
biosynthesis is well known [3] and the anthocyanin regulatory
model of BMW tricomplex, formed by bHLH, MYB, and WD40
transcription factors, has been established [4]. The BMW
tricomplex is responsible for transcription of several anthocyanin
structural genes, including flavonoid 3'hydroxplase (F3'H, EC:
1.14.13.21) and flavonoid 3' 5" hydroxylase (F3'5'H, EC' 1.14.13.88).
All anthocyanin structural genes were recently isolated and
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alkaline-, and salt-resistant. These unique characteristics enable
Lyctum to prevent soil desertification and improve soil salinity/
alkalinity, which is necessary for ecosystem protection and
agricultural stability in remote areas of Northwest China.
Recently, SINACI transcripts were reported to be increased in
tomato (Solanum lycopersicum) roots under salt-stress [6]. Thus,
SINACI was thought to be a salt stress-responsive gene marker.
Lycium NAC, which is homologous to SINACI, is a candidate gene
for investigating molecular mechanisms behind Lycium tolerance to
salt stress.

May 2014 | Volume 9 | Issue 5 | 97039


http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0097039&domain=pdf

Several fruit-specific genes, including polygalacturonase (PG) [7,8]
and £ [9], have been identified in the tomato and the PG gene
encodes major cell wall degradation enzymes [8]. Previous studies
document that S/PG transcripts initially appear at the onset of
ripening and remain expressed during the ripening process, but
they are not detected in unripe fruits, roots, or leaves [7,8]. SIPG
expression is attributed to the distal 3.4 kb of the 4.8 kb promoter
sequence, which contains a 400 bp imperfect reverse repeat that
shares high sequence similarity to the promoter sequence of the
ripening-related E8 [9]. Additionally, a positive cis-element
(—806-443), responsible for expression in both inner and outer
pericarp, and a negative cis-element (—1411-1150), restricting
expression to the outer pericarp, were identified in the SIPG
promoter [10]. Thus, SIPG is thought to have ripening-specific
expression in tomato fruits.

Studies thus far in Lycium species have focused on phytochemical
extraction [1,2,11] and medical usage of the extracts [12,13].
Fewer studies have attempted to uncover the underlying molecular
biosynthetic and regulatory mechanisms of these medicinal,
phytochemical components. Thus, understanding gene expression
patterns may offer clues of complex regulatory networks and help
us identify genes relevant to novel biological processes such as salt-
resistance, fruit ripening and anthocyanin biosynthesis in Lycium.
To this end, we screened and evaluated candidate reference genes
using quantitative reverse-transcription PCR (qRT-PCR) to
measure expression across different samples.

An ideal reference gene should have stable expression in all
tissues and under various experimental conditions. Housekeeping
genes (HKGs) are usually presumed to be stable in this way, and
they are often chosen as candidate reference genes. In the past,
HKGs have been extensively used to evaluate gene expression by
qRT-PCR without systematic experimental verification. Such
universally-used HKGs include elongation factorl-o (EFIo) [14-17],
actin (ACTIN) [14-17], cyclophilin (CYC) [14,15,17], glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) [14-16], ubiquitin (UBQ) [18,19],
phosphoglycerate kinase (PGK) [20,21], alpha-tubulin (TUA) [14-16],
ubiquitin comjugating enzyme (UBCE) [14,16], and s-adenosyl methionine
decarboxylase (SAMDC) [14,16]. Unfortunately, ideal reference genes
do not exist [22-25], so using an undefined HKG would not be
prudent for normalizing gene expression, especially when only one
HKG is used as a reference gene [23].

Several procedures, including geNorm [22] and NormFinder
[26], were exploited to identify the optimal reference gene(s) stably
expressed in a given set of tissues and experimental conditions.
geNorm is defect-sensitive to co-regulated genes among candidates
[22], which can be surmounted by NormFinder [26]. The
principle difference between geNorm and NormFinder also results
in discrepancy in ranking candidate genes [26]. Using these two
procedures, an increasing number of reference genes have been
identified in various species, including Arabidopsis [27], rice [28],
potato [17], Brachypodium [16], flax [15], banana [14], and the
common bean [29]. At this time, identification of stable reference
genes has only been investigated in L. barbarum ripening fruit [18]
but not in other Lycium species or tissues. Additionally, many stably
expressing reference genes have been identified in fruit [14] and
seeds [28], as well as reference genes that are responsible for
different plant developmental stages [14,15,28], responses to biotic
stress [14,17], responses to abiotic stress such as cold [17,28,29],
drought [29], salinity [17,29], and responses to hormone
treatment [14,16].

