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Abstract
The Val66Met polymorphism of brain-derived neurotrophic factor (BDNF) is associated with psychiatric disorders and regional
gray matter volume (rGMV) in adults. However, the relationship between BDNF and rGMV in children has not been clarified.
In this 3-year cross-sectional/longitudinal (2 time points) study, we investigated the effects of BDNF genotypes on rGMV in
185 healthy Japanese children aged 5.7–18.4 using magnetic resonance imaging (MRI) and voxel-based morphometry (VBM)
analyses. We found that the volume of the right cuneus in Met homozygotes (Met/Met) was greater than in Val homozygotes
(Val/Val) in both exams, and the left insula and left ventromedial prefrontal cortex volumes were greater in Val homozygotes
versus Met homozygotes in Exam l. In addition, Met homozygous subjects exhibited higher processing speed in intelligence
indices than Val homozygotes and Val/Met heterozygotes at both time points. Longitudinal analysis showed that the left
temporoparietal junction volume of Val/Met heterozygotes increased more substantially over the 3-year study period than in
Val homozygotes, and age-related changes were observed for the Val/Met genotype. Our findings suggest that the presence of
2 Met alleles may have a positive effect on rGMV at the developmental stages analyzed in this study.
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Introduction

Brain-derived neurotrophic factor (BDNF) is an essential regula-
tor of neuronal growth, differentiation, distribution, and survival
(Poo 2001; Bartkowska et al. 2010; Notaras et al. 2015). BDNF plays
a central role in neuronal plasticity (Park and Poo 2013), and BDNF

knockout mice exhibit disrupted development of postnatally
born hippocampal neurons (Gao et al. 2009). Changes in BDNF
levels during development may have a significant impact on be-
havioral and neuroanatomical changes (Casey et al. 2009); how-
ever, the roles of BDNF in human development have not been
well characterized.
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The human BDNF gene is located on chromosome 11. The
most common BDNF polymorphism is a single-nucleotide sub-
stitution of A for G at nucleotide position 196 (G196A), which
results in amino acid substitution of methionine (Met) for valine
(Val) that is called Val66Met (rs6265) (Hong et al. 2011; Czira et al.
2012). This single-nucleotide polymorphism (SNP) is located in
the prodomain of the BDNF gene and leads to impaired in-
tracellular processing, trafficking, and extracellular secretion
(Egan et al. 2003) and may cause aberrant gray matter growth
(Chen et al. 2006) and neural plasticity (Cheeran et al. 2008;
Lamb et al. 2015). It has been suggested that Val66Met affects
memory and cognition (Hariri et al. 2003; Lamb et al. 2015), and
this SNP is associated with neuropsychiatric disorders including
schizophrenia, depression, autism, eating disorders, and Alzhei-
mer’s disease (Notaras et al. 2015).

Reports on the relationship between the Val66Met SNP and
the function and morphology of various brain structures are in-
consistent. In humans, both reducing (Pezawas et al. 2004; Bueller
et al. 2006; Montag et al. 2009) and increasing (Liu et al. 2014) ef-
fects of the Val66Met SNP on regional brain volume have been
shown. Most studies conducted in Caucasians have merged Met
homozygotes (Met/Met) and Val/Met heterozygotes into a single
group of Met carriers, with the exception of a Sardinian cohort
(Terracciano et al. 2010). However, in studies of Asian subjects,
Met homozygotes showed different characteristics of brain
morphology and cognitive functions comparedwith Val/Met het-
erozygotes (Nemoto et al. 2006; Liu et al. 2014). Therefore, further
investigations comparing the 3 major genotypic groups (Val/Val,
Val/Met, and Met/Met) are needed to clarify the effects of the
Val66Met polymorphism on brain development, structure, and
function.

