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Purpose: To provide a flexible, end-to-end platform for visually distinguishing diseased from undiseased tissue in a
medical image, in particular pathology slides, and classifying diseased regions by subtype. Highly accurate results
are obtained using small training datasets and reduced-scale source images that can be easily shared.
Approach: An ensemble of lightweight convolutional neural networks (CNNs) is trained on different subsets of images
derived from a relatively small number of annotated whole-slide histopathology images (WSIs). The WSIs are first re-
duced in scale in a manner that preserves anatomic features critical to analysis while also facilitating convenient han-
dling and storage. The segmentation and subtyping tasks are performed sequentially on the reduced-scale images using
the same basic workflow: generating and sifting tiles from the image, then classifying each tile with an ensemble of
appropriately trained CNNs. For segmentation, the CNN predictions are combined using a function to favor a selected
similarity metric, and a mask or map for a a candidate image is produced from tiles whose combined predictions ex-
ceed a decision boundary. For subtyping, the resulting mask is applied to the candidate image, and new tiles are de-
rived from the unoccluded regions. These are classified by the subtyping CNNs to produce an overall subtype
prediction.
Results and conclusion: This approach was applied successfully to two very different datasets of large WSIs, one
(PAIP2020) involving multiple subtypes of colorectal cancer and the other (CAMELYON16) single-type breast cancer
metastases. Scored using standard similaritymetrics, the segmentations outperformedmore complex models typifying
the state of the art.
1. Introduction and overview

1.1. Problem statement and related work

Whole-slide imaging platforms allowglass biopsy slides to be scanned and
digitized at high resolution.1,2 The resulting WSIs preserve minute anatomic
detail but are quite large, typically exceeding 100,000 pixels in each dimen-
sion, making them cumbersome to review and store and difficult to
share.3–5 Substantial strides have been made in automating analysis of WSIs
in order to assist clinicians inmaking diagnostic classifications.6–8 Identifying
and labeling diagnostic regions within amedical image represents a separate,
and more difficult, computational task known as segmentation. Although
often pursued alongside classification tasks such as subtyping, segmentation
is far more granular and therefore more challenging.

CNNs have been used to segment images, including medical images of
tissue, into distinct labeled regions.9 They have been applied to “patch-
wise” techniques that analyze small regions surrounding each pixel10,11

and “fully convolutional” approaches that make predictions for all pixels
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at once.12,13 The U-Net architecture,14 developed expressly for biomedical
tissue segmentation, builds on the fully convolutional architecture and is
now routinely used,15 particularly when combinedwith other architectures
as discussed below.

These approaches usually process the entire image to be segmented and,
as such, are subject to the size constraints affecting CNNs generally.16,17

Commonly used CNNs running on standard hardware can comfortably han-
dle image dimensions up to 1000×1000 pixels; larger imagesmay require
more complex architectures that are difficult to train, perform slowly, and
require significantmemory resources. While conventional CNN capabilities
suffice for low-resolution images such as mammograms and chest radio-
graphs, no CNN can process more than a minuscule portion of a histology
WSI at a resolution sufficient to retain key anatomic detail. Analysis of a
representative portion of an image may suffice if a region of interest can
be localized in advance; patch-wise techniques, for example, can be applied
to discrete image regions.18 But it is unsuited to segmentation of large im-
ages in which subtle disease patterns may be present at unknown locations,
if at all.19
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Most tissue-segmentation tools have been developed to partition or-
gans, sub-organs, and different classes of tissue rather than to separate dis-
eased from undiseased regions, and typically operate on an entire
image.20–23 While helpful to clinicians, such capabilities are unlikely to re-
duce rates of diagnostic error involving medical images. These error rates
have been estimated at 3% to 5%, resulting in approximately 40 million di-
agnostic errors involving medical images annually worldwide.24 Fatigue-
related errors in radiology, for example, have been well documented,
with rates of retrospectively detected errors estimated to be as high as
30%.25

1.2. Contributions

The objective of this work is to provide a flexible platform for segmenta-
tion of diseased from undiseased tissue in a medical image — particularly
large medical images such as WSIs, which are among the most challenging
to analyze. The approach is equally applicable to smaller (e.g., radiology or
magnetic resonance) images. Our primary emphasis is on decision support:
helping clinicians locate elusive disease regions that might otherwise be
missed due to their subtlety or small size, or because of simple fatigue or
error. How artificial intelligence (AI) compares to human performance, on
the other hand, is not considered.

The techniques we describe offer several benefits relative to other AI
platforms. First, high accuracy levels are obtained even with small training
sets. The expense of generating training images annotated by disease ex-
perts has long plagued development of AI-based diagnostic systems, so
much so that substantial efforts have been made to augment the supply
using synthetic data26,27 and semi-supervised learning techniques.28 The
ability to use small training sets, if carefully curated to avoid underrepre-
sentation of diverse patient populations, can speed development and
broaden the range of clinical decision-support tools.

