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Biological networks are characterized by diverse interactions and dynamics in time and space. Many reg-
ulatory modules operate in parallel and are interconnected with each other. Some pathways are function-
ally known and annotated accordingly, e.g., endocytosis, migration, or cytoskeletal rearrangement.
However, many interactions are not so well characterized. For reconstructing the biological complexity
in cellular networks, we combine here existing experimentally confirmed and analyzed interactions with
a protein-interaction inference framework using as basis experimentally confirmed interactions from
other organisms. Prediction scoring includes sequence similarity, evolutionary conservation of interac-
tions, the coexistence of interactions in the same pathway, orthology as well as structure similarity to
rank and compare inferred interactions. We exemplify our inference method by studying host-
pathogen interactions during infection of Mus musculus (phagolysosomes in alveolar macrophages) with
Aspergillus fumigatus (conidia, airborne, asexual spores). Three of nine predicted critical host-pathogen
interactions could even be confirmed by direct experiments. Moreover, we suggest drugs that manipulate
the host-pathogen interaction.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Traditionally, protein-protein interactions (PPI) have been stud-
ied on a single-case basis using biochemistry, pharmacological
compounds and genetic methods. A considerable number of pro-
teins are encoded by genomes of various organisms. The proteins
act rarely alone, but they are connected to dynamic networks that
are relevant for cell survival, such as cell architecture, metabolism,
and signaling [29]. The reconstruction of protein interaction net-
works is one of the challenging tasks in modern biology for paving
the way to understand the underlying mechanisms of biological
processes in time and space [36]. Moreover, the protein interac-
tions are not only crucial for intracellular mechanisms but also
for intercellular interactions, such as cell-cell interactions and
trans-kingdom communication [46].

However, the traditional methods are neither sufficient nor
realistic to detect each PPI. The experimental information on inter-
actions is sparse and only covers a low percentage of all assumed
interactions [36]. Therefore, using the knowledge of investigated
protein interactions will help to reconstruct an interaction network
including intra- and interspecies interactions. Here, we modified
the interolog method [56] to infer potential interactions based on
already verified interactions. To evaluate predicted interactions,
we integrated information from coevolution of proteins, sequence
similarity, pathway annotation, as well as micro- and macroscopic
relations and the function of the protein network itself [31,36].
Thereby, we constructed a host-pathogen interaction network. As
interaction networks do not stop at cell envelopes, host-pathogen
interaction networks depend on critical pathogen interactions with
the host so that infection can be successful [21,85].

To demonstrate our method, we focused on critical interactions
between a mammalian host (Mus musculus) and a pathogenic fun-
gus, Aspergillus fumigatus.
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A. fumigatus (Neosartorya fumigata) belongs to the saprotrophic
fungi decomposing organic material in the soil [3,23]. The fungus
mainly reproduces by asexual spores (conidia) which are released
into the air. Conidia land on a suitable surface, germinate and after
vegetative growth as hyphae, new conidia are formed from conid-
iophores [39,71]. Various materials including wood, animal nests,
and plastic products represent suitable surfaces, however, as a
pathogen A. fumigatus can survive in the lung of mammals [62].
In humans, A. fumigatus can cause life-threatening infections with
more than 3,000,000 cases per year [7].

In this study, with a computational approach, we transfer host-
pathogen interactions where there are directly measured experi-
mental data to another host organism (e.g. from human to mouse)
and another pathogen (e.g. from the fungal pathogen C. albicans to
A. fumigatus). The interacting domains and their structure have to
be conserved in the new organisms, both in the host and the patho-
gen that such a prediction transfer has success. This is hence a
demanding prediction task. To have higher accuracy in our predic-
tions, we combine sequence similarity, evolutionary conservation
of interactions, the coexistence of interactions in the same path-
way, orthology as well as structure similarity to rank and compare
inferred interactions.

Nine of the predicted interactions were tested in a binding
assay and we could confirm correct inference and conservation of
all required interactions as well as correct working of the interac-
tion assay including protein expression for three such host-
pathogen interaction pairs. Moreover, we studied the predicted
protein interactions using 3D docking simulations. Finally, we
investigated antifungal drugs that potentially manipulate relevant
pathogenic proteins for critical protein interactions between the
host and the pathogen during the infection.
2. Material and methods

2.1. Protocol of inference

2.1.1. Summary
The interolog prediction is based on verified interactions from

seven model species of different kingdoms of life (source network).
Derived from the transkingdom network the interspecies interac-
tions of M. musculus with A. fumigatus were inferred. To evaluate
the predicted interactions a scoring system (predicted_interac-
tion_score) was introduced. In addition to the predicted_interac-
tion_score of interacting proteins, a host-pathogen interaction
(HPI) score was calculated. The hpi_score integrates information
about the properties of the host-pathogen intersection such as vir-
ulence or host defense association of certain proteins.
2.1.2. Interaction Data retrieval
The source intraspecies interaction data of M. musculus, A. thali-

ana, S. cerevisiae, D. melanogaster, C. elegans, C. albicans, R. norvegi-
cus, D. rerio, and H. sapiens were downloaded from IntAct [35],
BioGRID [49] and further interaction sources of the International
Molecular Exchange (IMEx) consortium [48] such as InnateDB
[8], MatrixDB [11] and UniProt [73] via PSICQUIC [2] queries. The
interactions were filtered according to the interaction type and
the interaction detection method (Table S1). The interologs were
calculated based on the source networks. The orthologs were
determined according to Inparanoid8 [63].

We considered all available interaction data of the most promi-
nent model species (i.e. M. musculus, A. thaliana, S. cerevisiae, D.
melanogaster, C. elegans, C. albicans, R. norvegicus, D. rerio, and H.
sapiens). As we analyzed cross-species interactions of distant spe-
cies in the phylogenetic tree (human and fungus) it was of partic-
ular interest to collect source interactions from species that are
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also distant in phylogeny. This supports the estimation of conser-
vation of certain interactions, e.g. some relationships of proteins
might be very old and some might rather be human or fungi spe-
cific. Furthermore, plants and fungi share a long history of close
interactions in e.g. mycorrhiza (https://www.nature.com/articles/
ncomms1046, accessed 20.07.2022) [94]. Therefore, similar strate-
gies for mutualisms, symbiosis, or pathogenesis might apply for
fungus-plant and fungus-human interaction or invasion. In addi-
tion, plants can keep a balance in the interaction with fungi, for
example with secondary metabolites such as castanospermin, that
can silence invasion processes. This metabolite might therefore
have a similar silencing effect in fungi-human interaction without
directly influencing human signalling. Consequently, plant-fungi
interactions might source fungal invasion pathways in humans,
and thereby reveal key intersections that can be tackled by com-
pounds of the pool of plant-based metabolites.

2.1.3. Data for predicted interaction scoring based on traits of proteins
Protein traits such as GO association, sequence length, pathway

membership, and amino acid sequence similarity were scored to
predict and classify protein interactions in the host-pathogen
interface.

