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Abstract

Objectives. Tuberculosis comorbidity with chronic diseases
including diabetes, HIV and chronic kidney disease is of rising
concern. In particular, latent tuberculosis infection (LTBI)
comorbidity with end-stage kidney disease (ESKD) is associated
with up to 52.5-fold increased risk of TB reactivation to active
tuberculosis infection (ATBI). The immunological mechanisms
driving this significant rise in TB reactivation are poorly
understood. To contribute to this understanding, we performed a
comprehensive assessment of soluble and cellular immune features
amongst a unique cohort of patients comorbid with ESKD and
LTBI. Methods. We assessed the plasma and cellular immune
profiles from patients with and without ESKD and/or LTBI (N = 40).
We characterised antibody glycosylation, serum complement and
cytokine levels. We also assessed classical and non-classical
monocytes and T cells with flow cytometry. Using a systems-based
approach, we identified key immunological features that
discriminate between the different disease states. Results.
Individuals with ESKD exhibited a highly inflammatory plasma
profile and an activated cellular state compared with those
without ESKD, including higher levels of inflammatory antibody Fc
glycosylation structures and activated CX3CR1+ monocytes that
correlate with increased inflammatory plasma cytokines. Similar
elevated inflammatory signatures were also observed in ESKD+/
LTBI+ compared with ESKD�/LTBI+, suggesting that ESKD induces
an overwhelming inflammatory immune state. In contrast, no
significant inflammatory differences were observed when
comparing LTBI+ and LTBI� individuals. Conclusion. Our study
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highlights the highly inflammatory state induced by ESKD. We
hypothesise that this inflammatory state could contribute to the
increased risk of TB reactivation in ESKD patients.

Keywords: end-stage kidney disease, glycosylation, inflammation,
monocytes, tuberculosis, unconventional T cells

INTRODUCTION

End-stage kidney disease (ESKD) encompasses a
range of kidney disease aetiologies, including
diabetic and IgA nephropathy, which result in a
common systemic state of metabolic waste
accumulation, hyperuricaemia and, ultimately,
dialysis-dependent kidney failure. It is well
described that chronic hyperuricaemia can impact
the haemostasis of the immune system, leading to
widespread dysfunction and inflammation.1,2 The
downstream effects of impaired immunity in ESKD
can result in substantial comorbidities, including
accelerated cardiovascular disease and
susceptibility to several infectious diseases.2

Studies indicate that ESKD patients exhibit as
much as a 52.5-fold increase in the risk of
reactivation of latent tuberculosis infection (LTBI)
compared with otherwise healthy LTBI cases.3 The
drivers of this reactivation remain unknown.
Considering the rise in the prevalence of chronic
kidney disease (18.4% global increase from 2005
to 2015), especially within low- to middle-income
countries,4,5 where tuberculosis (TB) is also
endemic, and it is critical to understand the link
between ESKD and risk of TB reactivation.

The host and pathogen immune factors that
lead to latency, activation and clearance of
Mycobacterium tuberculosis (Mtb) are poorly
understood. This is despite 25% of the global
population living with LTBI and further increases
in TB cases anticipated with COVID-19.6–8 Previous
studies of this unique cohort of ESKD patients,
comorbid with LTBI (ESKD+/LTBI+), suggest that
conventional CD4+ T-cell responses to Mtb
antigens are preserved in ESKD patients9;
however, alterations in cell function of
unconventional T cells may contribute to poor
control of LTBI.10,11 To date, no studies have
examined the regulation of plasma cytokines,
complement or antibody responses in the context
of ESKD+/LTBI+.