Cross-sectional studies have suggested that there are age-
dependent effects of Val66Met on brain morphology (Nemoto
et al. 2006; Sublette et al. 2008), but these have not been well
investigated in children and adolescents (Mueller et al. 2013)
with the exception of a neonatal study (Knickmeyer et al. 2014).
To elucidate the effects of Val66Met on neuronal and cognitive
development on children, we conducted a cross-sectional and
longitudinal analysis of Val/Val, Val/Met, and Met/Met indivi-
duals in a cohort of 185 healthy Japanese children by examining
Met homozygotes (Met/Met) independently fromVal/Met hetero-
zygotes and then comparing these groups with Val homozygotes
(Val/Val).

Materials and Methods
Subjects

All subjects were healthy, right-handed Japanese children. We
collected brain magnetic resonance imaging (MRI) scans from
290 subjects (145 males and 145 females; age range, 5.6–18.4
years) who did not have any history of malignant tumors or
head trauma involving loss of consciousness. Based on self-
reporting, children with a history of epilepsy, impaired color
vision, diagnosis of developmental disorders, routine visits to a
hospital because of illness, congenital disorders, or routine use
of medications (except for over-the-counter drugs such as cold
or anti-allergy medications) were excluded during the recruit-
ment processes. We did not use specific diagnostic tools,
although 1 author (Y.T.) is a radiologist who thoroughly checked
the T1-weighted structural images for undiagnosed neurological
diseases.

In accordance with the Declaration of Helsinki, written in-
formed consent was obtained from each subject and his/her

parent prior to MR scanning and after a full explanation of the
purpose and procedures of the study. This study was approved
by the institutional review board of Tohoku University.

Exam 2 was conducted approximately 3 years after Exam 1,
and 235 subjects participated. Due to issues with the quality of
the imaging data (1 subject) and lack of BDNF genotype informa-
tion (49 subjects), imaging analyses were performed in 185 sub-
jects (95 males and 90 females). The mean interval between the
2 exams in these 185 subjects was 1108 days (623–1387 days). Ef-
fects of the interval were regressed out as a covariate of no inter-
est in brain imaging analyses.

Neuropsychological Testing

In both exams, trained examiners conducted intelligence tests
using the Japanese version of the Wechsler Adult Intelligence
Scale-Third Edition (WAIS-III) or Wechsler Intelligence Scale for
Children-Third Edition (WISC-III) for subjects older or younger
than 16 years, respectively. The full-scale IQ (FSIQ), verbal IQ
(VIQ), and performance IQ (PIQ) and 4 index scores (verbal com-
prehension index [VCI], perceptual organization index [POI], pro-
cessing speed index [PSI], and working memory index [WMI])
were calculated as described elsewhere (Yokota et al. 2015). The
FSIQs were >70 for all subjects.

Subject Genotyping

High molecular weight DNA was isolated from saliva with
Oragene containers (DNA Genotek Inc., Ottawa, Ontario,
Canada), according to the manufacturer’s protocol. The BDNF
196-G>A (rs6265) polymorphism (Val66Met) was genotyped
using TaqMan analysis (assay ID: C_11592758_10; Applied Biosys-
tems, Foster City, CA, USA). Genotyping was conducted in a 10-μL
volume containing 20 ng genomic DNA, 5 μL TaqMan Mastermix
(Applied Biosystems), 0.25 µL TaqMan assay reagent, and 2.25 µL
H2O. Genotyping was performed on a CFX96™ Real-Time Poly-
merase Chain Reaction Detection System, and genotypes were
scored using the algorithm and software supplied by the manu-
facturer (BioRad, Hercules, CA, USA). The genotyping assayswere
validated by a duplicate measurement, and blanks were used as
quality controls throughout genotyping.

Image Acquisition

All imageswere collected using a 3-T Philips Intera Achieva scan-
ner (Philips, Amsterdam, the Netherlands). Three-dimensional,
high-resolution, T1-weighted images (T1WI) were collected
using a magnetization-prepared rapid gradient-echo (MPRAGE)
sequence. The parameters were as follows: 240 × 240 matrix,
TR = 6.5 ms, TE= 3ms, TI = 711ms, FOV=24 cm, 162 slices, 1.0mm
slice thickness, and scan duration of 8 min and 3 s.