The Gene Ontology (GO) slim annotations [4] were used to filter
genes that are relevant for the HPI (Table S2), as well as to generate
a GO correlation network within the interactome considering the
GO areas cellular compartment, biological process, and molecular
function. The GO slim annotations of A. fumigatus proteins and phe-
notype data (Table S3) of the pathogen were retrieved from the
Aspergillus Genome Database [10]. The GO slim data from Ensembl
80 [25] were used to obtain the annotations for the murine host.
The local similarity scoring of protein interactions presented in
the HPIDB [1] was used to search for similarities of interologs to
the host-pathogen interactions. The protein annotation and the
protein sequence data were retrieved from Uniprot [74], where
the longest sequence was chosen.

The usage of the older Ensembl version is due to the comparison
to older datasets of interaction prediction, as well as the time delay
between the computation and findings slots for experimental ver-
ification. A reanalysis would update certain predicted interactions
and might therefore resolve more possible interactions. However,
this would not affect the proof of principle of the method that
cross-kingdom interactions can be evaluated by hands of intraspe-
cies networks from several model species. In a future version, we
strengthen the automation of the prediction pipeline, so that we
can regularly follow the updates of all databases used. In these
terms, we also intend to combine feature extraction with a learn-
ing algorithm. Therefore, a later update of the Ensembl database
will be directly accompanied by an update of the prediction
method.

2.1.4. Data for the hpi_score based on traits
For ranking the proteins according to their relevance in infec-

tion several traits were integrated. The phenotype data (Table S3)
indicated infection-relevant proteins by knock-out, knock-down,
and overexpression studies were downloaded from the Aspergillus
Genome Database [10]. A host-pathogen dual expressions dataset
was integrated to evaluate infection-relevant genes in host-fungi
interaction as described previously [56]. The proteome data of a
phagolysosomes infection model [60] were used to identify pro-
teins that were relevant for the host-pathogen phagolysosomes
infection model. The GO terms that indicate the involvement of
proteins during the infection were downloaded from the Aspergil-
lus Genome Databank [10] and Ensembl 80 [25]. Protein interac-
tions that are already stated by the HPIDB [1] contribute
positively to the hpi_score. Further, we searched for proteins that
have a transmembrane domain, which indicates surface proteins
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thus increasing the chance of being localized at the host-pathogen
intersection. The TMHMM data were annotated via the Uniprot
database [74].
2.1.5. The scoring
The source interaction score was deduced from the source

interaction databases. The Biogrid score was normalized by its
median and its quantiles to make it comparable to the IntAct
scoring.

For the evaluation of the orthology transfer, the global and local
score of the amino acid sequence was calculated. The local score
was generated by Blast version 2.2.26, whereas the global score
was generated by the Needleman-Wunsch algorithm [44]. The
seed ortholog score, determined by the Inparanoid algorithm
[63], is set binary. The sequence length score was generated by
using the median and quantiles of the sequence length. The path-
way score depends on the number of shared pathways [40] and
was normalized by the median. Similarly, the GO score depends
on the number of shared GO terms and is normalized by the med-
ian. For both interaction partners the orthology score is calculated
independently (Fig. 1). In consequence, there exist two scores:
orthology score1 and orthology score2. The different scorings that
contribute to the orthology score are weighted. The weights are
manually set. We set the weights intuitive as a starting point for
subsequent dynamic weight modulations. However, the setup of
weights started from the publication „systematic humanization
of yeast” [31] which states a predictability score for various inter-
action features.

The final predicted_interaction_score is a composition of the
source interaction score, the orthology_scores, and further evalua-
tion of traits of the interacting proteins (Fig. 1). All scores vary
between 0 (not interacting) and 1 (interacting). The number of
source interactions of each predicted interolog contributed to the
overall predicted_interaction_score. Additionally, the co-
Fig. 1. The prediction of host-pathogen interactions is based on the interolog
method using experimentally evaluated interactions partners, named source
interaction. The source interaction score is based on the database score of BioGrid
and IntAct, which evaluated the experimental method, number of publications
describing the interaction and interaction type. To build interologs of the source
interaction in a host and pathogen interaction model the orthologs for each
interactor were determined. The orthology score is calculated for each interactor
and uses the sequence similarity (global and local), co-occurrence in a pathway, GO
similarity, sequence length, absolute expression. As a result, the predicted_interac-
tion_score of host and pathogen proteins is calculated by the source interactions
score, orthology score1 and 2. The predicted_interaction_score is further refined by
the number of source species predicting the interaction (evolutionary conserva-
tion), sequence length, co-occurrence in the same pathway, the GO similarity, the
basemean of the expression, as well as the coexpression in an infection model and
the similarity to interactions in the HPIDB.
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occurrence in the same pathway of the predicted interactions,
shared GO terms, coexpression, a high basemean expression, and
similarity to known host-pathogen interaction [1] supported the
evaluation of the predicted interactions.

orthology_score1/2
= (1 -

(
(1 – percentidentityglobal) *
(1 – percentidentitylocal) *
(1 - 0.2 * bootstrap_as_seed / 100) *
(1 - 0.1 * (seq_length_score)) *
(1 - 0.5 * pathway_score_orth) *
(1 - 0.3 * go_score)

)
)

The overall orthology score is calculated as follows:
orthology_score = orthology_score1 * orthology_score2
The predicted_interaction_score uses the source interactions

score, the orthology score, and further feature scores that
contribute to the characterization of interacting partners.

predicted_interaction_score
= (1 -

(
(1 –
Qspecies n

species 0intactscore � orthology scoreÞ�
(1 - 0.1 * (seq_length_score) *
(1 - 0.5 * pathway_score_int) *
(1 - 0.4 * go_score) *
(1 - 0.3 * basemean_score) *
(1 - 0.3 * (hpidb_score))

)
)

The characterization of proteins in the intersection of host and
fungal pathogen allows for evaluating their role in pathogenesis.
For this purpose, features that contribute to figuring out the rele-
vance of interactions in pathogenesis are determined. Based on
the traits that predict involvement in host-pathogen interactions,
such as localization in the outer cell envelope or extracellular space
(spatial co-occurrence), coexpression in infection (temporal co-
occurrence), the guidance of an infection-related phenotype, a
host-pathogen interaction (hpi_score) is created. The hpi_score
gives evidence about the propensity of interaction to occur in the
host-pathogen interface and to be relevant for pathogenesis, or to
be a potential drug target. The phenotype scores (Table S3) are
based on genetic modification studies and were manually curated.
The CC_score (GO cellular component) indicates the localization of
a protein and was manually curated. Likewise, the BP_score (GO
biological process) was determined by infection-relevant BP anno-
tations (Table S2). The phagolysosomes score indicates whether a
protein is in the host-pathogen phagolysosomes infection model
[60]. Likewise, the degtimepoint score represents the number of
times a gene is differentially expressed in a dual RNAseq of host
and fungus infection model [56]. The HPIDB score states if the
interaction or an interolog is present in the HPIDB. The TMHMM
score states whether a protein is located in the membrane of a cell.
The phagolysosomes score, the TMHMM score, and the HPIDB
score are binary scores and are stated for each protein.
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hpi_score
= (1 -

(
(1 - 0.4 * (0.5 * phenotype_score1 + 0.5 *

phenotype_score2)) *
(1 - 0.4 * (phago1 * phago2)) *
(1 - 0.4 * (0.5 * CC_score1 + 0.5 * CC_score2)) *
(1 - 0.3 * (0.5 * BP_score1 + 0.5 * BP_score2)) *
(1 - 0.3 * (0.5 * degtimepoints1 + 0.5 * degtimepoints2))

*
(1 - 0.3 * (0.5 * tmhmm1 + 0.5 * tmhmm2)) *
(1 - 0.3 * (0.5 * hpidb1 + 0.5 * hpidb2))

)
)

The combination of the traits, the weighting, the normalization
procedures, and the quality of the score can be evaluated with
increasing experimental evidence.