Second, both the images and the CNNs that process them are small. Our
approach uses only as much image resolution as is necessary to resolve the
anatomy critical to segmentation and, if concurrently implemented, disease
subtyping. As a result, analyzed images are generally small enough to be
transmitted conveniently and displayed, both in original form and as tissue
segmentations, on a mobile device. The CNNs are lightweight and may, if
Fig. 1. A representative workflow including subtyping has two parallel branches. First,
segmentation branch, tiles are generated from the segmentation image, sifted, and pres
segmentation mask. In the subtyping branch, the mask is resized to match the subtyping
the unmasked regions of the subtyping image, sifted, and presented to CNN models trai
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desired, also be executed on a mobile device, enabling system deployment
as an “edge AI” application requiring no connectivity.

Third, the same basic workflow is used both for segmentation and
subtyping, enabling “end-to-end” processing of a candidate image in a sin-
gle pass. The workflow involves generating subimage tiles from a
downsampled version of the candidate image (for segmentation) or from
the predicted tumor region (for subtyping, following segmentation); gener-
ating tile-level classification probabilities; and combining these in accor-
dance with a selection framework to produce a pixel-level segmentation
mask and a subtype classification. Although image resolution and tile
sizes may differ between segmentation and subtyping tasks, this does not
alter the processing flow or time to completion.

Novel aspects of the proposed technique that proved critical to success
with modestly sized datasets include measures for computationally identi-
fying and excluding tiles unlikely to contain important visual information.
One such measure uses image entropy not only to identify visually rich
tiles, as is now conventional, but to segregate tissue types; this confines
CNN analysis to predictive tiles drawn from the most relevant image re-
gions. Another key aspect involves combining tile-level predictions from
multiple models to make best use of limited training images. The models
are trained on overlapping but distinct image subsets. Combining their
tile-level predictions reduces random error associated with the individual
CNN models,29 and the manner of combining predictions can be selected
so as to favor a particular similarity metric.

2. Materials and methods

2.1. Methodology and workflow

The approach described here is summarized in Fig. 1. WSIs are reduced
in scale, and the rescaled images are preprocessed and broken down into
overlapping tiles for analysis by a CNN. The degree of downsampling and
the tile size into which the downsampled image is decomposed represent
parameters specific to the tissue under study as well as the task being per-
formed. Optimized together, the rescaled image and the resulting tiles ide-
ally retain only as much anatomic detail as is necessary to facilitate
classification of tissue as diseased or undiseased in order to produce a
the WSI is rescaled to image sizes optimized for segmentation and subtyping. In the
ented to CNN models that have been trained on different dataset folds to produce a
image and used to exclude regions unlikely to be diseased. Tiles are generated from
ned for subtyping to produce a subtype prediction.

Image of Fig. 1


Fig. 2. Effect of sifting with entropy rails. A source histology image of metastatic lymph node tissue from the CAMELYON16 dataset is associated with a ground-truth
segmentation mask, which, when applied to the image, occludes non-tumor tissue regions. Sifting with background thresholding alone is not a viable strategy. Setting the
maximum per-tile background fraction at 50% excludes no tiles, so a location map of the retained tiles is completely white. Sifting with a much smaller background
maximum of 10% still captures far too much non-tumor tissue for the image to be useful. The horizontal bands in the 10% image track subtle stripe artifacts in the source
image, further degrading image usefulness. The union of tiles sifted with entropy rails exceeds, but roughly approximates, the tumor region, and the band artifacts are
eliminated.
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segmentation. If subtyping is to be performed, the same procedure is re-
peated on image regions within the segmentation to resolve the subtypes.
As shown in Fig. 1, both the degree of image downsampling and the tile
size may differ between segmentation and subtyping.

For segmentation, two sets of images are created: one with just the dis-
eased regions masked and the other with everything except diseased re-
gions masked. Training tiles are then created from each image set. The
tiles overlap sufficiently so their total, after sifting as described below, is ad-
equate for training — generally at least 10,000 per class per cross-
validation fold, and in equal numbers. The data redundancy resulting
from overlap, it is found, matters less than tile population. For subtyping,
tiles generated exclusively from diseased regions may be segregated into
subtype classes. While disease detection is inherently a binary classification
problem, subtyping may involve discrimination among multiple disease
types.

Successful implementation depends on optimal tile sizing and selection.
Larger tiles providemore anatomic information to the CNN for analysis. But
tile size also dictates the resolution of the segmentation and CNN complex-
ity. Hence, the above procedure is repeated for different image scales (typ-
ically different levels associated with the source WSIs) and different tile
sizes at each scale.

Before performance can be compared at different image resolutions and
tile sizes, however, tiles must be sifted to eliminate those having low or ir-
relevant image content. It is important to be able locate, computationally,
all tiles corresponding to the diseased region while excluding as many
non-qualifying tiles as possible. In particular, tiles with too much back-
ground or glass-slide artifacts degrade training. A commonly used tech-
nique for background exclusion is Otsu’s method.30 Because this
technique attempts to identify a single threshold, however, it is suboptimal
for complex images in which background and foreground intensity overlap,
as may occur for samples that undergo histological staining.31 Even the
seemingly simple problem of excluding glass-slide artifacts has engendered
complex solutions involving, for example, CNNs.32

Here, the task of excluding spurious tiles is performed in three stages:
simple background exclusion, background exclusion for stained tiles, and
3

entropy sifting. Staging these progressively more complex techniques al-
lows nonqualifying tiles to be identified with the least amount of process-
ing. Simple background exclusion converts the tile to grayscale and
discards it if an excessive fraction (e.g., >0.2) of the tile is pure black or
pure white.33 For slides that have been treated with hematoxylin and
eosin (“H&E”) stain and normalized as described below, however, this ap-
proach may fail due to the tonal shift. A second stage of background exclu-
sion therefore thresholds tiles based on the number of identically valued
pixels rather than their proximity to white or black extremes. In particular,
we obtain the frequencies and populations of pixel values within a tile, and
reject the tile if the total population of the highest few pixel frequencies ex-
ceeds a threshold fraction corresponding to the allowable proportion of
background area. Tiles with less background area are more visually hetero-
geneous, with smaller pixel populations at the peak value frequencies.