Structural Data Preprocessing and Analysis

Preprocessing of the MRI data was performed using Statistical
Parametric Mapping software (SPM8; Wellcome Department of
Cognitive Neurology, London, UK) following the protocol for
voxel-based morphometry (VBM) analysis reported in our previ-
ous study (Hashimoto et al. 2015). Then, rGMV was calculated.
T1WIs of each individual were segmented into 6 tissue sections
using the new segmentation algorithm implemented in SPM8.
In this protocol, the default tissue probability map (TPM) for
gray matter was manipulated from maps implemented in the
software such that the voxels in which the gray matter tissue
probability of the default tissue gray matter TPM plus the white
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matter tissue probability of the default TPM<0.25were assigned a
value of 0. This protocolmakes it less likely for the duramatter to
be classified as gray matter than when the default gray matter
TPM is used, provided there are no other significant segmenta-
tion problems.

In this novel segmentation process, default parameters were
used, except in the case of affine regularization, which was per-
formed using the International Consortium for Brain Mapping
(ICBM) template for East Asian brains. We then proceeded into
the diffeomorphic anatomical registration through exponen-
tiated lie (DARTEL) algebraic registration process implemented
in SPM8. In this process, we used DARTEL-imported images of
the 6 TPMs created using the above-mentioned segmentation
process. First, the template for the DARTEL procedures was cre-
ated using the T1WI data from the Exam 1 scans of all the sub-
jects. Next, using this existing template, DARTEL procedures
were performed using both T1WI scans of all of the subjects in-
cluded in the study and the default parameter settings. The re-
sulting images were then spatially normalized to the Montreal
Neurological Institute (MNI) space to obtain images with 1.5 × 1.5
× 1.5 mm3 voxels. In addition, we performed a volume change
correction (modulation) by modulating each voxel with the
Jacobian determinants derived from the spatial normalization,
allowing for the determination of regional differences in the
absolute amount of brain tissue. Subsequently, all images were
smoothed by convolving themwith an isotropic Gaussian kernel
of 8-mm full width at half maximum (FWHM), which is the
standard version of the smoothing for DARTEL. Smoothing ker-
nel of 8–10 mm is appropriate for DARTEL-VBM (Shen and Sterr
2013), although a 12-mmFWHMhas been recommended for clus-
ter-forming thresholds (Silver et al. 2011). The resulting rGMV
calculations were used for cross-sectional imaging analyses.

Finally, the signal change in rGMV between Exam 1 and 2
images was computed at each voxel for each participant. In this
computation, we included only voxels that showed GMV values
>0.10 in both exams to effectively limit the images to areas likely
to be GM. The resulting maps representing the rGMV change

between the MRI scans (rGMVexam − rGMVexam1) were then
used for longitudinal imaging analyses.

Structural Data Statistical Analysis

Statistical analyses of imaging data were performed with SPM8.
To assess the rGMV differences among the 3 genotypic groups,
analysis of covariance (ANCOVA) was employed using age, sex,
and the interval between Exam 1 and Exam 2, and changes of
total intracranial volume were considered covariates of no
interest. F-contrasts of SPM were not applicable because of the
statistical (cluster level) threshold described below.

In addition, the effects of PSI on rGMV were investigated with
ANCOVA using PSI scores as a covariate of interest, because there
were significant differences in PSI between BDNF genotypic
groups in both exams. The statistical significance level was set
as P < 0.05 (family-wise error corrected at the cluster level) with
an uncorrected P < 0.001 at the voxel level. In addition, correla-
tions (Pearson’s r) between PSI scores and rGMV of the region de-
tected by the above-mentioned analysis were calculated. Finally,
the effects of age on rGMV changes over 3 years in 3 genotypes
were analyzed by dividing subjects into younger and older age
groups using 1-way analysis of variance (ANOVA), because age-
related rGMV changes could be observed during development
(Brain Development Cooperative 2012) in longitudinal analyses.