2.2. Mapping the interactions on the phagolysosome infection model

We used the host-pathogen (M. musculus – A. fumigatus) inter-
section interactions to model distinct infection models. A proteome
dataset from the murine - fungus phagolysosome infection model
[60] was retrieved to filter M. musculus and A. fumigatus proteins
that are involved in the infection. For the evaluation of the pre-
dicted interactions, we use the scoring framework as shown in
Fig. 1. To rank the protein interactions according to their relevance
in the infection models we used the hpi_score. We filtered the host
fungus interaction network for proteins that have a predicted_inter-
action_score > 0.5 and an hpi_score > 0.4. The dataset of predicted
interaction by the interolog method is large (� 100 000 interac-
tions). To narrow down a list of displayable, explorable candidates
the dataset was reduced to those interactions with a cutoff pre-
dicted_interaction_score >0.5 (�90% quantile, Fig. 2a) and hpi_score
> 0.4 (�90% quantile) (Fig. 2b). This gives a balance of somewhat
reliable prediction score and infection-relevant proteins. The med-
ian of the predicted interaction score is �0.25 and has a maximum.
This shows the average performance and prefiltering of the intero-
log method.

In addition, we filtered the high-scoring protein interaction by
the proteome dataset to create a subset of relevant interactions
during phagocytosis of A. fumigatus (Fig. 3).

2.3. Drug Targets

We screened a compound protein interaction dataset from the
STITCH database [70], for interactions that are in the host-
pathogen intersection, thus offering a way to manipulate critical
interactions between host and pathogen. We filtered compounds
that target only A. fumigatus proteins and not the murine host. Fur-
ther, we selected target proteins in A. fumigatus that were not
orthologous to a murine, or a human protein. The final list of com-
pound protein interaction predictions was sorted according to the
hpi_score. We manually curated the predicted interactions. The tar-
get proteins have a predicted_interaction_score > 0.5 and an hpi_-
score > 0.4 in the HPI dataset. However, for the castanospermine
targets, AFUA_6G04210 and AFUA_2G12410, the predicted_interac-
tion_score and an hpi_score were 0.32 and 0.34 (AFUA_6G04210
with LRRK2 (Leucine-rich repeat serine/threonine-protein kinase
2), as well as 0.22 and 0.28 (AFUA_2G12410 with PRKACB
(cAMP-dependent protein kinase catalytic subunit beta). Despite
castanospermine targets having a predicted_interaction_score lower
than the threshold it was still considered a good target and was
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investigated further, as it was predicted to target also Candida albi-
cans XOG1 (Eexo-1,3-beta-glucanase).

2.4. Protein preparation

Total RNA isolated from murine phagolysosomes and A. fumiga-
tus was reverse transcribed and used to amplify the coding regions
of selected proteins (Table 1). The amplification reaction was per-
formed using the DreamTaq Mastermix (Thermo Scientific, Ger-
many). All amplicons were sequenced, digested with restriction
enzymes BamHI and SalI (or KpnI, restriction sites are underlined
in Table 1), and ligated into pQE-30-UA-mCHERRY-GFP (in-house
modified pQE30-UA vector, fused GFP and HIS-tag at C-terminus,
Qiagen, Netherlands). Ligation mixtures were purified
(Macherey-Nagel, Germany) and used for the transformation of
competent cells of E. coli strain M15 by heat shock. Transformed
cells were plated in LB agar supplemented with 100 lg/ml ampi-
cillin and 25lg/ml kanamycin at 37�C for 12 hours. Expression of
recombinant proteins was performed in LB medium with 1mM of
IPTG (Merck, Germany) at room temperature for 12 hours. The cell
culture was harvested by centrifugation for 10 min at 5,000xg and
the pellet was resuspended in ice-cold lysis buffer (50 mM NaH2-
PO4, 300 mM NaCl,10 mM imidazole, 10mM lysozyme) and soni-
cated. After centrifugation at 12,000xg for 30 min at 4�C, soluble
proteins were purified using Ni-NTA (Merck, Germany) according
to the manufacturer’s instruction under denaturing conditions.
The presence of proteins was visualized by SDS Page and validated
by anti-FLAG (1:10000, Thermo Scientific, Germany) and anti-HIS
antibodies (1:1000, Thermo Scientific, Germany).

2.5. Ligand binding assay

Purified fungal proteins (containing only 6xHIS-tag) were sepa-
rated by SDS-PAGE on 10% (w/v) polyacrylamide gels and electro-
transferred onto a nitrocellulose membrane. Membranes were
blocked with 5% (w/v) albumin fraction V in 0.05% (w/v) TTBS.
After washing, membranes were incubated with 2ml of purified
phagolysosomal proteins (tagged with 6xHIS and FLAG-tag). After
seven washes with 0.05% (w/v) TTBS, the membrane was incubated
with FLAG-HRP conjugated antibody (dilution 1:1000 in 0.5% (w/v)
albumin fraction V in 0.05% (w/v) TTBS, Thermo Scientific, Ger-
many) and incubated for 5 min in Super-Signal West Pico ECL sub-
strate (Pierce, Germany). Signals were visualized on a C-digit blot
scanner (Licor, Germany).

In our experiments, we expressed three types of proteins: mice
proteins were tagged with 6xHIS-tag, FLAG-tag, and GFP (only as
expression helper). Aspergillus proteins were tagged with 6xHIS
and GFP, and finally, GFP protein (control) contained 6xHIS tag.
We prepared the following controls: positive control: all proteins
were verified with anti-His antibody, we detected signal in each
sample. Positive control for mouse/negative control for Aspergillus
proteins: proteins were detected using anti-FLAG antibody, only
mice proteins were detected, and Aspergillus proteins were not
detectable. The FLAG and 6xHIS tag are both very small peptides,
8 and 6 amino acids, respectively, and their participation in the
physical interaction of protein is improbable. For negative control,
we used only GFP+6xHIS protein which was allowed to interact
with FLAG-tagged proteins, and we did not notice any interaction.
A diagram in the supplement shows all controls we used
(Suplementary Fig. 1 panel d).

2.6. Structure modeling and docking

We retrieved the amino acid sequences of mouse proteins
CDK4, PCNA, and RS14 from the UniProt database [72] and A. fumi-
gatus proteins AFUA_1G04950, AFUA_1G15020, AFUA_2G05740,



Fig. 2. Histogram of (a) predicted_interesting_score and (b) hpi_score. Breaks = 40. 90% quantile (red line) and median are indicated median (blue line).