In this study, with the purpose of identifying suitable reference
genes for accurate evaluation of gene expression in ripening fruits
or plants under salt stress. Thus, the expression stability of 18
candidate reference genes was calculated using geNorm and
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NormFinder procedures. Data show that candidate reference
genes ranked by geNorm algorithm were similar to those defined
by the NormlFinder algorithm. Also, expression of the salt-
responsive gene NAC, the fruit-specific gene PG, and several
anthocyanin genes were normalized using the selected reference
genes. The reference genes identified here will help researchers
more precisely assess gene expression and better understand novel
gene function to elucidate specific molecular mechanisms of
particular biological/physiological processes in Lycium.

Materials and Methods

Plant Materials and Stress Treatments

Both L. barbarum and L. ruthenicum fruits were harvested from
Zhongning County, Ningxia Hui autonomous region, P. R. China
and Shihezi County, Xinjiang Uygur autonomous region, P. R.
China, respectively. No specific permissions were required for
these locations/activities. Fruit samples were divided into five
specimens corresponding to five developmental stages (S1-S5) to
identify fruit-specific candidate reference genes. In L. ruthenicum
fruits, phenotypic changes of S1 fruits converting to S2 were from
green to light pink. S3 fruits were dark purple while S4 fruits were
black. Furthermore, black S5 fruits were fully expanded. In L.
barbarum fruits, green S1 fruits turned light yellow S2 fruits. Also,
variegated S3 fruits turned red S4 and red S5 fruits were matured
and fully expanded. In addition, L. ruthenicum sepals, petals,
stamens, pistils, roots, stems, and leaves were harvested to
determine the stability of tissue-specific candidate reference genes.
Of those tissues, roots, stems, and leaves were derived from forty-
day old L. ruthenicum seedlings. For salt treatment, forty-day old
secedlings of L. barbarum and L. ruthenicum were treated with
500 mM for 0, 0.5, 1, 2, 4, 8, and 16 h. Seedlings dissected into
roots, leaves, and stems were sampled. Under 21-23°C growth
conditions, forty-day old L. barbarum and L. ruthenicum seedlings
were cultured under a photoperiod of 16/8 h (day/night). Samples
were prepared in triplicate.

Data Acquisition and Statistical Analysis

In this study, 17, 18, and 17 candidate reference genes were
used to identify reference gene targets suitable for evaluating gene
expression in different tissues, salt-treated seedlings, and develop-
mental fruits of L. ruthenicum, respectively (Table S1). Also, 12 and
9 candidate reference genes were used to identify the reference
gene targets suitable for evaluating gene expression in fruits and
salt-treated roots of L. barbarum, respectively (Table S1). Candidate
reference gene expression was defined as the number of cycles
needed to reach a threshold fixed in the exponential phase of PCR
(Cp) [30]. As suggested in algorithm manual, Cp values generated
by LightCycle480 Detection System (Roche, USA) were trans-
formed using the delta-Cp method. Resulting values were put into
geNorm [22] and NormFinder [26] to measure gene expression.
The geNorm procedure calculated the expression stability value
(M) for each gene and the pairwise variation (V) of a certain gene
compared with remains. Finally, all candidate reference genes
were ranked according to their stability in the samples, and the
optimal number of reference genes benefit for accurate normal-
ization is suggested [22]. In contrast, NormFinder independently
ranks the stability of candidate reference genes and it calculates
not only the overall candidate reference gene variation but also the
variation between sample subgroups of the sample set [26].
Statistical analyses were performed with ANOVA.
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Total RNA Extraction and Template Preparation

Total RNA was extracted from all samples using Trizol kit
(Invitrogen, USA). The quality and amount was confirmed with
1% gel electrophoresis and Nanodrop, respectively. Only high
quality RNA samples were used for subsequent analyses. Total
RNA (1 pg) was reverse-transcribed using PrimeScript RT
Reagent Kit with gDNA Eraser (DDR047, TaKaRa), which
digested residual RNA sample DNA and reverse-transcribed in
one step. cDNA templates were diluted and used (20 ng cDNA per
reaction) for qRT-PCR.