Several lines of evidence suggest that cytokines
play a critical role in the immune response to
Mtb. Certain studies suggest that higher levels of

IL-12(p40), TNF-⍺, IFN-c and IL-10 have been
described in patients with active TB infection
(ATBI) before treatment12 signifying their
potential role in, or as a marker of, successful Mtb
infection. Osteopontin, a T helper cell 1 (Th1)
cytokine secreted by macrophages, is also
increased in ATBI patients.13 Investigation into
whether ATBI-associated inflammatory cytokines
also increases in ESKD+/LTBI+ subjects would assist
in characterising the immune environment in
which Mtb may reactivate and replicate.
Complement proteins such as C1q have been
recognised as a potential biomarker for ATBI
detection and may contribute to Mtb
pathogenesis.14,15 ATBI has also been associated
with more inflammatory antibody glycosylation
signified by agalactosylated (G0) antibodies,
whereas LTBI individuals maintain antibody
glycosylation states in line with those of healthy
individuals.16,17 There are no previous studies that
have specifically examined Mtb-specific antibody
titres or antibody glycosylation levels in ESKD+/
LTBI+ populations; hence, it is worth considering
whether similar immune features observed in ATBI
are also prevalent in ESKD+/LTBI+ individuals, thus
signifying an environment in which Mtb
replicates. Furthermore, few studies have
described the frequency or activation of
circulating T follicular helper (cTFH) cells in TB or
ESKD, despite cTFH being a biomarker of the
development of more mature serological
responses to numerous infectious diseases.18,19

Herein, we aimed to further characterise the
immune defects associated with ESKD that may
contribute to the elevated risk of TB reactivation.
Using systems serology approaches, we assessed a
large panel of plasma cytokines, chemokines,
complement, antibody glycosylation and Mtb-
specific antibody profiles. We further linked these
soluble plasma immune mediators to lymphocyte
and monocyte subsets through the phenotypic
analysis of monocytes, cTFH and unconventional
T-cell populations. Overall, we observed that
patients with ESKD+/LTBI+ comorbidity exhibit a
highly inflammatory plasma profile and activated
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cell state, which is driven by the presence of ESKD
and include elevated levels of inflammatory
antibody Fc glycosylation structures, complement
and activated monocytes that are associated with
increased plasma cytokines in comparison with
ESKD�/LTBI+ individuals.

RESULTS

ESKD drives distinct immune signatures
regardless of LTBI disease status

To holistically examine immune signatures in
ESKD+ patients with and without LTBI, both
plasma and cellular immune responses were
assessed from the following groups: ESKD alone
(ESKD+/LTBI�; n = 10), ESKD with LTBI (ESKD+/LTBI+;
n = 10), LTBI alone (ESKD�/LTBI+; n = 10) and
healthy controls (ESKD�/LTBI�; n = 10) (Table 1).
Patients with ESKD are herein referred to as
ESKD+ (n = 20) and consist of both ESKD+/LTBI�

and ESKD+/LTBI+ groups, while patients without
ESKD are referred to as ESKD� (n = 20) and include
both ESKD�/LTBI� and ESKD�/LTBI+ groups. Plasma
was examined for cytokines, complement levels
and total IgG N-linked glycosylation patterns.
PBMCs were assessed for monocyte subsets
(including classical and non-classical) and pro-
inflammatory subsets for both traditional and
unconventional T cells (including circulating
T Follicular Helper (cTFH; CD4+CXCR5+ cells) and
unconventional cd lymphocytes). PBMCs were
assessed by flow cytometry (see gating in
Supplementary figure 1). In total, 141 immune
features were assessed for each sample
(Supplementary table 1). PCA (principal
component analysis) of all immune features
discovered divergent profiles between ESKD+ and
ESKD� patients across principal component (PC) 1
with ESKD� individuals clustering negative of the
x-axis, while majority of ESKD+ were located
positive (Supplementary figure 2). However, both
ESKD+LTBI+ and ESKD+/LTBI� patients overlapped
together indicating similar immune profiles
despite TB status.