Fig. 3. Protein interactions that are predicted to be relevant in the host-fungus interaction. We show here a subset (predicted_interaction_score > 0.4 and hpi_score > 0.5) of
murine proteins (black node fill) predicted to interact with A. fumigatus proteins (grey node fill). The gene names represent the related proteins with the longest sequence. The
indicated proteins are identified in the proteome of a phagolysosomes infection model according to Schmidt et al. The predicted_interaction_score is represented by the edge
width and the hpi_score is represented by a color code (from 0.4 (yellow) to > 0.8 (red)). Nine of the predicted interactions were investigated in subsequent experiments (blue
circles). Three of those interactions could be stated by a Western blot experiment (grey circles with no fill).
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AFUA_2G12410, AFUA_5G11970, AFUA_6G04210 and
AFUA_7G01220 from the NCBI database (http://www.ncbi.nlm.
nih.gov). Three-dimensional (3D) structures of all these proteins
were modeled using Phyre2 server [34] which ranks consistently
among the top-scoring 3D structure prediction tools in critical
assessment of protein structure prediction (CASP) trials [43]. Since
energy minimization can repair the deformed geometries by mov-
ing atoms to release the internal constraints [64], we subsequently
refined all the models using the ModRefiner server [84]. The Psi/Phi
Ramachandran plot generated by the PROCHECK [38] program was
used to evaluate the quality of the models.
2.6.1. Protein-protein docking
To assess the binding affinity between the pathogen and host

proteins we performed protein-protein docking between three
pathogen-host pairs AFUA_1G04950 and CDK4, AFUA_1G04950
and PCNA, and AFUA_1G15020 and RS14 using ZDOCK [53]. For
each pair, we calculated 1000 poses of interactions and selected
the best pose using ZRANK [51]. ZDOCK ranks consistently among
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the top-scoring tools in Critical Assessment of Predicted Interac-
tions (CAPRI) rounds [28,77]. Moreover, ZRANK-based reranking
of docking predictions has shown significant improvement in
ZDOCK performance [51–52]. The ZRANK scoring function consid-
ers repulsive energies, van der Waals attractive, electrostatic short
and long-range attractive, and repulsive energies into calculations
[51].
2.6.2. Protein-drug docking
We obtained the structure of 1-benzyl-piperidine hydrochloride

(PubChem CID: 13894537), alagebrium chloride (PubChem CID:
13894537), castanospermine (PubChem CID: 13894537), and
cuminic acid (PubChem CID: 13894537) from the PubChem data-
base and converted it into 3D structures using Open Babel toolbox
[47]. All these ligands and A. fumigatus proteins (AFUA_2G05740,
AFUA_2G12410, AFUA_5G11970, AFUA_6G04210, and
AFUA_7G01220) were prepared for docking using Autodock4
[42]. AutoLigand program [24] was used for the identification of
ligand-binding sites in the above-mentioned A. fumigatus proteins.



Table 1
Primers used in the study.1

Protein
Gene (Uniprot ID)

Sequence Organism

40S ribosomal protein S14
Rps14 (P62264)

F: TTCGGATCCCGCAAGGGGAAGGAAAAG

R: TGTGTCGACCTTATCGTCGTCATCCTTGTAATCCACGACGACCCCCTTTTC

Mus musculus

Cyclin-dependent kinase 4
Cdk4 (P30285)

F: CTAGGATCCATGGCTGCCACTCGATATGAA

R: TGTGTCGACCTTATCGTCGTCATCCTTGTAATCTGCGTCGCTTTCCTCCTT

Mus musculus

Proliferating cell nuclear antigen
Pcna (P17918)

F: AATGGATCCCTGATCCAGGGCTCCATC

R: TGTGTCGACCTTATCGTCGTCATCCTTGTAATCATCTTCAATCTTGGGAGCCAA

Mus musculus

Eukaryotic translation initiation factor 2 subunit 1
Eif2s1(Q6ZWX6)

F: CACGGATCCATGCCGGGGCTAAGTTGT

R: TGTGTCGACCTTATCGTCGTCATCCTTGTAATCGGCTTCCATTTCTTCTGCATC

Mus musculus

14-3-3 protein beta/alpha
Ywhab(Q9CQV8)

F: ACCGGATCCACCATGGATAAGAGTGAGCTG

R: TGTGTCGACCTTATCGTCGTCATCCTTGTAATCGTTCTCTCCCTCTCCAGC

Mus musculus

14-3-3 protein epsilon Ywhae
(P62259)

F: ACCGGATCCGATCGGGAGGATCTGGTG
R: TGTGTCGACCTTATCGTCGTCATCCTTGTAATCCTGATTCTCATCTTCCACATC

Mus musculus

14-3-3 protein gamma
Ywhag(P61982)

F: ACCGGATCCATGGTGGACCGCGAGCAACTA

R: TGTGTCGACCTTATCGTCGTCATCCTTGTAATCGTTGTTGCCTTCACCGCCGTC

Mus musculus

14-3-3 family protein ArtA
AFUA_2G03290
(Q4WI29)

F: AACGGATCCATGGGTCACGAAGATGCTGTTTAC

R: GTAGTCGACCTCCTCCTTCTTCTCGGCAGG

Aspergillus fumigatus

40S ribosomal protein S5
AFUA_1G15020
(Q4WRU9)

F: GAAGGATCCGATCACGGGGAAGTCGAGGTC

R: TATGTCGACAGAGTTGGAGCTTCCCTTGGC

Aspergillus fumigatus

Serine/threonine-protein phosphatase
AFUA_1G04950
(Q4WJS6)

F: ATTGGATCCGATAGATTGCTGGAGGTGAGG

R: AATGGTACCCTTCTTTGGTTTGCGCGG

Aspergillus fumigatus

40S ribosomal protein Rps16
AFUA_2G10500 (Q4X1C0)

F: TTGGGATCCGTCCCGAGTGTGCAATGCTT
R: AATGTCGACGGATTTCTGGTACCTGGCACG

Aspergillus fumigatus

1 Underlined sequences indicate restriction sites. The sequences in italics are FLAG-tags. We show only the PCR validation of the protein in the article, however, each gene-
coding region was sequenced to validate the proper sequence. Sequences are now added to the supplementary file.
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We further performed the docking of 1-benzyl-piperidine
hydrochloride into AFUA_7G01220, alagebrium chloride into
AFUA_5G11970, castanospermine into AFUA_2G12410 and
AFUA_6G04210, and cuminic acid into AFUA_2G05740 in all the
predicted ligand-binding sites using Autodock4 implemented in
AMDock [75]. The post docking analysis for ligand-protein interac-
tions was performed using Discovery studio visualizer [6].
3. Results

3.1. Computational prediction

3.1.1. Fungus-Host Interface Interactions
Based on experimental evidence for protein interactions we set

up an inference method for host-pathogen interactions (Fig. 1). The
HPI prediction is based on the interolog method, where the inter-
actions with experimental evidence of several model species were
integrated into the host-pathogen network (Fig. 1). The detailed
workflow is given in Fig. S3 including a flow chart with description
of the data retrieval, integration, prediction method and mapping
on an experimental example (proteome analysis phagolysosome).