Primer Design, Verification of PCR Products and qRT-PCR

Several potential reference genes, including ACTIN, EF-Io,
GAPDH, UBQ, SAMDC, H2B, PGE, CYC, TUA, and UBCE, were
retrieved from our Lycium EST database (Table S2). According to
the reference gene sequence, primers were designed using Primer3
(http://frodo.wimit.edu/primer3/) based on these criteria: GC%
of 40-80%, Tm of 60°C, length of 18-24 bp, and PCR product
length of 150-250 bp (See Table 1 for detailed primer sequence
information). Gel electrophoresis was performed to confirm PCR
product amplification. In addition, PCR products were cloned and
sequenced to confirm amplicon correspondence to the reference
gene. qRT-PCR was performed in an optical 96-well plate with a
LightCycler480 detection system (Roche systems) and universal
cycling conditions (30 s 95°C, 40 cycles of 15 s at 95°Ci and 60 s at
60°C) followed by a dissociation curve to assure specific
amplification. For the qRT-PCR reaction, 2 pl 10X SYBR Green
Master Buffer (RR047A, Takara, Japan), 10 uM of a gene-specific
forward and reverse primer, and 20 pg cDNA template were
mixed in each 20 pl reaction. To evaluate PCR efficiency,
calibration curves of a cDNA five-fold dilution series were
constructed to calculate PCR efficiency and the regression
coeficient (R?) for each candidate reference gene.

Verification of Fruit-specific and Stress Responsive Gene

Expression

To validate the selected reference gene, relative expression of
several genes were measured, including L7PG homologous to SIPG
involved in fruit ripening [7,8], Lycium NAC homologous to the
salt-stress responsive gene SINACI [6], and anthocyanin genes.
Expression of structural genes (F3'H and F3'5'H) and BMW
regulatory genes involved in anthocyanin biosynthesis were also
investigated. Two sets of primers were designed for both F3'5'H
and F3'H genes and used for qRT-PCR assay. PCR products
amplified by one set of primers corresponded to the conserved
functional domain of F3'5H or F3'H protein. Thus, this primer
pair was used to estimate transcripts of all copies of LrF3'5'Hs or
LrF3'Hs. Another set of gene-specific primers across the coding
region and the 3" untranslated region was designed for LrF3'5H1
or LrF3'HI to measure expression of the single copy of LrF5'5H1
or LrF3'HI. These primers were designed using Primer3 (See
Table S3). All experiments were performed in triplicate.

Results

Characterization of Potential Reference Genes in Lycium

To identify stable reference genes suitable for particular tissues
and/or experimental condition (Table S1), we retrieved 18
candidate reference genes from the Lycium EST library (Zeng et
al. unpublished data). Gene function, primer sequence, amplicon
size, and PCR efficiency of these potential reference genes are
shown in Tables 1 and S2. Amplification specificity for each gene
was confirmed by agarose gel electrophoresis (Fig. S2) and single
peaks of melting curves (Iig. S3). A calibration curve was created
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for each gene tested using a serial five-fold dilution. Subsequently,
a significant linear relationship between cycle number and
dilution-fold was confirmed for calibration curves in both L.
ruthenicum and L. barbarum (Table 1). As shown in Table 1, PCR
efficiency for these candidate reference genes ranged from 88.1%
for TUAI to 105.1% for PGK1 in L. ruthenicum and from 87.6% for
HZ2BI to 108.3% for SAMDCI in L. barbarum.

Candidate Reference Gene Expression

To identify stable reference genes, expression of 18 candidate
reference genes across all samples were detected by qRT-PCR.
The variations in candidate reference gene mRNA were revealed
by the spectrum of Cp values across all samples. Theoretically, the
candidate reference gene with the least amount of variation is the
most stable. As shown in Fig. 1A, EFlo, GAPDHZ2, and TUAZ2 were
more stably expressed across L. barbarum samples than remained
reference genes. In L. ruthenicum, transcripts of all candidate
reference genes except SAMDCI and UBQ were stable across all
samples (Fig. 1B). Interestingly, the Cp variance of a candidate
reference gene in L. barbarum was greater than its counterpart in L.
ruthenicum (Fig. 1). These results indicate that no candidate
reference gene was consistently expressed across different tissues,
experimental treatments, or species. Therefore, identifying the best
reference gene target is necessary for normalizing gene expression
in a particular experimental system.