Results
Genotypic Distribution

The BDNF genotypic distributions of the 185 sampled subjects
were as follows: Val/Val (n = 68, 36.8%), Val/Met (n = 84, 45.4%),
and Met/Met (n = 33, 17.8%) (Tables 1 and 2). Note that the Met -
allele is widely prevalent in the Japanese population (Kunugi
et al. 2004). Tests for the Hardy–Weinberg equilibrium exhibited
no deviations from the expected genotype distribution (χ2 = 0.63,
P > 0.05). There were no significant differences in age (F = 0.04,
P = 0.39) or sex (χ2 = 0.09, P = 0.96).

Differences in IQ Scores

A 3-way ANOVA (3 BDNF genotypes × 2 exams × 7 IQ scores) was
used to reveal IQ score differences between BDNF genotypes
using Statistical Package for Social Science software (SPSS ver.
22). There were significant main effects for exams (F = 16.98,
P < 0.001) and IQ scores (F = 8.68, P < 0.001) (Table 3). In addition,
there were significant interactions for Exams × IQ scores (F = 8.06,
P < 0.001) and Genotypes × IQ scores (F = 3.60, P < 0.001) (Table 3).
Post hoc analysis (Ryan’s method) of the genotypes × IQ scores

Table 1 Demographic information

BDNF genotype

Val/Val Val/Met Met/Met

N (%) 68 (36.8) 84 (45.4) 33 (17.8)
Male/Female 34/34 44/40 17/16
Exam 1 Age (mean ± SD) 11.5 ± 3.2 11.3 ± 3.1 10.6 ± 3.0
Exam 2 Age (mean ± SD) 14.5 ± 3.2 14.4 ± 3.1 13.6 ± 3.0

Table 2 Mean IQ and index scores ± SD of each genotypic group in Exams 1 and 2

Exam 1 Exam 2

Val/Val Val/Met Met/Met Val/Val Val/Met Met/Met

FSIQ 100.8 ± 11.5 103.5 ± 10.8 101.9 ± 13.7 103.9 ± 13.4 105.0 ± 11.4 103.9 ± 12.5
PIQ 99.4 ± 12.9 100.7 ± 11.7 101.1 ± 13.9 103.4 ± 13.5 102.8 ± 11.7 103.8 ± 14.0
VIQ 101.6 ± 12.7 105.4 ± 11.7 102.2 ± 13.6 103.7 ± 14.9 106.1 ± 12.6 103.4 ± 11.2
VCI 101.3 ± 14.1 105.5 ± 13.0 101.6 ± 13.7 104.5 ± 15.8 107.1 ± 12.3 103.2 ± 12.1
POI 100.8 ± 13.9 101.6 ± 12.6 99.5 ± 15.6 102.1 ± 14.1 102.4 ± 13.0 100.2 ± 13.9
PSI 99.1 ± 12.0 99.9 ± 11.9 107.4 ± 14.1 104.9 ± 12.4 105.7 ± 11.9 113.0 ± 12.8
WMI 99.0 ± 12.8 99.7 ± 11.4 100.8 ± 13.4 98.7 ± 10.6 99.1 ± 12.9 100.2 ± 14.8

Note: FSIQ, full-scale IQ; PIQ, performance IQ; VIQ, verbal IQ; VCI, verbal comprehension index; POI, perceptual reasoning index; PSI, processing speed index;WMI,working

memory index.
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interaction identified by 3-way ANOVA demonstrated that Met/
Met homozygotes exhibited a higher processing speed index
(PSI) than Val/Val homozygotes (P = 0.001) and Val/Met heterozy-
gotes (P = 0.002) (Fig. 1). There were no significant differences in
the other IQ metrics (FSIQ, PIQ, VIQ, VCI, POI, or WMI) between
genotypic groups.

Cross-Sectional Differences in rGMV

VBM analyses showed significant differences between groups
(Table 4). In Exam 1, Met/Met homozygotes showed a larger
rGMV in the right cuneus than Val/Val homozygotes (Fig. 2B). In
contrast, Val/Val homozygotes showed a larger rGMV in the left
insula and the left ventromedial prefrontal cortex (VMPFC) than
Met/Met homozygotes (Fig. 2A). In Exam2,Met/Met homozygotes
likewise displayed a larger rGMV in the right cuneus than Val/Val
homozygotes (Fig. 3).