Elevated inflammatory signatures are
observed in ESKD+ patients

To distinguish the divergent immune responses
between ESKD+ and ESKD� signatures, we
compared the previously mentioned 141 immune
features in ESKD� (n = 20) against ESKD+ (n = 20)

(Figure 1a). 23 of 141 (16%) immune features
were significantly divergent between ESKD+ and
ESKD� patients (all P-values < 0.0003, corrected for
multiple comparisons, Supplementary table 1).
Features upregulated in ESKD+ plasma included
the following factors and cytokines (Figure 1a;
Supplementary table 1): complement Factor D
(Adipsin) (median 7 ngmL�1 in ESKD� cf. median
45 ngmL�1 in ESKD+), soluble TNF-receptor 1
(sTNF-R1; 2341 pgmL�1 in ESKD� cf. 29363 pgmL�1

in ESKD+), soluble TNF Receptor 2 (sTNF-R2; 1345
pgmL�1 in ESKD� cf. 8380 pgmL�1 in ESKD+),
APRIL (122852 pgmL�1 in ESKD� cf. 2050367 pg
mL�1 in ESKD+), sCD30 (909 pgmL�1 in ESKD� cf.
2169 pgmL�1 in ESKD+), TSLP (98 pgmL�1 in
ESKD� cf. 186 pgmL-1 in ESKD+), IL-12(p40) (255
pgmL�1 in ESKD� cf. 349 pgmL�1 in ESKD+), IFN-c
(151 pgmL�1 in ESKD� cf. 269 pgmL�1 in ESKD+),
IL-2 (10 pgmL�1 in ESKD� cf. 24 pgmL�1 in
ESKD+), MMP-3 (5812 pgmL�1 in ESKD� cf. 11518
pgmL�1 in ESKD+), Osteocalcin (6531 pgmL�1 in
ESKD� cf. 28879 pgmL�1 in ESKD+), Pentraxin-3
(2235 pgmL�1 in ESKD� cf. 5397 pgmL�1 in ESKD+)
and IL-29/IFN-n1 (69 pgmL�1 in ESKD� cf. 140 pg
mL�1 in ESKD+). Of interest, many of these
inflammatory cytokines including sTNF-R1, sTNF-
R2, IFN-c and MMP-3 have also positively
correlated with clinical severity of ATBI20–22 and
IFN-c has been associated with Mtb infection
activity as measured through radiologically
determined pulmonary infiltrates and
destruction.23 TNF-R1 has also been identified in
previous studies as a marker of rapid ESKD
progression.24 Significantly elevated levels of
agalactosylated (G0) N-linked Fc antibody glycans
were observed in ESKD+ patients in comparison
with ESKD� (median 3 in ESKD� cf. 6.5 in ESKD+;
P = 0.0016). Of interest, elevated agalactosylated
antibodies have also been associated with ATBI in
comparison with LTBI.16

CD14+CD16� monocytes expressing CX3CR1
were higher in the ESKD+ group (median
fluorescent intensity (MFI); 2605 in ESKD� cf. 3523
in ESKD+), which have previously been used to
measure innate immune inflammatory phenotypes
in ESKD+ populations.11 Effector memory (CD27�)
CD4+ T cells were also elevated in the ESKD+

cohort (median; 5% of bulk CD4+ T cells in ESKD�

cf. 14% in ESKD+) (Supplementary table 1). In
comparison, G2f% galactosylation (median 13 in
ESKD� cf. 6 in ESKD+; P = 0.00043) of bulk IgG
antibodies was upregulated in the ESKD� group,
which has previously been associated with LTBI.16
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Total frequencies of cTFH cells (median 29% of
memory CD4+ in ESKD� cf. 19% in ESKD+) and
Vd2:Vd1 T cell ratio were also significantly higher
in the ESKD� group (median ratio of 4.6 in ESKD�

cf. 0.4 in ESKD+) (Figure 1a).

Four minimal immune features distinguish
ESKD+ from ESKD� patients

To further characterise the impact of ESKD on the
immune state, we applied multivariate
computational analysis, including feature reduction
to identify the minimal immune profile that
distinguished ESKD� from ESKD+ (Figure 1b).
Strikingly, only 4 key immune features were selected
that differentiated ESKD� from ESKD+ individuals
(Figure 1c). These features included elevated TNF-
R1, IFN-c and Factor D (Adipsin) within ESKD+

individuals and elevated cTFH (CD3+CD4+CXCR5+)
frequencies in ESKD� (median 6.4% in ESKD+ cf.
12.8% inESKD�; Supplementaryfigure 3).