These two stages are sufficientwhen generating training tiles, which are
drawn fromannotated regions. Tiles derived from an image under examina-
tion are subjected to a further stage of sifting based on image entropy,
which reflects the degree of nonredundant information— the information
diversity— in a region of pixels. Whereas earlier work33 tests tile entropy
against a threshold minimum, we have found that different tissue types
may exhibit image entropies falling within a characteristic band. Therefore,
when training tiles are generated, the minimum and maximum entropy
values of tiles drawn from the diagnostic regions are noted. These values
serve as boundaries or “rails” that constrain selection of tiles from a candi-
date image to be segmented: a candidate tile is retained only if its image en-
tropy lies on or within the rails. This test not only ensures that the tile
contains sufficiently diverse visual information to support classification
by the CNN but also excludes clearly irrelevant tissue types.

Fig. 2 illustrates the benefits of tile sifting with entropy rails. Due in part
to staining, conventional siftingmeasures based on background fraction fail
to exclude a significant fraction of tiles drawn from irrelevant image re-
gions. Sifting with entropy rails, by contrast, excludes most of the back-
ground and obviously non-diagnostic tissue. The narrower the entropy
range manifested by diseased tissue, the more successful entropy sifting
will be in excluding non-diagnostic tissue from consideration. Of course,

Image of Fig. 2
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proper CNN training ensures that only a relatively small proportion of tiles
will be misclassified in any case; but in this study, sifting with entropy rails
improved tile-level classification accuracy by about 10%.

The CNN architecture primarily employed in this study1 was selected to
minimize the number of convolutional layers (five are used) and conse-
quent trainable parameter count. Three dropout layers mitigate the risk of
overfitting to a small dataset of images. For both datasets studied and for
both segmentation and subtyping, we trained for 75 epochs in each train-
ing/test partition using a batch size of 16, a categorical cross-entropy loss
function, an Adam optimizer, a learning rate of 0.0001, and sigmoid activa-
tion. Data augmentation consisted of randomhorizontal and verticalflips as
well as brightness variation. More significant data augmentation resulted
from the degree of tile overlap. Model weights were saved following each
epoch and, for each training subset, the weights producing the smallest bi-
nary cross-entropy loss were retained. The model was trained and evalu-
ated on an Nvidia GeForce RTX 2070 GPU; due to the simplicity of the
model architecture, each epoch completed in less than two minutes.

Following CNN training, a new WSI may be segmented by first
downsampling to the resolution identified as optimal and decomposing
the resampled image into overlapping tiles whose size matches the training
tiles. Once classified, these tiles are used to generate a segmentation mask
or segmented image. Pixel-level diagnostic probabilities are computed by
averaging, for each pixel, the tile-level prediction probabilities of tiles con-
taining that pixel.

As a candidate image is evaluated, the tiles are sifted and presented to
each of the subset-trained CNNs. Themanner in which tile-level predictions
are chosen or combined favors, for segmentation, a selected similarity met-
ric. The most common metric, intersection over union (“IoU”), quantifies
the degree of overlap between the prediction P and the ground truth T:

IoU ¼ P∩ T
P∪ T

Precision represents the proportion of pixels classified as positive
(e.g., as tumor pixels) that are, in fact, positive while recall (or sensitivity)
corresponds to the proportion of all positive pixels correctly classified as
such. In terms of true positives (TP), false positives (FP), and false negatives
(FN),

Precision ¼ TP
TPþ FP

TP

Recall ¼

TPþ FN

Averaging predictions across models maximizes IoU, yielding segmen-
tations that balance precision and recall. Selecting themaximumprediction
for each tile favors recall. A high recall score ensures that most or all of the
diseased region is made visible in the segmentation. Selecting theminimum
prediction for each tile favors precision. Depending on characteristics of the
tissue aswell as the imagingmodality, the differencemay be pronounced or
relatively minor, as shown in Fig. 3.

For subtyping, the image is resampled from theWSI at the resolution op-
timal for this classification task. The segmentation mask is resized if neces-
sary and applied to the subtyping image to exclude regions predicted to be
non-diagnostic; classification tiles are generated only from the diagnostic
region. In this case, masks optimized for precision are utilized since, for
subtyping purposes, including potentially misleading non-diagnostic tiles
is more harmful to prediction accuracy than excluding some diagnostic
tiles (which are unlikely to skew toward any subtype). As will be seen,
the CNNmodels used to classify the image and those used for segmentation
may have different architectures.
1 The architecture is illustrated and described in detail in earlier work.33 Source code is
available at https://github.com/stevenjayfrank/A-Eye.
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2.2. Datasets