The orthologs in mice and fungi were determined for each inter-
actor of interactions resulting in a mouse fungus interaction net-
work. To evaluate the predicted interaction each edge of the
prediction framework in Fig. 1 was scored (source_interac-
tion_score, orthology_scores, predicted_interactions_score). All scores
were integrated to achieve the predicted_interaction_score.

We used different traits to score the predicted interactions (see
methods). The HPI network results in 3336 murine proteins, 1281
fungal proteins, and 15446 interactions using a predicted_interac-
tion_score > 0.5. The network ranked by the predicted_interac-
tion_score is stated in Table S4. The filtering of the network for
infection-relevant host-pathogen interactions (hpi_score > 0.4)
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resulted in 930 murine proteins, 160 fungal proteins, and 1915
interactions.

Using the inferred networks as a backbone we can model differ-
ent scenarios, for example, a phagolysosomes infection model and
a model for a drug target that manipulates the bottleneck interac-
tion at the intersection site of mouse and fungus.

As an alternative method to the protein interaction predictions,
the structural domain comparison can be used [61]. Supplement
illustrates how this can be applied to search for possible CD56 pro-
tein interactions with fungal proteins (Supplementary material,
Table S5). In this case, the structure blast (https://andom.bioapps.
biozentrum.uni-wuerzburg.de/index_new.html) examines three-
dimensional domains of fungal proteins, which is then compared
with the already validated interactions.

3.1.2. Interactions in the phagolysosome infection model
Using our prediction and scoring framework for host-pathogen

interactions we created a network to model fungal infection. In
Fig. 3 we show the HPI network to model a phagolysosome interac-
tion module of M. musculus and A. fumigatus. For this, we filtered
high-scoring interaction (predicted_interaction_score > 0.5 and hpi_-
score > 0.4) and filtered the network by proteome data retrieved
from infected murine phagolysosomes [60]. This resulted in an
HPI network of 93 infection-relevant interactions with 63 murine
proteins and 30 fungal proteins (Fig. 3 and Table S6).
Fig. 3 shows that different modules have potential infection rele-
vance, such as proteasome modules and modules of extracellular
ribosomal proteins. For sorting, we used an interaction method fil-
ter and an interaction type filter (as shown in Table S4) and calcu-
lated a sequence similarity score of the predicted mouse-fungi
interactions and the HPIDB interactions.

Furthermore, the serine/threonine protein phosphatase PP1
(AFUA_1G04950) has several high predicted interactions and hpi_-
score interactions with murine proteins, such as: casein kinase 2,
alpha 1 polypeptide (Csnk2a1; predicted_interaction_score: 0.6;
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hpi_score: 0.5), the proliferating cell nuclear antigen (Pcna; pre-
dicted_interaction_score: 0.6; hpi_score: 0.5), the eukaryotic trans-
lation initiation factor 2 subunit 1 (Eif2s1;
predicted_interaction_score: 0.9; hpi_score: 0.6), the cyclin-
dependent kinase 4 (Cdk4; predicted_interaction_score: 0.9; hpi_-
score: 0.6), and tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation proteins (Ywhae; predicted_interac-
tion_score: 0.9; hpi_score: 0.7).

The 14-3-3 family protein ArtA (AFUA_2G03290) is predicted to
interact with tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation proteins (Ywhab, Ywhae, Ywhag;
respective predicted_interaction_score: 0.8, 0.9, 0.8 and HPI_score:
�0.7).

The murine ribosomal protein S14 (Rps14) could interact with
the fungal 40S ribosomal protein S5 (AFUA_1G15020; predicted_in-
teraction_score: 0.7; hpi_score: 0.6) and with fungal 40S ribosomal
protein Rps16 (AFUA_2G10500; predicted_interaction_score: 0.7;
hpi_score: 0.5).

Further, it is shown in Fig. 3 that the translation elongation fac-
tor EF-1 alpha subunit, putative (AFUA_1G06390) might bind to
ATPase, H+ transporting, lysosomal V1 subunit B2 (Atp6v1b2).
The mitochondrial F1 ATPase subunit alpha (AFUA_8G05320)
might bind to ATP synthase, H+ transporting mitochondrial F1
complex, beta subunit (Atp5b).

The fungal RAB GTPase Ypt5 (AFUA_4G08040) is predicted to
interact with the murine early endosome antigen 1 (Eea1; pre-
dicted_interaction_score: 0.8) and RAB5A, member RAS oncogene
family (Rab5a; predicted_interaction_score: 0.6). The interactions
have an hpi_score of �0.5.

We tested nine of the interactions experimentally to prove our
interaction prediction framework (highlighted in Fig. 3) and to
investigate infection-relevant interactions.

3.1.3. Host-Fungus Interface Drug Targets
We searched for drugs that could manipulate protein interac-

tions at the host-pathogen intersection side, as those mark a bot-
tleneck of communication. We searched for drugs that
pharmacologically manipulate pathogen proteins and leave the
host signaling unaffected.

For this, we deduced bottleneck interactions from the predicted
M. musculus and A. fumigatus HPI network and searched for com-
pounds that interact with the pathogen proteins only. We further
filtered for pathogen proteins that have no ortholog on the host
species, have a predicted_interaction_score > 0.5 and an hpi_score
> 0.4. The STITCH database [70] states a combined score for the
compound protein interaction. Here, a combined score > 400 was
chosen. This yields a medium confidence score, so that no interest-
ing interactions are missed, but the accuracy is still fairly high.

The filtering resulted in the first subset of 120 predicted protein
compound interaction at the host-pathogen interface. The table of
120 potential drug-protein interactions was manually curated to
find 15 infection-relevant drugs targeting A. fumigatus proteins
(Table 3).

Most of the drugs exhibited an antifungal/fungicide activity and
some of them were supported by literature evidence. The com-
pounds with interesting compound properties and known biologi-
cal activities were investigated in more detail. One of them is
cuminic acid with a benzoic compound group and is known for
its antifungal activity towards several plant pathogens, such as
Phytophthora capsica, Rhizoctonia cerealis, Gaeumannomyces grami-
nis var. tritici, and Sclerotinia sclerotiorum [69]. Cuminic acid is pre-
dicted to target the AFUA_2G05740 gene, a putative Rho-type
GTPase that is essential in fungal cell wall construction. The next
candidate, 1-benzyl-piperidine hydrochloride is a derivative of
another drug, 1-benzylpiperidine. Antifungal activity of derivatives
of different benzyl piperidines against Candida auris and Agaricus
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bisporus [14,65] makes 1-benzyl piperidine hydrochloride a good
candidate as an antifungal compound. AFUA_7G01220 is a poten-
tial target of 1- benzyl piperidine hydrochloride. AFUA_7G01220
encodes for squalene synthase, an enzyme with a role in lanosterol
biosynthesis which is part of terpene metabolism. Squalene syn-
thase also plays a role in egosterol synthesis where egosterol was
found to be the major membrane sterol in azole-resistant A. fumi-
gatus variants [17]. Another drug, castanospermine is known for its
highly potent antifungal activity against S. cerevisiae and C. albicans
by inhibiting their exoglucanase activity [12]. For A. fumigatus, cas-
tanospermine is predicted to target two proteins, AFUA_2G12410
and AFUA_6G04210. AFUA_2G12410 is an uncharacterized protein
with predicted domains for mannosyl-oligosaccharide glucosidase
activity and the mannosyl-oligosaccharide glucosidase.
AFUA_6G04210 encoded protein is involved in processing and
remodeling N-glycans in the secretory pathway and is responsible
for cell wall synthesis, conidiation germination, and polar growth
in A. fumigatus [86]. Another candidate, alagebrium chloride con-
tains a phenacyl moiety that has antifungal activity against C. albi-
cans and A. fumigatus [16]. Alagebrium chloride was predicted to
target the protein kinase C AFUA_5G11970, responsible for the cell
wall integrity pathway [33]. To check if these compounds have a
plausible therapeutic activity against A. fumigatus, docking studies
were carried out using different compounds with their targeted
proteins and it will be discussed later in section 3.2.