Effects of PSI on rGMV

In Exam 1, greater effects of PSI on rGMV in the cerebellum (x, y, z
coordinates: [−3, −39, −15], 2187 voxels, Z score = 4.44) were

observed for Met/Met than Val/Val, and significant correlations
between PSI and the cerebellum volume in Met/Met (r = 0.36,
P < 0.05) were detected (Fig. 4). No significant differences in the
effects of PSI scores on rGMV were found between BDNF
genotypes in Exam 2.

Longitudinal Changes in rGMV

As shown in Table 4, Val/Met heterozygotes showed a significant
rGMV increase in the left temporoparietal junction (TPJ) over the
3-year study period in comparison to the Val/Val homozygotes
(Fig. 5).At youngerages, childrenwithaVal/MetSNPdisplayedgreat-
er increases in rGMV,which decreased substantially at older ages; in
contrast, Val (and also Met) homozygotes showed moderate rGMV
changes with age (Fig. 5, bottom). Three (genotypes) × 2 (younger
and older age groups) ANOVA revealed significant effects of age on
rGMV (F1,179 = 12.74, P = 0.0005) and a significant genotype × age
interaction (F2,179 = 3.15, P = 0.0455). A significant simple main
effect for Val/Met × age (F1,179 = 16.86, P < 0.0001) was detected.

Discussion
Effects of 3 BDNFVal66Met genotypes (Met/Met, Val/Met, and Val/
Val) on cognitive andneural development in childrenwere exam-
ined in the 3-year follow-up study. In cross-sectional analyses,
we found that Met homozygotes had higher PSI scores than Val
homozygotes and Val/Met heterozygotes in both exams. Com-
paredwith Val homozygotes, the right cuneus volumewas great-
er in Met homozygotes in both exams. Longitudinal analysis
revealed greater volume increases in the left TPJ of Val/Met het-
erozygotes than in Val/Val homozygotes. Thus, this is the first
study to suggest that Met alleles of BDNF may convey cognitive
and neural development advantages in children.

We were surprised to observe enhancement of cognitive and
neural development in Met homozygous children since negative
effects of the Met allele on brain development and function have
been suggested. However, because of the lower frequency of the
Met allele in Caucasians (20%) compared with Asians (40–50%)
(Petryshen et al. 2010), effects of Met homozygosity have not
been adequately demonstrated in previous studies with Cauca-
sian cohorts. Recent studies have indicated that the Met allele
is associated with positive effects on rGMV in healthy adults
(Liu et al. 2014) and in patients with multiple sclerosis (Ramasa-
my et al. 2011), systemic lupus erythematosus (Oroszi et al. 2006),
and major depression (Gonul et al. 2011). In addition, the
Met allele was correlated with positive effects on IQ scores (Tsai
et al. 2004; Vyas and Puri 2012). Although the underlying mech-
anism remains unknown, it has been hypothesized that reduced
BDNF secretion caused by Val66Met substitution may lead to a
compensatory increase in the extracellular release of pro-BDNF
(Liu et al. 2014). Pro-BDNF would in turn be cleaved by extracellu-
lar serine protease plasmin and matrix metalloproteinases to
form mature BDNF (Lee et al. 2001), which might ultimately
have protective effects on rGMV. We speculate that this may be
the mechanism for the positive effects of Met homozygosity on
childhood brain development reported in this study.