Two very different benchmark datasets were utilized in this study. Both
consist of extremely large WSIs, which would be impossible to segment in
raw form using conventional deep-learning techniques. The annotated
training and validation slides of the PAIP2020 challenge2 were selected to
investigate segmentation of multiple disease subtypes. We employed the
CAMELYON16 dataset to investigate segmentation of a single disease
type, cancer metastases in lymph nodes, based on samples having very
small diagnostic regions.
2.2.1. The PAIP2020 Dataset
The PAIP2020 dataset contains annotated WSIs exhibiting different de-

grees of microsatellite instability (MSI), a molecular phenotype of colorec-
tal cancer that arises from a defective DNA mismatch repair system. MSI
status in colorectal cancer has prognostic and therapeutic implications. In
particular, a high degree of MSI (MSI-H) is associated with a better progno-
sis than a low degree (MSI-L). Moreover, MSI-H appears to predict the effi-
cacy of immune checkpoint inhibitors in solid tumors.34 Although CNNs
have been successfully used to identify MSI status in gastrointestinal cancer
patients,35,36 distinguishing betweenMSI-L andMSI-H subtypes is far more
difficult, typically requiring DNA testing.37,38

The PAIP2020 training image dataset consists of 47 whole slides— 12
ofwhich are labeled asMSI-H and the remaining 35 asMSI-L— provided in
multilevel SVS format. The levels and their corresponding image
parameters are shown in Table 1.

The slides contain varying amounts of non-tissue background. The
dataset also includes binary segmentation masks defining the tumor re-
gions. An unannotated, unlabeled validation set consists of 31 additional
slides.

For training, the WSIs at scaling levels 2 and 3 (L2 and L3) were inves-
tigated. The provided ground-truth masks were rescaled to each level and
used to create new, separate images of the tumor and non-tumor portions
of each image. Four different subsets or folds of the 47 training slides
were defined. Each fold included 36 training images (8 MSI-H images and
28 MSI-L images) and 11 test images (4 MSI-H images and 7MSI-L images)
to preserve, in each fold, a training/test split above 3:1. Each of the MSI-H
test sets was unique, i.e., contained no images found in any other test set.
Because segmenting tumor regions does not require distinguishing between
MSI-H andMSI-L tumor types— that is., both types can be considered a sin-
gle class— this imbalance can be tolerated as long as the training sets con-
tain similar distributions of both tumor types.

The typically small image area occupied by the tumor represents a fur-
ther source of class imbalance, i.e., between tumor and non-tumor tissue.
To address this discrepancy, which is far more significant in the
CAMELYON16 dataset, we obtained similar numbers of tumor and non-
tumor tiles by overlapping them to different degrees. Overlap levels ranged
from 80% to 96% depending on the image size and the number of images in
each training class. While this approach does not address the underlying
imbalance between tumor and non-tumor data, training based on equiva-
lent numbers of tiles did not impair the ability to obtain useful predictions.

The L2 and L3 images were stain-normalized using Reinhard
normalization39,40 and decomposed into tiles ranging in size from 200
× 200 to 600 × 600 pixels. This range of tile sizes accords with recent
work identifying a similar range as producing peak CNN performance
for anatomic subject matter including tumor tissue.41 Training tiles
were sifted using the two-stage background exclusion procedure de-
scribed above, with tiles having more than 20% background excluded.
The background of tumor images — MSI-H and MSI-L images were
2 De-identified pathology images and annotations used in this research were prepared and
provided by the Seoul National University Hospital by a grant of the Korea Health Technology
R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the
Ministry of Health &Welfare, Republic of Korea (grant number: HI18C0316). The PAIP 2020
datasets are provided by the Seoul National University Hospital, South Korea. See https://
paip2020.grand-challenge.org.
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https://paip2020.grand-challenge.org


Fig. 3. Similarity-metric optimization. (a-1) Validation image from PAIP2020 dataset. (a-2) Segmentation mask for image shown in (a-1), optimized for IoU. (a-3)
Segmentation mask for image shown in (a-1), optimized for recall. (a-4) Segmentation mask for image shown in (a-1), optimized for precision. (b-1) Validation image
from CAMELYON16 dataset with tumor region marked in green (ground-truth annotations are not available for PAIP2020 validation images). (b-2) Segmentation mask
for image shown in (b-1), optimized for IoU. (b-3) Segmentation mask for image shown in (b-1), optimized for recall. (b-4) Segmentation mask for image shown in (b-1),
optimized for precision. For the PAIP2020 image, optimizing for different similarity metrics has little overall effect on the resulting masks. The opposite is true for the
CAMELYON16 image: optimizing for precision produces positive mask regions confined to the primary tumor sites, while optimizing for recall results in a diagnostically
unhelpful mask that excludes very little tissue.
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Table 2
Scaling factors for CAMELYON16 TIFF files.

Level Average Dimensions (pixels) Downsample Factor Magnification

0 106,754 × 190,790 1 40×
1 53,377 × 95,395 2 30×
2 26,688 × 47,697 4 20×
3 13,344 × 23,848 8 15×
4 6672 × 11,924 16 10×

Table 3
Segmentation scores for L2 validation images with 150 × 150 pixel tiles.

PAIP2020 Validation Slides – Segmentation

Mean IoU Score Mean Precision Mean Recall

Averaged predictions 0.77 0.84 0.92
Min. predictions 0.76 0.90 0.86
Max. predictions 0.71 0.74 0.96

Table 1
Scaling factors for PAIP2020 SVS files.