Normfinder-determined Rank of Candidate Reference
Genes

For NormFinder analysis, inter- and intra-group variations were
taken into account, and both results were combined and presented
as the stability value of each candidate reference gene. Candidate
reference genes with lower stability values are more stably
expressed. In L. barbarum fruits, the most stable reference gene
was ACTINI followed by EFla and H2B1 (Fig. 2A). The reference
gene target was H2BI, which was suitable for salt-treated L.
barbarum roots (Fig. 2B). When evaluating across L. barbarum
samples, the top two ranked stable reference genes were SAMDCI
and ACTINI and the best combination of reference genes were
SAMDC2+H2B1 (hereafter reference gene A+B corresponding to
the best stable reference gene A combined with B; Fig. 2I). The
stability value for SAMDC2+H2B1 is 0.099, which is lower than
that of SAMDC1I (0.310). In L. ruthenicum fruit, EFIo and CYC were
the top two ranked stable reference genes followed by SAMDC?2,
H2BI1, GAPDHI, and PGR2 (Fig. 2C). PGK3, PGK1, EFla, C1C
were the most four stable reference genes in salt-treated L.
ruthenicum leaves (Fig. 2D). In salt-treated L. ruthenicum roots, the
stability values of H2B2, H2B1, PGKR3, and ACTINI were lower
than that of remaining candidate reference genes (Fig. 2E). PGK3,
CYC, ACTINI, and UBCE were more stably expressed than other
candidate reference genes in salt-treated L. ruthenicum stems
(Fig. 2F). The top four ranked candidate reference genes with
PGE3, UBCE, ACTINI, and H2BI in all salt-treated L. ruthenicum
samples were imperfectly identical to that in leaves, roots, and
stems (Figs. 2D-2G). Furthermore, the best combination of two
genes optimal to evaluate the expression of genes in salt-treated L.
ruthenicum seedlings were FEFIo+GAPDHI, the stability value of
which was 0.112 lower than that of the best single reference gene
PGE3 (0.185). Correctly estimating the spatial expression profile of
genes in L. ruthenicum 1is essential to elucidate their biological
function. The top four ranked most stable reference genes were
PGK1, UBCE, GAPDHI, and H2B2 across stems, leaves, roots,
sepals, petals, stamens, and pistils (Fig. 2H). When all samples were
analyzed together, the best single stable reference gene was H2B1
and the best combination of two genes were GAPDHI+PGK]
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Lb

R2
Lr
0.9931

Lb
ND

PCR Efficiency (%)*=SD

95.2+7.8

Lr

Product Length

(bp)
157

Primer Sequence (5'-3')
TTCCCAACTTGGTTGTTGCT
ACCAGAGCAGGGATGACAAC

Primer Name

UBCE-F
UBCE-R

Table 1. Cont.
Genes
UBCE

Note: ND, not determined. Lr, L. ruthenicum; Lb, L. barbarum.

doi:10.1371/journal.pone.0097039.t001
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(Fig. 2]). The stability value of GAPDHI+PGK1 was 0.182 lower
than that of H2BI (0.321). Noticeably, SAMDC! was the most
unstable reference gene in salt-treated samples and among
different tissues of L. ruthenicum, which corresponded with its large
Cp variance (Figs. 1 and 2).

geNorm-determined Rank of Candidate Reference Genes
geNorm offers the average expression stability measure (M) of a
gene as the average pair-wise variation of a particular gene
compared to the remaining candidate reference genes. The more
low M values indicated the more stability of candidate reference
gene. As shown in Fig. 3A, EF1a/ACTINI (hereafter reference
gene A/B geNorm-designated as top 1 stable reference gene A
and/or B) with the lowest M values was the most stable reference
genes in L. barbarum fruits. In salt-treated L. barbarum roots, H2B1/
UBQ was the best choice of reference genes (Fig. 3B). H2B1/
ACTINT was the most stable reference genes when evaluating
across fruits and roots samples of L. barbarum (Fig. 3I). In L.
ruthenicum fruit samples, UBCE/ EF1o was the most stable reference
genes (Fig. 3C). As shown in Figs. 3D-3F, PGR3/PGK1, PGR3/
H2B2, and UBCE/PGK3 were with the lowest M value in salt-
treated L. ruthenicum leaves, roots, and stems, respectively. Also, the
most stable reference gene was H2BI/ACTINI when all salt-
treated L. ruthenicum samples analyzed (Fig. 3G). In addition,
H2B2/H2BI was the best reference gene stably expressed across L.
ruthenicum stems, leaves, roots, sepals, petals, stamens, and pistils
samples (Fig. 3H). When all L. ruthenicum samples were evaluated,
H2B1/EFIo was the most stable reference gene (Fig. 3J).
Generally, gene expression normalized by one stable reference
gene is insufficient for reliable and precise results. The optimal
number of reference genes required for reliable normalization was
statistically predicted by geNorm with a V value (cut-off =0.15),
representing pairwise variation. In our work, V value analysis
indicated that the ideal number of reference genes in single tissue
was two, and that more than two reference genes were required to
correctly normalize gene expression in more than two tissues
(Fig. 4). For instance, combining three reference genes, H2BI+
H2B24+ACTINI, were enough to simultaneously and accurately
normalize gene expression in both fruits and roots of L. barbarum
(Fig. 4A). One exception was apparent: two reference genes
(H2BI+ACTINT with V2/3 value of 0.131<<0.15) were enough to
synchronously evaluate gene expression in salt-treated L. ruthenicum
stems, leaves, and roots (Fig. 4B). At least five reference genes
(H2B1, EFla, PGK1, C1C, SAMDCI) were required to precisely
normalize gene expression across all L. ruthenicum samples (Fig. 4B).