Inflammatory antibody glycosylation and
complement profiles distinguish ESKD+LTBI+

and ESKD�LTBI+ individuals

Previous studies have identified elevated
inflammatory N-linked antibody glycosylation and

complement levels as biomarkers of ATBI in
comparison with LTBI.16,25 Therefore, we
examined ESKD�/LTBI+ (n = 10) and ESKD+/LTBI+

(n = 10) patients for differences in N-linked
glycans (Figure 2a) and complement (Figure 2b).
Total agalactosylated IgG (Total G0%) was higher
in ESKD+/LTBI+ patients (P = 0.015), consistent
with elevated G0 (P = 0.006) and G0f structures
(P = 0.011) (Figure 2a), whereas di-galactosylated
IgG (G2 and G2f) was increased in ESKD�/LTBI+

individuals (G2f% P = 0.0019; G2% P = 0.012;
Figure 2a). ESKD+/LTBI+ patients also exhibited
significantly higher complement Factor D (Adipsin)
(P < 0.0001) and C1q (P = 0.009) (Figure 2b),
whereas ESKD� individuals had significantly
higher C3 (P = 0.012) and Factor B (P = 0.0078)
(Figure 2b).

Given that previous studies have observed
differential antibody responses in TB disease
states,16 we next assessed Mtb-specific antibodies
in all LTBI patients via a customised Mtb-specific
multiplex assay including 16 TB antigens and
influenza HA as a positive control. We measured
antigen-specific antibody isotype (IgG, IgA) and
subclass (IgG1, IgG2, IgG3, IgG4; IgA1, IgA2) levels,
such that a composite antibody database of 119
antigen-specific antibody features was compiled
(17 antigens x 7 detectors). Surprisingly, there

Table 1. Characteristics of participants with end-stage kidney disease and interferon gamma release assay (IGRA) status

LTBI� ESKD� (n = 10) LTBI+ ESKD� (n = 10) LTBI� ESKD+ (n = 10) LTBI+ ESKD+ (n = 10)

P-value

between groups

Median age (IQR), year 53.5 (39.5–59.5) 52 (39.25–53.75) 59 (49.25–69.25) 64.5 (48.75–69.75) > 0.05

Female 6 6 7 7 > 0.05

Male 4 4 3 3 > 0.05

Canadian born 8 5 8 10 > 0.05

Non-Canadian born 2 5 2 0 > 0.05

IGRA testa 0 10 0 10 -

BCG vaccination statusb 8 5 7 10 > 0.05

Diabetesb 4 1 5 6 > 0.05

Haemodialysis 0 0 10 10 -

Cause of ESKD: n/a n/a

Diabetic Nephropathy 4 6 -

Glomerulonephritis 1 1 -

Cystic disease 0 0 -

Vasculitis 1 0 -

IgA Nephropathy 1 0 -

Cancer 0 2 -

Other 3 1 -

Table of patient reported data. Sex, demographics, IGRA status (laboratory confirmed), BCG vaccination status, diabetes status, treatment with

haemodialysis and aetiology of ESKD (if applicable) quantitatively reported (N = 40). P-value shows no significant differences in demographics

between groups.
aLaboratory confirmed.
bSelf-reported.
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were near-undetectable IgG responses to Mtb-
specific antigens despite detectable levels of
influenza-specific IgG (Supplementary figure 4).
This suggests an ability for antigen-specific IgG

(i.e. influenza-specific IgG) to be generated by
ESKD+ patients; however, the antigenic
stimulation present with LTBI in this cohort may
be too low to induce robust Mtb antibody