Level Average Dimensions (pixels) Downsample Factor Magnification

0 116,214 × 88,094 1 40×
1 29,053 × 22,023 4 20×
2 7263 × 5505 16 10×
3 3498 × 2662 32 5×
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preprocessed identically — consisted of a solid black background sur-
rounding the tumor regions, while non-tumor images included black re-
gions corresponding to the tumor locations with the remainder of the
slide unmodified. After sifting, subsets of tiles corresponding to the
image folds were drawn from this superset to create segmentation train-
ing sets. For each training set at each tile size, the tumor and non-tumor
class populations each exceeded 12,500 tiles.

For each tile size, the maximum and minimum image entropies of qual-
ifying tumor tiles (with no distinction drawn betweenMSI-L or MSI-H tiles)
were noted. Segmentation test tiles were prepared by decomposing each
test image into overlapping tiles. This time, the tiles were sifted based not
only on background content but image entropy as well. In particular, tiles
with above-threshold background regions or whose image entropies were
not on or between the entropy rails were excluded.

To determine the optimal image rescaling and tile size for segmentation,
training and testing were carried out with tiles of varying size correspond-
ing to a single fold of the L2 and L3 images. In each case, model weights
were saved after each of the 75 training epochs and the weights producing
the smallest binary cross-entropy loss for each were compared across tile
sizes; the smallest loss corresponded to the optimal tile size.

For subtyping, tile sets were assembled from the tumor portions of the
labeled images, with greater tile overlap for the MSI-H images to achieve
class-level parity in tile populations. Although this creates greater data re-
dundancy in the MSI-H tiles, once again the class imbalance did not pre-
clude accurate predictions and produced better results, particularly with
adjustment to the decision boundary, than alternatives such as efforts to
calibrate the models.42 The above procedures using a single image fold
were repeated to identify the optimal image rescaling and tile size for sub-
type classification.

Once obtained, these parameters were used to generate tiles for the
remaining image folds. The best-performing segmentation and
subtyping model weights were identified and saved for each image
fold. These models were then tested against tiles derived from the vali-
dation images using the same procedures — image rescaling, tile gener-
ation, and exclusion based on background content and entropy —
described above. Predictions were generated for each tile by all four
best-performing fold models. Comparative segmentation masks were
created by varying the prediction actually assigned to each tile: the av-
erage of all four fold-level model predictions, the minimum prediction
or the maximum prediction. The assigned tile-level prediction was
stored against each image pixel location spanned by the tile; the more
tiles that intercepted a pixel, the larger the number of predictions that
were associated with that pixel. A pixel-level probability map corre-
sponding to the image under study was created by averaging, for each
pixel, the assigned prediction probabilities. The resulting binary seg-
mentation masks are white where the averaged probabilities equal or
exceed the decision boundary and are otherwise black.

For subtyping, the segmentation masks having the highest precision
scores were applied to the validation images. The first stage of back-
ground exclusion, which rejects tiles having too much black or white,
constrains tile retention to tiles drawn from tumor regions of the images.
These were further sifted as described above and presented to all four
best-performing fold models. The prediction probabilities from the
four fold models were averaged for each tile, and the resulting tile-
level predictions averaged to produce an overall image-level classifica-
tion. Pixel-level probabilities, in other words, were not generated for
this task.
6

2.2.2. The CAMELYON16 dataset
Metastatic involvement of lymph nodes corresponds to a poorer progno-

sis for survival of breast cancer and, likemicrosatellite instability in colorec-
tal cancer, is difficult and time-consuming to diagnose from visual
examination of histopathology images. In the CAMELYON16 dataset, a
sample is either normal, i.e., the lymph node contains no metastatic tissue,
or malignant. The CAMELYON16 dataset is especially challenging in that
diagnostic regions may be quite small — in some cases just a few pixels
out of billions, and may not be organized into a discrete mass. Whereas
the tumor regions in the PAIP2020 dataset tend to be large and contiguous,
the CAMELYON16 lymph-node lesions often present as a dusting of tiny
features. The latter morphology tested the lower limits of useful tile sizes.

The CAMELYON2016 dataset consists of WSIs provided in multilevel
TIFF format. The dataset includes several hundred slides, 111 of which
have annotations prepared by expert pathologists and which define metas-
tatic regions. Scaling and magnification factors appear in Table 2.

The tumor morphologies necessitated a much larger rescaled image
size. In order to be classified properly, the tile must contain enough diag-
nostic information to permit the CNN to distinguish reliably among classes.
At the same time, for the contours of a tile-based segmentation to exhibit
reasonable fidelity to the represented tumor region, the tile size must be
smaller (ideally, considerably smaller) than that region. We tested the L1,
L2, and L3 images, as well as a set rescaled to a maximum dimension of
15,000 pixels (i.e., intermediate between L3 and L4).

Of the 111 annotated tumor-containing WSIs, 91 were selected for
training and the remaining 20 served as the validation set. Tiles were pre-
pared at different sizes (ranging from 100 × 100 to 250 × 250 pixels)
for the tumor and non-tumor portions of each image as described above.
3. Results

3.1. PAIP2020 slides

The best segmentation performance for the PAIP2020 validation set
was obtained with L2 images at a tile size of 150 × 150 pixels.