Met homozygotes had higher PSI scores and displayed greater
right cuneus volumes compared with Val homozygotes and Val/
Met heterozygotes. Furthermore, positive correlations between
PSI and the cerebellum volume in Met homozygotes were found
in Exam1. These results suggest that the presence of 2Met alleles
(i.e., Met/Met, rather than Val/Met) might be required to induce
these positive effects. Given the Met-enhancing mechanism re-
ported by Liu et al. (2014), 2 Met alleles (Met/Met) might

Table 3 3-way ANOVA results

df F P

Main effects
BDNF genotypes 2 0.43 0.64
Exam 1/2 1 16.98 <0.001
IQ scores 6 8.67 <0.001

Interactions
Genotypes × Exam1/2 2 0.383 0.68
Genotypes × IQ scores 12 3.59 <0.001
Exam 1/2 × IQ scores 6 8.06 <0.001
Genotypes × Exam 1/2 × IQ scores 12 0.11 1.00

Figure 1. Processing speed index differences among the Met/Met, Val/Met, and

Met/Met genotypic groups. Post hoc analysis (Ryan’s method) of the 3-way

ANOVA revealed significant differences in both Exams 1 and 2 between Met/Met

and Val/Val individuals, and between Met/Met and Val/Met individuals.
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Table 4 Regional gray matter differences in genotypic groups in cross-sectional and longitudinal analyses

Brain area MNI coordinates Number of voxels Cluster Peak level

x y x P value Z score

Exam 1
Val/Val >Met/Met

Left insula −38 5 3 1874 0.001 4.83
Left VMPFC −6 20 −8 2164 0.000 4.64

Met/Met > Val/Val
Right cuneus 26 −72 22 1029 0.02 4.72

Exam 2
Met/Met > Val/Val

Right cuneus 24 −75 25 1240 0.009 4.81
Longitudinal change (Exam 2–1)

Val/Met > Val/Val
Left TPJ −51 −42 21 2483 0.000 4.48

Note: MNI, Montreal Neurological Institute; VMPFC, ventromedial prefrontal cortex; TPJ, temporoparietal junction.

Figure 2. Brain regions showing significant volume differences between groups in Exam 1. (A) The left insula and ventromedial prefrontal cortex (VMPFC) showed

significantly greater volume in Val/Val homozygotes compared with Met/Met homozygotes. (B) The right cuneus showed significantly greater volume in Met/Met

homozygotes compared with Val/Val homozygotes. The color bar indicates the t value and R denotes right.

Figure 3. Brain regions showing significant volume differences between groups in Exam 2. The right cuneus showed significantly greater volume inMet/Met homozygotes

compared with Val/Val homozygotes in Exam 2. The color bar indicates the t value and R denotes right.
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significantly augment the release of pro-BDNF, whereas only one
Met allele (Val/Met) might have only a minor effect. Although no
previous studies have demonstrated a relationship between PSI
and BDNF genotypes in children, adult Val homozygotes demon-
strated faster processing speed than Met carriers (Miyajima et al.

2008; Raz et al. 2009); however, there were very few Met homozy-
gotes in this cohort. In contrast, Met homozygosity in elderly in-
dividuals has been associated with higher non-verbal reasoning
(Harris et al. 2006), while better response inhibition has been re-
ported in young adults with Met alleles (Beste et al. 2010). En-
hanced processing speed across development is related to a
shorter visual component of event-related potentials (Couperus
2011). The cuneus lies in the dorsal visual pathway and is adja-
cent to the parieto-occipital sulcus that is involved in visual mo-
tion processing (Pitzalis et al. 2010). The cuneus shows functional
connectivity with both dorsal and ventral visual regions includ-
ing the intraparietal sulcus and fusiform gyrus (Bray et al.
2015). Taken together, these results suggest that greater rGMV
in the cuneusmay have facilitated visual information processing
in the Met homozygous children in our study. Moreover, cerebel-
lar volumes are related to information processing and gait speed
in older adults (Nadkarni et al. 2014). Improved processing speed
has been associated with greater rGMV in the precentral gyrus
and has no effects on other cognitive domains including working
memory and creativity in young adults (Takeuchi et al. 2011). The
greater cerebellar and cuneus volumes in our Met homozygous
children might be associated with their higher processing speed.