3.2. Experimental validation

During the co-evolution, pathogenic fungi have developed sev-
eral strategies to avoid the harmful host environment, such as dif-
ferent pH, presence of immune cells, or complement-mediated
lysis. To resist the destruction caused by the host defense mecha-
nism, recognition and binding to host proteins is one of the mech-
anisms used by pathogens. To validate the interaction of host
proteins with A. fumigatus, nine pairs of interacting partners were
selected to validate their physical interaction:

1. 40S ribosomal protein S14 (Rps14) and 40S ribosomal protein
S5 (AFUA_1G15020)

2. 40S ribosomal protein S14 (Rps14) and 40S ribosomal protein
Rps16 (AFUA_2G10500)

3. 14-3-3 protein beta/alpha (Ywhab) and 14-3-3 family protein
ArtA (AFUA_2G03290)

4. 14-3-3 protein epsilon (Ywhae) and 14-3-3 family protein ArtA
(AFUA_2G03290)

5. 14-3-3 protein epsilon (Ywhae) and serine/threonine-protein
phosphatase (AFUA_1G04950)

6. 14-3-3 protein gamma (Ywhag) and 14-3-3 family protein ArtA
(AFUA_2G03290)

7. Cyclin-dependent kinase 4 (Cdk4) and serine/threonine-protein
phosphatase (AFUA_1G04950)

8. Proliferating cell nuclear antigen (Pcna) and serine/threonine-
protein phosphatase (AFUA_1G04950)

9. Eukaryotic translation initiation factor 2 subunit 1 (Eif2s1) and
serine/threonine-protein phosphatase (AFUA_1G04950)

Recombinant forms of the selected proteins were produced to
validate a single PPI. Correct insertion of the gene of interest into
the plasmid was validated by PCR (Table 1, Fig. 4 panel a). After
purification, the presence of proteins was validated by SDS-PAGE
and using the specific anti-HIS and anti-FLAG antibodies (Fig. 4
panel b, negative controls are depicted in Supplementary Fig. 1).
Validation of the interaction was performed by ligand binding
assay. The assay showed that three of the predicted nine interac-
tion partners were interacting: 1) 40S ribosomal protein S14 and
40S ribosomal protein S5; 2) proliferating cell nuclear antigen



Table 2
Experimental and computational data confirming host-pathogen interactions

Host Pathogen Predicted_interaction_score Hpi_score Derived source interaction Reference

Cdk4
(Cyclin-dependent
kinase 4)

AFUA_1G04950
(Serine/threonine-protein phosphatase)

0.9129 0.5691 CDK4 and PPP1CA/ PPP1CC in
human and mouse
Cdk4 and Pp1-87B in D.
melanogaster

[19 67]

Pcna (Proliferating cell
nuclear antigen)

AFUA_1G04950 (Serine/threonine-
protein phosphatase)

0.8720 0.5691 PCNA and PPP1CC in human and
mouse

[19]

Rps14 (40S ribosomal
protein S14)

AFUA_1G15020 (Ribosomal protein S5) 0.7265 0.5704 RPS14A and RPS5 in S. cerevisiae [13]

Table 3
Potential manipulations of the host and pathogen communication intersection by drugs. 1

No Drug ID
(ChEMBL)

Drug Known activity Literature
evidence

Target genes (A.
fumigatus
homolog)

Description of the target gene (A.
fumigatus homolog)

1 CHEMBL116158 Cuminic acid Fungicide [79,69] AFUA_2G05740 Putative Rho-type GTPase
2 CHEMBL269311 Pneumocandin B0 Precursor of

Caspofungin
— AFUA_6G12400 Putative 1,3-beta-glucan

synthase catalytic subunit,
major subunit of glucan
synthase

3 CHEMBL437438 L-692289 Like
Pneumocandin
B0

— AFUA_6G12400 Putative 1,3-beta-glucan
synthase catalytic subunit,
major subunit of glucan
synthase

4 CHEMBL555311 1-Benzyl-Piperidine Hydrochloride Antifungal [14, 87] AFUA_7G01220 Putative squalene synthetase
5 CHEMBL311226 Castanospermine Antifungal [12] AFUA_2G12410 Has domain(s) with predicted

mannosyl-oligosaccharide
glucosidase activity

AFUA_6G04210 Mannosyl-oligosaccharide
glucosidase, putative

6 CHEMBL2107309 Alagebrium chloride Antifungal [88] AFUA_5G11970 Protein kinase C, involved in cell
wall integrity pathway

7 CHEMBL1236227 N-(4-hydroxybutyl)-phospho-glycolohydroxamic acid Antifungal [89] AFUA_3G11690 Putative class II fructose-
bisphosphate aldolase

8 CHEMBL222348 Benzimidazole urea analogue Antifungal [90] AFUA_6G07430 Putative pyruvate kinase
9 CHEMBL272557 Fiacitabine Anti-HIV and

virus
— AFUA_2G03290 14-3-3 family protein

10 CHEMBL3989494 Siccanin Antifungal [91,92] AFUA_5G11230 Ras family GTPase protein
11 CHEMBL3989665 Alafosfalin Antifungal — AFUA_3G11260 Ubiquitin
12 CHEMBL293961 Benzimidazol derivate Fungicide — AFUA_1G06390 Putative translation elongation

factor EF-1 alpha subunit
13 CHEMBL2180480 4-[[5-bromo-4-[(Z)-(2,4-dioxo-3-phenacyl-1,3-

thiazolidin-5-ylidene)methyl]-2-ethoxyphenoxy]
methyl]benzoic acid

— [93] AFUA_6G12400 Putative 1,3-beta-glucan
synthase catalytic subunit,
major subunit of glucan
synthase

14 CHEMBL281926 Bryostatins — — AFUA_5G11970 Protein kinase C, involved in cell
wall integrity pathway

15 CHEMBL500316 S)-3-Amino-4-(1H-imidazol-4-yl)-1-phenyl-butan-2-
one; dihydrochloride

Like 5-
Phenacyl-1H-
imidazole

— AFUA_1G14570 Putative phosphoribosyl-AMP
cyclohydrolase

1 The enlisted drugs were obtained from drug-protein interactions searches in the STITCH database. The targets are proteins in the predicted HPI dataset. The drugs that
interact with human or murine proteins were excluded. Targets of the drug are fungal proteins that are not orthologous to human or murine proteins. The STITCH database
score was determined to be > 400. The database search for drug-protein relation resulted in 120 interactions. For further refinement of the predicted drug-protein
interactions, the table was manually curated, e.g., literature and database search for relevant drugs with implications in infection, resulting in 15 drug-protein interactions.