As shown in Table 3, relatively high scores were obtained for all similar-
ity metrics. Segmentation masks employed to generate tiles for subtyping
benefitted from the highest possible precision, since non-tumor tiles are po-
tentially confounding while completeness is unnecessary; only enough tiles
to support classification are needed. For clinical purposes, a case may be
made for IoU or recall. For safety, i.e., to ensure that nothing significant is
missed, recall is the critical metric; the IoU score that accompanies maxi-
mum recall is sufficiently high that false-positive regions are unlikely to
pose a significant distraction. On the other hand, the recall level of 0.92
that accompaniesmaximumprecision is still quite high; anymissed regions
will very likely be noticed by the clinician and are probably cumulative.



Table 4
Classification accuracies for L2 validation images with 200 × 200 pixel tiles

PAIP2020 Validation Slides – Classification

Five-layer CNN EfficientNetB0 ResNet50

Accuracy 0.81 0.94 0.81

Table 6
Performance comparison between our five-layer model and hybrid U-Net architec-
ture on the same tiles derived, in the case of PAIP2020, from a single training fold;
and for CAMELYON16, from the entire training set. A single fold was used in the
PAIP2020 comparison because ground-truth masks are not available for the valida-
tion images.

PAIP2020 Slides
(256 × 256 tiles)

CAMELYON16 Slides
(224 × 224 tiles)

Mean
IoU

Mean
Precision

Mean
Recall

Mean
IoU

Mean
Precision

Mean
Recall

5-layer model 0.789 0.895 0.877 0.25 0.29 0.64
U-Net/EfficientNet 0.471 0.504 0.937 0.071 0.074 0.696
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The L2 images also produced the best subtype classification perfor-
mance, with identical results using tiles of 200× 200 or 400× 400 pixels.
We repeated the testing procedure with two commonly used but more com-
plex architectures, EfficientNet and ResNet50. As shown in Table 4,
EfficientNetB5, with an input image size of 456 × 456, delivered the best
performance. An advantage to the proposed framework is the ease with
which different CNN architectures with varying input image sizes can be
interchanged. The classification accuracy achieved with EfficientNetB5
in this study is clinically promising.

3.2. CAMELYON16 slides

As earlier noted, the highly variable morphology of the metastatic le-
sions in the CAMELYON16 dataset makes well-targeted detection, with
minimal misclassification of normal tissue, difficult. Although tile size rep-
resents the atomic unit of resolution, both for detection and representation,
the minimum achievable tile size is limited by the anatomy and visually
manifested disease features. The rescaled image size, on the other hand,
dictates its ease of handling (e.g., to store in cache memory), transmission
and computational processing — e.g., the ability to analyze results or
even perform the entire processing sequence on a mobile device. The IoU,
precision, and recall similarity metrics establish the minimum usable
image resolution and tile size, and therefore the smallest tumor feature
that will appear in the segmentation. Halving the degree of downscaling
doubles the required tile size, since ultimately the same critical area of tis-
sue anatomymust be analyzed by the CNN. For the CAMELYON16 dataset,
the greatest usable degree of rescaling limited the largest image dimension
to 15,000 pixels, i.e, between L3 and L4 dimensions, with a tile size of 200
× 200 pixels. Averaging predictions from the lowest-loss fold models max-
imized the IoU score, producing the results shown in Table 5.

While thefive-layer CNN outperformedResNet50, bothmodels failed to
identify any tumor regions in three of the images. The lesions in at least one
and arguably two of these images, both discussed in greater detail below,
have dimensions putting them below the micrometastasis threshold. The
third image, however, contained a micrometastasis that a clinically useful
digital pathology system should not have missed. A better approach is
needed, and one is proposed in sec. 3.4.

3.3. Comparison with architectures based on U-Net

For tissue segmentation, the current state of the art is typified by
CNN architectures based on U-Net, often modified by using another archi-
tecture such as EfficientNet as the encoder stage (also known as the
“backbone”).44–46 We compared the performance of our five-layer CNN
to this architecture for both the PAIP2020 and CAMELYON16 datasets.
U-Net systems are trained with segmentation datasets consisting of input
Table 5
Segmentation scores for CAMELYON16 validation images resized to amaximum di-
mension of 15,000 pixels with 200× 200 pixel tiles, and comparison to ResNet50,
which performed best with 224 × 224 pixel tiles

CAMELYON16 Validation Slides – Segmentation

Mean IoU Score Mean Precision Mean Recall

Five-layer model
(200×200 pixel tiles)

0.21 0.22 0.69

ResNet50 (224×224 pixel tiles) 0.12 0.14 0.61
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images and ground-truth segmentation masks. The CNN learns to map the
pixels of an image to the training masks, which may have several levels,
each corresponding to a different segmentation class. Here the segmenta-
tion task is binary; the CNN maps pixels to true or false values denoting
whether the tissue is or is not tumor. The U-Net architecture with an
EfficientNet B0 backbone that we employed has 271 layers and 10 million
trainable parameters.