Figure 1. Volcano plot (a) utilising a multiple t-test comparison between ESKD� and ESKD+ for each measured feature assessed against the log

of its P-value. FDR approach using a conservative corrected method of Benjamini and Yekutieli with a desired FDR of 1%. The dotted line (y = 2)

represents significance cut-off specific in analysis. (b) Multivariant unsupervised LASSO principal component analysis (PCA) of ESKD� (n = 20) in

light blue and ESKD+ (n = 20) in light red. Separation on the scores plots indicates unsupervised separation of cohorts based on all measured

features. (c) Loadings of principal component 1 (PC1; with 71% variance), which identify immune features capable of separating ESKD� (n = 20)

from ESKD+ (n = 20).
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responses, a finding that is consistent with
previous studies demonstrating a correlation
between Mtb antibody titres and the level of Mtb
bacterial burden.26,27

To further examine the influence of ESKD upon
immune responses in LTBI patients, we compared
all immune features (a total of 260 features: 141
afore-mentioned immune features along with 119
antibody responses) between LTBI+ (ESKD+/LTBI+

with ESKD�/LTBI+ n = 20) and LTBI� (ESKD�/LTBI�

healthy controls with ESKD+/LTBI�; n = 20). No
significant differences were identified between
groups, after taking into account multiple
comparisons (data not shown). We next applied
feature selection to determine the minimal
immune signatures that distinguish ESKD+/LTBI+

and ESKD�/LTBI+ patients (Figure 2c). In addition
to 3 of the features identified in the previous
analysis shown in Figure 1c, another 12 immune
features were selected (IFN-c was not identified;

Figure 2. Radar plots of (a) glycosylation patterns of purified IgG from LTBI+ (n = 10) and ESKD+/LTBI+ (n = 10) serum (glycans measured as total

area under the curve; the sum of total glycan area peaks with % make-up of each glycan measured as total %) and (b) complement serum

levels in LTBI+ (n = 10) and ESKD+/LTBI+ (n = 10) patients (MFI). All data Z-scores are normalised. Differences between groups were analysed with

unpaired two-tailed t-tests, with *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. (c) Unsupervised LASSO PCA differentiating ESKD�/LTBI+

(n = 10) and ESKD+/LTBI+ (n = 10) with the immune features and their loadings associated with this separation (d).

2021 | Vol. 10 | e1355

Page 6

ª 2021 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of

Australian and New Zealand Society for Immunology, Inc.

Inflammatory profiles in kidney disease and TB MR McLean et al.



Figure 2d). Interestingly, despite prior observations
of functional changes in Vd2 T cells among the
ESKD+LTBI cohort,10 the systems analysis identified
the frequency of CD27+ Vd1 T cells as the only
cellular immune feature elevated in the ESKD�/
LTBI+ group, whereas CX3CR1+CD14++CD16+ and
CD14++CD16� monocytes, CD3+/Vd2�/CD4+/CCR5+

and CD3+Vd2�/CD4+CXCR5+/CD25+ cells were
elevated in ESKD+/LTBI+ patients. In addition,
inflammatory cytokines (TWEAK/TNFSF12,
Osteopontin, IFN-beta, LIGHT/TNFSF14, IL-10 and
sCD163), complement protein Factor D (Adipsin)
and antibody glycosylation patterns G0 and G1
(Figure 2d) were also elevated in ESKD+/LTBI+

individuals. Overall, this confirmed an elevated
inflammatory signature in ESKD+/LTBI+ patients.

CX3CR1+ monocytes in ESKD+ individuals
correlate with elevated inflammatory
plasma cytokines

Many of the cytokines highlighted thus far, are
produced by and/or are chemoattractants for cells
critical to the Mtb response including monocytes
and CD4+ T cells. Hence, we correlated the
previous feature selected cytokines with cell
phenotypes (Figure 3a, b). In ESKD+ patients
(Figure 3b), a cluster of pro-inflammatory
cytokines (TSLP, IL-12(p40), IFN-c, IL-2, IFN-⍺2,
IL-28A/IFN-n2, sCD163, Pentraxin-3 and IL-29/
IFN-n1) correlated positively with expression of
CX3CR1+ on CD14++CD16� and CD14++CD16+

monocytes (which were elevated in ESKD+;
Supplementary figure 5a–c) as well as CD4+CXCR5+

CD25+ T cells, while no significant correlations
were observed in the ESKD� cohort. cTFH cell
frequency also correlated significantly with sCD30
and sTNF-R1 within ESKD+ patients. In contrast,
Vd1+CD27+ frequency was positively correlated
with the cluster of cytokines listed above within
ESKD� patients, but interestingly did not correlate
within the ESKD+ cohort. Overall, these results
suggest that different monocyte and T-cell
profiles contribute to the elevated inflammatory
signatures observed in ESKD+ patients.