J. Balkenhol, E. Bencurova, Shishir K Gupta et al. Computational and Structural Biotechnology Journal 20 (2022) 4225–4237
and Serine/threonine-protein phosphatase; and 3) cyclin-
dependent kinase 4 and serine/threonine-protein phosphatase
(Fig. 4, panel c). All recombinant proteins were labeled with GFP
and His tag, the mouse proteins additionally with FLAG-tag. To
avoid non-specific binding, each protein was incubated with GFP-
His protein. The negative controls showed no interaction (shown
in Supplementary Fig. 1). The source interactions and the predicted
interaction score are listed in Table 2.

Among all the evaluated three pathogen-host protein pairs
(AFUA_1G04950 and CDK4, AFUA_1G04950 and PCNA, and
AFUA_1G15020 and RS14) we identified the top ZRANK score
(-109.49) between AFUA_1G04950 and PCNA (Fig. 5, panel a). In
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our recent study, we have identified that PCNA is also a preferential
target of the Ebola virus [22]. ZRANK score for AFUA_1G04950-
CDK4 (Fig. 5, panel b) and AFUA_1G15020-RS14 (Fig. 5, panel c)
was -105.78 and -89.97 respectively. Overall, the docking results
complement our experimental findings.

Moreover, we performed docking studies of compounds (see
methods) that have shown antifungal activities. The docking stud-
ies showed that selected therapeutic agents possess good binding
capacities in the binding pocket of receptors with the free energy
of binding from -5.63 to -6.79 kcal/mol. Among the tested
ligand-receptor pairs castanospermine and uncharacterized pro-
tein (AFUA_2G12410), and alagebrium chloride and protein kinase



Fig. 4. Experimental validation of selected protein interactions. Panel a – amplicons of seven murine and four A. fumigatus genes resolved on the agarose gel. Panel b(i) –
purified recombinant proteins detected with anti-HIS antibody. GFP served as a negative control. Panel b(ii) – mice proteins were immobilized on PVDF membrane and
hybridized with anti-Flag antibody (input control) [order of proteins: 1 - Ywhab, 2 - Ywhae, 3 - Ywhag, 4 - Cdk4, 5 – Rps14, 6 - Pcna, 7 - Eif2s1. (A. fumigatus proteins and GFP
were not interacting with anti-FLAG antibody, data in Supplementary Fig. 1)]. Panel C – Interaction between mice and A. fumigatus proteins. A. fumigatus proteins were
immobilized on nitrocellulose membrane and hybridized with purified mice proteins. Interactions were detected with an anti-FLAG antibody. Panel 1 - 40S ribosomal protein
S5 (AFUA_1G15020) with 40S ribosomal protein S14(Rps14); panel 2 - Serine/threonine-protein phosphatase (AFUA_1G04950) with Cyclin-dependent kinase 4 (Cdk4); panel
3 - Serine/threonine-protein phosphatase (AFUA_1G04950) with Proliferating cell nuclear antigen (Pcna).

Fig. 5. Protein-protein interaction complex (a) AFUA_1G04950 (orange) and PCNA (green) (b) AFUA_1G04950 (orange) and CDK4 (green) (c) AFUA_1G15020 (orange) and
RS14 (green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Binding affinities between ligand and A. fumigatus proteins.

Ligand Receptor Free energy of
binding (kcal/mol)

Cuminic acid Cell division control protein 42
homolog AFUA_2G05740

-5.63

1-Benzyl-
Piperidine
Hydrochloride

Squalene synthase
AFUA_7G01220

-5.91

Castanospermine Uncharacterized protein
AFUA_2G12410

-6.79

Castanospermine Mannosyl-oligosaccharide
glucosidase AFUA_6G04210

-6.01

Alagebrium
chloride

Protein kinase C AFUA_5G11970 -6.79
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C (AFUA_5G11970) showed the highest free energy of binding
(Table 4; Fig. S2 panels a-e).
4. Discussion

Infectious diseases remain one of the top five world’s deadly
diseases. The complex interaction mechanisms between the host
and the pathogen are crucial for the invasion, dissemination, and
replication of the pathogen in the host. Several bioinformatics
strategies have been developed to detect HPI, however, their accu-
racy is often limited as they were not validated in laboratory
experiments. On the other hand, high-throughput experiments
such as yeast-two-hybrid or mass spectrometry produce high
numbers of false-positive hits, whose filtration is often neither suf-
ficient nor accurate as the single PPI is not possible to validate [41].
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We created a method for inferring and scoring (predicted_inter-
action_score) host-pathogen interactions, even between different
kingdoms of life. Further, we scored infection-relevant interac-
tions (hpi_score) to model pathogenicity-relevant interactions in
the inferred network and used a number of further filters and pre-
diction refinements (see methods). A domain interaction database
was also in focus, but we decided to exclude the domain interac-
tion from DOMINE database (https://manticore.niehs.nih.gov/cgi-
bin/Domine), as we could not state the reliability of the proposed
interactions.

The selected interaction protein pairs were subsequently tested
in a binding assay to validate our computational prediction
method. Here we describe a proof of principle with interesting
applications that is already based on a MySQL infrastructure and
is therefore easy to transfer via PHP to a web application (see Sup-
plementary Fig. 4). We will improve and automate the pipeline in a
subsequent step, as well as add a web interface for easy explo-
ration of the dataset.

It could also be interesting to describe host-pathogen-relevant
network modules and intraspecies interactions. However, this
was not the focus of our study. We focused here on interspecies
interactions as we wanted to deliver a pipeline to identify specifi-
cally host-pathogen interactions.

To test the prediction framework, we integrated the host-
pathogen interaction with proteomic data of an infection study of
M. musculus phagolysosomes with A. fumigatus conidia [60]. Using
the prediction of murine and fungal protein interactions and the
temporal and spatial information of the proteins expressed during
infection we could identify 93 infection-relevant interactions, of
which nine were further analyzed. In the assay, we showed that
three of nine selected protein pairs interacted. However, it is nec-
essary to mention that selected proteins were produced in the
E. coli expression system, which can influence the folding of the
proteins, and the assays were performed without the addition of
cofactors or other proteins, which may be required for the remain-
ing interactions.

In a 3D protein docking simulation, we collected further
insights into the three experimental analyzed interactions.

In addition, we searched for potential drugs that could manipu-
late the pathogen proteins in the dataset of predicted host-
pathogen protein interactions. We identified 16 drugs with poten-
tial implications in the host-pathogen interface and analyzed 5 of
them in a 3D compound protein docking simulation, where the
cuminic acid and 1-benzyl-piperidine hydrochloride showed the
highest binding energy to the targeted proteins.