We prepared segmentation sets from tiles derived from the downscaled
WSI images described above. We found that the U-Net/EfficientNet hybrid
architecture performs best on images that have been thresholded using
Otsu’smethod30 before tiling. Creating segmentationmasks from the result-
ing tiles is complicated by the fact that, with the U-Net architecture, the pre-
diction is itself a mask tile that usually contains noise. We obtained optimal
performance by treating a prediction as positive over the entire tile if at
least 70% of pixels were classified as tumor. For the PAIP2020 dataset,
we trained the hybrid model using 256 × 256 pixel tiles derived from im-
ages in the second training fold and selected the best performer over 20
epochs, though overfitting became evident after fewer than 10 epochs.
We trained our five-layer model on the same tiles.

For the CAMELYON16 dataset, we utilized 224 × 224 pixel tiles and
trained over the entire training set rather than in folds, then tested against
the validation images. While not advisable for models intended to
generalize beyond the training and validation sets, this single-set strategy
is well-suited to a comparative study. For the hybrid model, overfitting
began immediately – by the second epoch even with a learning rate of
1 × 10−5.

As shown in Table 6, the five-layer model outperformed the hybrid
model over all metrics except recall, and even here the difference was
quite small — particularly when compared to the large discrepancies in
IoU and precision, the “price” of the hybrid model’s high recall scores. Al-
though the hybrid model produced regions of positive prediction for all
test images, these were often the wrong regions. Visual inspection of the
final prediction masks reveals that the hybrid model tended to classify
most of the tissue regions of a slide as tumor— i.e., it learned to identify tis-
sue rather than to discriminate between tumor and non-tumor tissue re-
gions. A far greater proportion of the tissue in the PAIP2020 dataset is
cancerous as compared with the CAMELYON16 dataset, so in the former
case even a CNN trained merely to distinguish bulk tissue from the glass
slidewill deliver reasonable precision scores. The hybridmodelmay be bet-
ter suited to identifying sharply defined tissue structures with clear contrast
than subtle disease markers.

3.4. Rethinking visualization

In clinical practice, pathologists characterize tumor cell clusters 2 mm
or larger as “macrometastases,” smaller clusters between 0.2 mm and 2
mm as “micrometastases,” and still smaller clusters (or single cells) as “iso-
lated tumor cells.” The largest available metastasis determines the slide-
level diagnosis.47

This being the case, conventional similarity metrics, while important,
may have less relevance to clinical practice than a “hit rate” — that is,
whether the segmentation visibly identifies the diagnostically essential
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tissue regions, even if not all diseased regions are detected or marked with
perfect fidelity. In Figs. 3(b-2) and (b-4), for example, the segmentation
masks do not include the two smallest tumor regions. But the largest orga-
nized feature in the small lesion at the top right of Fig. 3(b-1) has average
dimensions of about 105 × 160 μm, smaller than a micrometastasis; and
the lesion at the bottom left is actually an archipelago of tiny features, the
largest of which is a mere 50 × 50 μm. Their omission from the segmenta-
tion should not impair its diagnostic value since the two largest features, the
smaller one a micrometastasis, are marked.

In Fig. 4, our system’s segmentation captures the densest regions of the
tumor feature cluster rather than representing its full extent. But for visual-
ization purposes, to make efficient use of review time, it may suffice even if
the contour match is imperfect. On the other hand, missing tumor regions
entirely (at least those meeting the micrometastasis threshold) will not.
An unreliable AI tool will not be used. Nor will it be used if achieving
high reliability comes at the cost of too much normal tissue misclassified
as tumor (i.e., trading off precision to achieve high recall). A compromise
strategy is to color-code regions of high and moderate interest based on
probability levels, rather than segmenting in a purely binary fashion (as
in the segmentation map of Fig. 1). This strategy draws initial attention to
the regions where tumors aremost likely present. If lesions exist, the largest
will probably be found in the high-interest regions, in which case the pri-
mary review objective is attained. If none is found, the reviewing patholo-
gist can move on to the regions of moderate interest.

The question is where to draw the probability lines so that all detected
tumors are marked but lie primarily in the red regions. For the high-
probability threshold, we used the mean probability of all tiles classified
as tumor using the best fold models and the prediction-selection criterion
chosen to maximize the similarity parameter of interest (e.g., recall). All
pixels whose probabilities (averaged over all tiles containing the pixel)
equal or exceed the high-probability threshold are colored red. The low-
probability threshold is based on the variance of probabilities assigned to
the tiles classified as tumor. Typically, the low threshold is one standard de-
viation below the high threshold, though it may be lower if a single stan-
dard deviation does not bring the low threshold below the decision
boundary. All pixels whose averaged probabilities fall between the low
and high thresholds are colored yellow.
Fig. 4. Tumor features in representative CAMELYON16 image. Left, ground-truth se
features each only a few pixels in extent. Right, segmentation mask for the same
(i.e., maximizing IoU score). Only the denser regions of the tumor were recognized and
the ability both to detect and represent tumor features.
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Selecting the maximum predictions for 200× 200 tiles in order to bias
the classification toward finding elusive tumor regions— favoring reliabil-
ity over noise minimization, in other words— results in high and low prob-
ability thresholds of 0.63 and 0.41, respectively, for the CAMELYON16
dataset. (Balancing reliability and noise by averaging predictions unsurpris-
ingly produces a mean probability at the decision boundary of 0.5.) The re-
sults of these operations are summarized in Table 7 and illustrated in Fig. 5.