Validation of Target of Reference Genes

To confirm whether normalization by different candidate
reference genes altered qRT-PCR-measured expression of genes
of interest, expression of several genes related to salt stress
response, anthocyanin biosynthesis, and fruit ripening were
analyzed.

For salt stress, a Lyciuum NAC transcription factor was selected to
validate its expression level in salt-treated Lycium roots. Amino acid
sequence analysis revealed that Lycium NAC was 85% identical to
Solanum  lycopersicum NAC (SINAC, NP_001234482), which was
previously identified as a salt stress-responsive genes in tomato
roots [6]. In L. ruthenicum roots, the top two ranked reference genes
PGR3 and H2B1, recommended by geNorm and/or NormFinder
(Fig. 2E and 3E), were chosen to evaluate Lycium NAC expression
(Fig. 5A). SAMDC1, serving as an unstable reference gene, was also
used to comparatively assess NAC expression (Fig. 5A). As shown in
Fig. 5A, LiNAC expression revealed by qRT-PCR using reference
genes PGK3, H2BI, PGK3+H2B1, and SAMDCI were similar.

May 2014 | Volume 9 | Issue 5 | 97039



36

Identification and Application of Reference Genes in Lycium

34 |A: L. barbarum

32 |

Cp Value

24 |
22
20

o eﬂ BE =
26 | Q

18

«\\“ W 6"\° o*‘\ o 09\ \x& an oc;: R 0‘*‘090

36
34
32 |
30 |

B: L. ruthenlcum

Cp Value

22 | 0
20 |
18

SE%%;%%%@%?%%%Q

-

FO«\“ o’\“ﬂ c:‘c’e% e o\"\ o\" o“ 0% 0

(,‘(* ?G‘(\ C’@;&\ \‘\00 ,‘\)P ,‘\)Pg’ 60?’\)9@

Figure 1. RNA transcription levels of candidate reference genes presented as Cp mean value in different samples of L. barbarum (A)

and L. ruthenicum (B).
doi:10.1371/journal.pone.0097039.g001

However, the fold-change of LiNAC expression at 8 h compared to
16 h was 1.89 for PGK3, 2.24 for H2BI, and 2.02 for PGK5/H2B1,
which were lower than that of 5.65 for SAMDC1 (P<0.01; Fig. 5A).
These results indicate that exact expression of NAC as revealed by
stable reference genes PGKR3 and/or H2B1 were more precise than
those calculated using the unstable gene SAMDCI. In L. barbarum
roots, H2B1 and UBQ, identified by NormIFinder and/or geNorm
as the best stable reference genes, were utilized as internal controls
to estimate LANAC expression (Fig. 5B). Also, LANAC expression
was estimated with the unstable reference gene SAMDCI as an
internal control. As presented in Fig. 5B, the qRT-PCR-
determined expression of LANAC using stable reference genes
H2B1, UBQ, or H2B1+UBQ as internal control were in agreement,
which is a different finding from those revealed by the unstable
reference gene SAMDCI. Summarily, in salt-stress treated Lycium
seedling roots, more precise and reliable results were offered by
stable reference genes systematically identified by geNorm and
NormFinder compared to unstable reference gene (Fig. 5).