Following the in silico analysis, we selected 11 proteins to pro-
duce their recombinant forms and to validate their interactions. In
a previous study we already used a similar scoring method for
refinement of the interolog method [60] . In our current study,
we systematically evaluated and refined the scoring, as well as
generalized the scoring method to make it applicable for several
use cases. We choose here the same use case (phagolysosome)
but on a far more challenging comparison (mouse to A.fumigatus;
many predictions had to be transferred by homology) to build
our research on previous investigations (follow-up study, research
continuum) and added further evaluation steps to it. We fully out-
line the scoring method here: We transfer here host-pathogen
interactions often from directly measured experimental data to
another host organism (e.g. from human to mouse) and often also
to another pathogen (e.g. from the fungal pathogen C.albicans to A.-
fumigatus). The interacting proteins and their structure have to be
conserved in the new organisms, both in the host and the pathogen
that such a prediction transfer has success. This is hence a demand-
ing prediction task. For best success, we combined different filters
such as sequence similarity, evolutionary conservation of interac-
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tions as well as the coexistence of interactions in the same path-
way, and use both orthology as well as structure similarity to
rank and compare inferred interactions. Considering that we need
not only correct inference and conservation of all required interac-
tions but also correct working of the interaction assays including
the protein expression conditions, the confirmation of three such
host-pathogen interaction pairs can be considered a success. Mate-
rials and methods explain that the accuracy and success rate can
easily be augmented up to nearly fully accurate the closer you
get to the direct experimental data and databases which are the
basis for our predictions, for instance studying the human host
[see also our previous paper; [60]].

The first interaction was detected between the fungal 40S ribo-
somal protein S5 (AFUA_1G15020, UniProt ID: Q4WRU9) and mur-
ine 40S ribosomal protein S14 (Rps14, UniProt ID: P62264). The
predicted interaction is derived from the source interaction
between RPS14A and RPS5 in S. cerevisiae [13]. Both proteins have
predicted localization in the extracellular region (GO CC). During
the murine phagolysosome infection with A. fumigatus, Rps14 is
upregulated during infection [60] indicating putative infection rel-
evance. In general, ribosomal proteins have multiple functions
including ribosome assembly and maintaining ribosome function,
and numerous extraribosomal activities including cell death, tran-
scriptional regulation, and pro-inflammatory signaling during bac-
terial infection [80]. Interestingly, extracellular functions of
ribosomal proteins are currently explored thereby redefining their
function [83] and might play a role in immunity [83] and inflam-
mation [18]. In particular, the S5 rRNA is crucial for the formation
of ribosomal subunits and interacts with tRNA and other ribosomal
proteins, including L5, L18, and L25 [20]. Moreover, it has been
identified as an important binding target for translation initiation
during virus infections [5]. Also, the Rps14 is involved in numerous
interactions mainly with other ribosomal proteins, transcription
factors, RNA-binding proteins as well as cytoskeleton-forming
and related proteins such as actin and ACTR3B [9,26,27,54]. A
recent study found Rps14 to bind to Salmonella typhimurium pro-
tein SteC, which is required for actin bundling [78]. The interaction
between the cytoskeleton and ribosomal proteins is necessary for
the cytoskeletal organization and protein connection during the
protein synthesis machinery [37], which has been detected also
in A. fumigatus [30].

Phosphorylation of either host or pathogen proteins is a funda-
mental event during pathogenesis, allowing adherence, protein-
protein interaction, replication, and persistence of the pathogen
in host cells [3,32]. Our computational analysis identified serine/
threonine-protein phosphatase (SPS (AFUA_1G04950), UniProt
ID: Q4WJS6) as the most prominent hub protein with nine interac-
tion partners, from which four were experimentally tested and two
were confirmed for the physical interaction in vitro; cyclin-
dependent kinase 4 (Cdk4, UniProt ID: P30285) and proliferating
cell nuclear antigen (Pcna, UniProt ID: P17918) (Fig. 3c). During
the infection, SPS is strongly upregulated in wild-type conidia
enclosed in murine phagolysosomes which indicates a role in the
regulation of replication, translation and transcriptome activity,
and cytoskeleton reorganization. Among the host protein, Cdk4 is
strongly upregulated, and Pcna is slightly upregulated during
infection with A. fumigatus [60] showing that both proteins might
be relevant for infection. The next step will be to investigate our
findings in vivo and to characterize the fundamentals of the veri-
fied interaction and their importance during infection. In this
paper, we only focused on a computational method to analyze
and reveal key host-pathogen interactions. In addition, we verified
several putative interaction partners as evidence that our method
is applicable to research on host-pathogen interactions and can
facilitate the search for interacting partners. An in vivo evaluation
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would provide answers to very important questions, and we hope
to continue to unravel these interactions and their role in infection
in future.

Predictions on drugs potentially manipulating host and patho-
gen communication and protein-ligand docking studies revealed
promising drug candidates. Castanospermin is a natural alkaloid
and its clinical drug alternative celgosivir has proven to have dif-
ferent cancer, as well as antiviral applications [55,58,81,82], and
was recently suggested as COVID-19 therapeutic [59]. Additionally,
castanospermine is a good inhibitor for different glycosidases in A.
fumigatus, and exoglucanases in S. cerevisiae and C. albicans [15,57].
In our study, the prediction of castanospermine targeting
mannosyl-oligosaccharide glucosidase with high free energy of
binding (-6.01 kcal/mol) suggests castanospermine as a potential
target against A. fumigatus. Alagebrium chloride is an advanced
glycation endproduct breaker that reverses one of the ageing
mechanisms [76]. Its N-phenacyl imidazole moiety is known for
its antifungal activity [45,66]. The prediction to target protein
kinase C with a high free binding energy of 6.70 kcal/mol, alage-
brium chloride ranges as a potential drug against A. fumigatus.
Cuminic acid is a well-known fungicide for plants and it is proven
to be environmentally friendly [50]. Different studies showed it
harms no plants in some cases cuminic acid enhances the plant’s
defense mechanism [68,79]. Targeting genes that are responsible
for cell wall integrity and polarity with a predicted high free bind-
ing energy (-5.63 kcal/mol) cuminic acid also stands out as a
potential drug against A. fumigatus. 1-Benzyl-piperidine hydrochlo-
ride targeting gene encodes squalene synthase involved in ergos-
terol synthesis pathway. This could indicate 1-Benzyl-piperidine
hydrochloride is organism friendly as it targets a unique fungi
sterol. With a -5.91 kcal/mol free binding energy, 1-Benzyl-
piperidine hydrochloride can be speculated as a potential drug
candidate against A.fumigatus. Based on our analysis, we suggest
here two clinically approved drugs and two compounds not yet
approved to be investigated for benefits in A.fumigatus infection.

5. Conclusion

We developed a framework for predicting transkingdom inter-
actions and investigated several host-pathogen interactions in sil-
ico and also in vitro. Our data prove that the prediction
framework helps to narrow down potential infection-relevant
interaction candidates that could be validated in subsequent
experiments. Moreover, three protein pairs are experimentally val-
idated and involved in the host-pathogen interaction.

The identified drug-protein interactions can be used as leads for
new therapeutic strategies in fungal infections.

Further experimental validation is necessary to claim the effec-
tiveness of our findings for future antifungal treatment.
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