Val homozygotes demonstrated greater volumes in the left in-
sula and left VMPFC compared with Met homozygotes in Exam 1
but not in Exam2. These findings suggest that rGMV in the left in-
sula and VMPFC increased more rapidly over the 3 years of the
study in Met homozygotes versus Val homozygotes. The

Figure 4. Effects of PSI on rGMV in Met/Met homozygotes in Exam 1. Positive

correlations between PSI and the cerebellum (peak coordinates: [−3, −39, −15],
mean of 2187 voxels, shown on the top left) volume in Exam 1 are shown.

A regression line and a correlation coefficient (r) are shown.

Figure 5. Effects of Val66Met on brain development identified in longitudinal analyses. The left TPJ showed significantly increased volume over the 3-year study period in

Val/Met heterozygotes comparedwithVal/Val homozygotes (top). The color bar indicates t value andRdenotes right.Mean rGMVchanges in the left TPJ (peak coordinates:

[−51, −42, 21], mean of 2483 voxels) of the 3 genotypes are shown (bottom left). Blue, red, and green graphs indicate Met/Met, Val/Met, and Val/Val, respectively. Error bars

display standard error. Younger (N = 109, Met/Met: 24, Val/Met: 49, Val/Val: 36) and older (N = 76, Met/Met: 9, Val/Met: 35, Val/Val: 32) subjects are shown separately (bottom

center and right).
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genotypic differences in the left insula and VMPFCmight be tran-
siently associatedwith this developmental stage. Comparedwith
Met carriers, Val homozygotes have been shown to exhibit great-
er volumes in several brain regions including the hippocampus,
dorsolateral prefrontal cortex, and amygdala (Pezawas et al.
2004; Bueller et al. 2006; Montag et al. 2009). However, we did
not observe differences in these regions in this study. This dis-
crepancy might be explained by differences between children
and adults. Although smaller hippocampal volumes in healthy
adult Met carriers were reported in a meta-analysis (Molendijk
et al. 2012), many previous studiesmight suffer from small effect
sizes (Harrisberger et al. 2015) with few Met carriers.

In the longitudinal analysis, Val/Met heterozygotes showed
greater rGMV increases of the left TPJ than Val homozygotes. In
all 3 genotypic groups, the left TPJ volume increased at earlier
ages and declined in older subjects. Reduced rGMV in the TPJ
over childhood developmentmay reflect functional andmorpho-
logical reorganization during development (Paus et al. 2008). The
observation of greater volume increases in childhood compared
with adolescence in Val/Met heterozygotes suggests age-related
effects on brain volume in this region. However, significant differ-
ences between the 3 genotypes were not detected in the TPJ in ei-
ther exam. The presence of longitudinal but not cross-sectional
effects on gray matter volume suggests that age-dependent ef-
fects on regional neural plasticity might be more prominent in
Val/Met heterozygotes.

Some limitations of our study should be noted. The positive
effects of Met homozygosity in children found in this study
might be derived from ethnicity or population bias (Notaras
et al. 2015) rather than age. We could not detect an effect of PSI,
which was higher in Met homozygotes, on rGMV in Exam 2, pos-
sibly due to age-dependent effects and/or the small number of
Met homozygous subjects. Interpretation of developmental
changes in brainmorphology should be done cautiously, because
age-related decreases in rGMV and increases in rWMV have been
observed in adolescents (Brain Development Cooperative 2012),
whereas both region-specific rGMV increases and decreases
have been reported in adults (Tamnes et al. 2010). Furthermore,
a smaller rGMV inAsian adultMet carriers thanVal homozygotes
(Kim et al. 2013) also suggests that careful interpretation is re-
quired for our results. White matter structures rather than
rGMVmay be associatedwith PSI (Penke et al. 2012), and this vari-
able was not assessed in this study. Therefore, future research
conducted with a larger sample and other imaging methods
(e.g., diffusion tensor imaging) that also accounts for ethnicity
or population bias is desirable.

In conclusion, this study revealed thatMet homozygosity had
positive effects on rGMV and processing speed in healthy Japa-
nese children. Our results may challenge the conventional view
that the Val66Met BDNF polymorphism has negative effects on
brain development and behavior in children.
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