To identify candidate fruit-specific expression genes in L.
ruthenicum, an EST sequence encoding PG homologous to tomato
PG, which was previously reported to be fruit-specific expression
[8,9,31], was retrieved from a Lycuum EST library. Expression of
LrPG in roots, stems, leaves, flowers, and ripening fruits was
investigated using several reference genes recommended by
NormFinder and/or geNorm (Fig. 6). With regard to the selection
of reference genes, H2B1/EFlo and H2BI and PGKI were
recommended as the most stable top two ranked reference genes
across all samples by geNorm and Normlinder, respectively

PLOS ONE | www.plosone.org

(Fig. 2] and 3]). Additionally, NormFinder predicted that the
stability value of the best combination of two genes GAPDHI+
PGK1 was lower than that of the single most stable gene H2B1,
suggesting that GAPDHI+PGK] was more stable than H2BI.
Consequently, these candidate reference genes were selected to
evaluate the expression of LrPG in roots, stems, leaves, flowers, and
stage S1 fruits (Fig. 6A). As shown in Fig. 6A, LrPG transcripts
were undetectable in roots and stems and were highly expressed in
stage S1 fruits followed by flowers and leaves when using the
reference genes H2BI1, GAPDHI, H2BI+EFIo, and GAPDHI+
PGK1 as normalization factors. In ripening fruits, expression of
LrPG was normalized by EFlo, UBCE, and C1C, which were the
most stable top two ranked reference genes (Figs. 2C and 3C).
Normalized expression of LrPG was identical using the three
reference genes. Furthermore, LrPG transcripts were increasingly
enhanced and peaked at stage S4 (Fig. 6B). Summarily, LrPG was
abundantly expressed in fruits, especially at stage S4 prior to the
expansion stage S5 (Iig. 6), suggesting that LrPG was involved in L.
ruthenicum fruit ripening.

For anthocyanin biosynthesis in L. ruthenicum fruits, several
genes, including structural genes (F3'5'H and F3'H) and
regulatory genes homologous to petunia AN2, AN11, JAFI13, and
AN, were used as target genes of interest to demonstrate the utility
of the validated target reference genes in qRT-PCR (Fig. 7). To
better understand underlying molecular mechanism of most
metabolites being introduced to the delphindin branch in L.
ruthenicum fruits, we measured expression of LrF3'5'H and LiF5'H
during fruit development. Expression level of these genes was
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doi:10.1371/journal.pone.0097039.9002
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treated by salt (E), L. ruthenicum stems treated by salt (F), L. ruthenicum leaves, roots, and stems treated by salt (G), different L.

ruthenicum tissues (H), all L. barbarum samples (l), and all L. ruthenicum samples (J).

fruits (A), L. barbarum roots treated by salt (B), L. ruthenicum fruit (C), L. ruthenicum leaves treated by salt (D), L. ruthenicum roots
doi:10.1371/journal.pone.0097039.g003

Figure 3. Rank of candidate reference genes by geNorm procedure based on data generated by qRT-PCR analys
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normalized using the most stable reference gene, EFla, a
moderately stable reference gene, ACTINI, and an unstable
reference gene, GAPDH3. With EFIlo as an internal control,
expression profiles of these genes were consistent with those
normalized by the moderately stable reference gene ACTINI
(Fig. 7). However, gene expression normalized with the unstable
reference gene (GAPDH3) was significantly different from those
estimated with EFlo or ACTINI (Fig. 7). Furthermore, gene
transcripts were over-estimated at stage S4 and/or S5 when
GAPDH3 was used as an internal control. These results suggest
that using an unstable reference gene(s) may give rise to less
accurate or misleading results.

Discussion

L. barbarum and L. ruthenicum are widely utilized as traditional
Chinese medicine (TCM) because of their purported health-
promoting phytochemical compounds [1,2,32,33]. Such phyto-
chemicals include carotenoids and anthocyanins and which are
thought to have anti-aging, neuroprotective [12], anti-diabetic,
anti-glaucoma, anti-oxidant, immunomodulatory, anti-tumor and
cytoprotective effects. To date, the biosynthetic and regulatory
mechanisms of these phytochemicals are unclear and how Lycium
resists abiotic stresses (saline and alkaline conditions) remains

PLOS ONE | www.plosone.org

uncertain. Both L. barbarum and L. ruthenicum plants are tolerant to
salt and alkalinity, so precise evaluation of gene expression is
needed to identify the functional genes involved in physiological
and/or biological processes that mediate these stress-resistant
properties.

gRT-PCR has been used to quantify gene expression [17], and
reliable qRT-PCR results depend on the choice of a stable
reference gene(s). However, increasing evidence indicates that
HKG expression, which is used as a candidate reference gene, is
variable across different tissue samples and/or experimental
conditions [24,25]. Thus, systematically identifying stable refer-
ence genes prior to their use in qRT-PCR normalization is
necessary [27,28]. Because few reference genes have been
systematically evaluated in L. barbarum ripening fruits [18], we
identified suitable reference genes in Lycium samples from different
tissues and in plants grown under salt stress.