In 90% (18/20) of the validation images, at least some portion of the
largest tumor region is colored— usually in red but, in a single case, in yel-
low only. If the hit rate represents successful tumor identification, the pre-
cision score reveals the amount of normal tissuemisclassified as tumor and,
consequently, wasted review time. Because of the small tumor features,
however, even a low-precision probability map does not include very
much noise. The price of accuracy is not terribly high even in the worst
cases since most of the slide is (correctly) uncolored. Particularly if the seg-
mentation is a translucent overlay on the original image or the clinician can
easily toggle between them, the objective of drawing attention to the region
of diagnostic interest without much distracting error is met.

Of the two slides with tumors that our system did not detect, one in-
volved features smaller than a micrometastasis, with an average diameter
of about 0.1 mm. The other presented long, narrow lesions with lengths
up to 0.4 mm but averaging only about 0.04 mm in width. Such morphol-
ogies can elude tile-based detection by snaking through tiles without occu-
pying enough area to trigger positive classification. Based on this small
validation set, ourfive-layer CNN appears capable of detectingmicrometas-
tases so long as the definitional criteria are satisfied along both dimensions.

4. Discussion

While headlines frequently tout AI models whose performance matches
or exceeds that of human experts, few such systems have achieved routine
use in clinical workflows.48–53 In 2018, Tizhoosh & Pantanowitz53 listed
ten key challenges to commercial and clinical acceptance of AI-driven dig-
ital pathology systems, chief among them the lack of labeled data. Clinical
decision-support systems must demonstrate their utility to practitioners,
and hence marketplace viability, as a prerequisite to investment backing;
but annotated training sets depend on expensive expert time and effort.
gmentation mask with enlargement of tumor region, which consists of a cluster of
image generated by averaging predictions of the best-performing fold models
segmented properly. The size of a tile — an example of which is circled— limits

Image of Fig. 4


Table 7
Precision scores and hit rates for red regions (consisting of pixels with averaged probabilities of at least 0.63) and yellow regions (consisting of pixels with averaged proba-
bilities between 0.41 and 0.63). The hit rate corresponds to the percentage of tumor-containing slides in which any portion of at least the largest tumor was identified.

CAMELYON16 Slides (200 × 200 tiles)

High, low thresholds Mean precision (red) Mean precision (red + yellow) Hit rate
(red)

Hit rate
(red + yellow)

Best fold models, selection criterion = max 0.63, 0.41 0.24 0.18 80% 90%

Fig. 5. Representative high- and low-precision color-coded probability maps for CAMELYON16 slides. Slide (a) has a precision score of 0.35. The tumor regions, shown in
green, are clearly marked by (or even fully engulfed in) red and/or yellow regions, and there is little spuriously colored non-tumor area. Slide (b) has a poor precision
score of 0.03. The tumor is properly marked in red and yellow, and the erroneously colored regions, while more widespread than in (a), do not occupy a significant
proportion of the image.
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Image of Fig. 5
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Thework described here is intended to address this “chicken and egg” prob-
lem by facilitating development of clinically useful systems using small
numbers of training images. Once deployed, ongoing use can itself provide
a source of further training data to improve performance and broaden the
diversity of the underlying patient pool.

Other enduring challenges include the “dimensionality obstacle” of
large images; the futility of attempting to replace rather than assist
human physicians; and the practical needs of those physicians: ease of
use, financial return, and trust. The present work focuses squarely on
these factors as well. Providing ease of usewhile retaining trustmeans min-
imizing false markings without compromising the reliability of tumor iden-
tification in a segmentation, or at least striking a clinically acceptable
balance between these competing priorities. Ease of use is also supported
by downscaled images that are conveniently handled and shared. If rela-
tively small biopsy images can be communicated instantly to disease ex-
perts who can analyze them on mobile devices, expert resources can be
assembled ad hoc, and a virtual team need not pore over the same image
display shoulder-to-shoulder as is common today.48 Moreover, the mere
ability to examine pathology images on a mobile device, with regions of in-
terest labeled, allows for intuitive gestural image manipulation
(e.g., stretching and squeezing) unavailable on desktop workstations.
Today, computational pathology applications are not widely used on mo-
bile devices,54 although some image-classification applications, such as
skin lesion detection, have been proposed.55 This is unsurprising in view
of the dimensionality problem alone.

Ultimately, it is possible to envision complete end-to-end analysis of a
scaled-down WSI on a mobile device. Tiling is a mechanically simple
array operation that requires only rudimentary computational resources,
and sifting is staged to reserve more complex operations for tiles that
have cleared simpler screening criteria. Many mobile devices now include
neural processing units that can execute CNNs with low computational
overhead and low power consumption, albeit with some tradeoff against
accuracy.56 Indeed, highly efficient architectures such as MobileNet cur-
rently enable mobile devices to classify images,57 and the five-layer
model described here is considerably simpler than MobileNet. (MobileNet
v2, for example, uses 2,422,081 parameters at a tile size of 200 × 200;
the five-layer model uses 439,793 parameters at the same tile size.)
Whether such capabilities actually prove useful in a world of ubiquitous
connectivity, where lightweightmobile apps derive hefty computational as-
sists from remote servers, is debatable at present. Far less debatable is the
ongoing need to address the challenges that continue to limit adoption of
promising AI-driven pathology tools for diagnostic support.
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