First, we measured expression stability of 18 candidate reference
genes across seven experimental sets (T'able S1). NormFinder and
geNorm procedures were used to calculate and identify the best
suitable reference genes for specific investigations (Figs. 2 and 3).
Generally, both geNorm and NormFinder identify the same subset
of reference genes but rank them differently in certain tissues or
under stresses (Figs. 2 and 3). For instance, although geNorm and
NormFinder identified ACTINI, EFlo, and H2BI in L. barbarum
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Figure 5. Relative quantification of Lycium NAC gene using
validated reference genes for normalization in salt-treated L.
ruthenicum (A) and L. barbarum (B) roots. The validated reference
genes used as normalization factor were PGK3 and H2B1 for L.
ruthenicum and H2B1 and UBQ for L. barbarum, which were most
stable reference genes recommended by geNorm and/or NormFinder
procedure(s). The most unstable gene SAMDC1 was also selected as a
comparative normalization factor to evaluate NAC gene expression in
both Lycium species. Double asterisks show statistical significant
differences between samples salt-treated and control sample at P<
0.01 level.

doi:10.1371/journal.pone.0097039.g005

fruits as the most stable reference genes, their ranks were different
in each algorithm (Figs. 2A and 3A). Similarly, PGK3, CIC,
ACTINI, and UBCE which differed with respect to rank were
identified as the most stable reference genes in salt-treated L.
ruthenicum stems with these two procedures (Figs. 2F and 3F). This
situation agree with a previous study of L. barbarum fruits [18].
However, in citrus case, remarkable divergence was observed in
the most stable reference genes ranked by geNorm and
NormFinder [34]. Divergence in the top-ranked stable reference
genes predicted by the two procedures could be attributed to
differences in statistics used by geNorm and NormFinder.
Previous research indicates that GAPDH/ EFI1o is the best stable
reference gene for normalizing gene expression in L. barbarum
ripening fruits [18]. Noticeably, GAPDH and EFIlo were in a
previous L. barbarum study [18] and have high and low sequence
identity with L. ruthenicum GAPDH3 and EFIo, respectively.
However, GAPDHS3 was identified as the unstable reference gene
in L. ruthenicum fruits (Figs. 2C and 3C). Differences in expression
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Figure 6. Relative quantification of a putative fruit-specific
expression gene LrPG in different tissues (A) and developmen-
tal fruits (B) of L. ruthenicum. A, the validated reference gene(s) were
H2B1, PGK1, EF1a, and GAPDH1. Of those, H2B1 and H2B1/EF1a were the
most stable reference genes recommended by NormFinder and
geNorm, respectively. The stability value of the best combination
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that of the best single reference gene H2BI1. Double asterisks show
statistical significant differences between flowers or S1 fruits and leaves
at P<<0.01 level. B, the top2-ranked most stable reference genes EFTo
and CYC NormFinder-determined and UBCE and EF1a geNorm-identified
were used as normalization factors to evaluate LrPG expression in
ripening fruits. Double asterisks show statistical significant differences
between S2-S5 fruits and S1 fruits at P<<0.01 level.
doi:10.1371/journal.pone.0097039.g006

stability between L. ruthenicum GAPDHS and L. barbarum GAPDH
may be species-specific. Alternatively, the set of candidate
reference genes investigated possibly affect the rank of reference
genes. In our study, the best stable reference genes in L. barbarum
fruits were EFIla and EFIlo/ACTINI as predicted by NormFinder
and geNorm, respectively (Figs. 2A and 3A). Also, EFIo and
EFlo/UBCE were respectively recommended by NormFinder and
geNorm as the most stable reference gene(s) in L. ruthenicum
ripening fruits (Figs. 2C and 3C). Obviously, the best stable
reference gene in Lycium ripening fruits was EFIo, which is often
used in various other species [17,35-37].

In addition, different tissue samples had unique stable reference
genes among the 18 studied (Figs. 2D-2F and 3D-3F).
NormFinder analysis of salt-treated L. ruthenicum leaves indicated
that the top five ranked most stable reference genes were PGK3,
PGK1, EFla, CYC, and UBCE, which was different from H2B2,
H2BI, PGK3, ACTINI, and ACTIN? for salt-treated roots and
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Figure 7. Relative quantification of structural and regulatory genes involved in anthocyanin biosynthesis in L. ruthenicum fruits
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doi:10.1371/journal.pone.0097039.g007

PGE3, CYC, ACTINI, UBCE, and GAPDH]1 for salt-treated stems
(Figs. 2D-2F), which was confirmed by geNorm-determined
results (Figs. 3D-3F). Previous studies also document alterations
in candidate reference gene rankings in distinct sample sets
[14,19,38,39].

To validate the geNorm- and Normlinder-determined results
for suitable reference genes in experimental systems, expression of
several genes was investigated (Figs. 5-7). Previous study
demonstrated that the salt-sensitive gene SINAC! is significantly
upregulated in tomato roots [6]. As presented in Fig. 5, LtNAC and
LONAC, SINACI homologs, were significantly upregulated by salt
stress. Specifically, LrNAC transcripts decreased in the first 1 h

PLOS ONE | www.plosone.org

1

followed by a significant increase at 2 h and peaked at 8 h whereas
LbNAC transcripts were enhanced at 1 h and almost peaked at 2 h.
The divergent expression pattern of Lycium NACs suggested that
cis- and/or trans-elements controlling NAC expression responding
to salt stress were evolutionarily divergent in Lycium species. In this
case, using the unstable reference gene SAMDCI as an internal
control offered less precise expression patterns for LiNAC and
incorrect expression profiles for LINAC (Fig. 5).

In tomato, several genes, including PG [8,9,31] and E8 [40,41],
were reported to be relative to fruit ripening. In this study, a
unigene encoding Lr7PG was retrieved from our EST database
(Zeng et al., unpublished data) and data show that LrPG was highly
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expressed in stage S1 fruit when using the best single reference
gene H2BI1, or the best combination of two genes GAPDH I+PGK1
and H2BI+EFla as an internal control (Fig. 6A). During L.
ruthenicum fruit ripening, LrPG transcripts were enhanced and
peaked at stage S4 (Fig. 6B). These results suggested that LrPG
expression was fruit-specific, and that the LrPG promoter would be
a good choice for investigating the function of genes of interest in
L. ruthenicum fruit.

Petunidins are abundantly accumulated in L. ruthenicum fruits
[1], so expression of structural and regulatory genes involved in
anthocyanin biosynthesis was normalized using the most stable,
moderately stable, and most unstable reference genes (Fig. 7). As
shown in Fig. 7, expression of genes normalized by the unstable
reference gene GAPDH3 was significantly distinct compared to
those normalized by the most stable reference gene EF/o or the
moderately stable reference gene ACTINI, suggesting that
normalization using unstable reference gene resulted in misinter-
pretation of anthocyanin gene expression. These results also
indicated that the moderately stable reference gene ACTINI was
stable enough to precisely calculate the expression of anthocyanin
genes in ripening fruit. qRT-PCR data suggested that, except for
LrjAF13, all tested gene expressions were enhanced at the first four
stages when using EFla or ACTINI as a normalization factor
(Fig. 7). Furthermore, the fold-change of LrF3'5'H transcripts at
the first four stages was higher than that of LrF3'H when using
internal gene EFIo or ACTINT (Figs. 4A—4D), and these data were
confirmed with data generated with LrF3'H as an internal control
(Fig. S4). These results may account for 95% of anthocyanins
being petunidin-derivatives in mature fruits of L. ruthenicum (Figs. 7

and 8, [1]).

Conclusion

In conclusion, reference gene targets in different tissues and
samples under salt-stress were identified in Lycium. Data show that
reference gene ranking as determined by geNorm and NormFin-
der were similar with minor change. Our results also indicate that
EFlo and ACTINT were the top two most stable reference genes in
L. barbarum fruits, and that EF/o was the most stable reference
gene in L. ruthenicum fruits. Additionally, H2B1 and H2B2 were the
best reference genes in salt-treated L. barbarum and L. ruthenicum
roots, respectively. Expression of Lycium NAC, LrPG, and genes
mvolved in L. ruthenicum anthocyanin biosynthesis were analyzed to
emphasize the importance of validating reference genes to obtain
accurate and reliable qRT-PCR results. Results show that LrPG
expression was fruit-specific, and that Lycium NACs were
upregulated and divergent in expression in response to salt stress.
Also, both enhanced anthocyanin gene transcripts and increased
ratios of LrF3'5"H/ LrF3' H transcript in ripening fruits may have
accounted for accumulation of petunidin-derivatives in L.
ruthenicum fruits. Summarily, reference gene targets identified
herein will provide a foundation for achieving accurate and
reliable qRT-PCR results and help us understand complex
molecular mechanisms of Lycium physiological and biological
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