DISCUSSION

Considering the prevalence of Mtb and the rise in
chronic kidney disease across the globe,
understanding the influence of this common
disease upon Mtb28 is of great public health
importance. In this study, we found ESKD+

individuals demonstrated an elevated pro-
inflammatory signature in comparison with ESKD�

individuals, including a panel of inflammatory
plasma signatures comprising cytokines,
complement and Fc glycosylation along with
monocyte and T-cell subsets. Furthermore, within
the ESKD+ cohort, pro-inflammatory cytokine
levels were found to correlate with activated
monocytes expressing CX3CR1, whereas no
significant correlations to activated monocytes
were observed within the ESKD� cohort. Similar
elevated inflammatory signatures were also
observed in ESKD+/LTBI+ versus ESKD�/LTBI+,
strongly suggesting that the ESKD+/LTBI+

inflammatory response was driven by ESKD+.
The uremic state of chronic kidney disease and

ESKD can impact monocyte function, where their
dysregulated inflammatory activity has been
attributed to vascular damage.29 CX3CR1
expression is recognised as a mediator of disease
severity in kidney disease, with immunotherapeutic
inhibition of CX3CR1 shown effective against
glomerulonephritis.30–32 Elevated levels of CX3CR1
are also observed in HIV-Mtb co-infection, another
disease where Mtb reactivation is of great
burden.33 Similarly, CD14++CD16� monocytes,
which were also elevated in both our ESKD+ and
ESKD+/LTB+ cohorts, have previously been
identified as predictors of Mtb-associated immune
reconstitution inflammatory syndrome.34

In this present study, we observed the same
elevated cytokines including sCD163, Osteopontin
and Pentraxin-3 in both the ESKD+ cohort and the
ESKD+/LTB+ subgroups. These cytokines can be
secreted or shed by inflammatory activated
macrophages and are involved in the activation of
monocytes or inflammatory cells nearby.35–38

Notably, Osteopontin levels are greater in ATBI
than in LTBI or healthy individuals.13 Given the
role that monocytes play in TB infection and
dissemination,39,40 and the high Mtb reactivation
rates in ESKD+ patients, it is worth considering
how this inflammatory state influences the
pulmonary microenvironment and subsequent
emergence of fulminant TB. Collectively, our study
suggests a picture of overwhelming pro-
inflammatory responses in patients with ESKD,
which supports the recent postulation that the
severity of TB in patients comorbid with diabetes
is due to excessive inflammation and monocyte
activation.41 Future studies examining monocyte
function including cytokine secretion (e.g.
stimulated with Mtb or BCG) from individuals
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with different disease states would be of great
interest to confirm this hypothesis.

Antibody glycosylation levels of G0, the
agalactosylated form of N-glycans was higher in
ESKD+ patients in this study. G0 has been
associated with inflammatory autoimmune
conditions such as rheumatoid arthritis and is also
elevated in people with diabetes mellitus.42–44

Previous studies have found that G0 levels are
associated with ATBI.16 Given that ESKD patients
also have elevated G0 levels, we hypothesise that
a similar mechanism of inflammation is induced in
both ESKD and ATBI.16

Changes in bulk antibody glycosylation profiles,
together with reduced cTFH frequencies in ESKD,
may also reflect underlying perturbations of
B-cell responses in secondary lymphoid organs.
To date, we are unaware of other studies
assessing cTFH in the context of ESKD+ or ESKD+/
LTBI+. In addition to cTFH frequency, differences
in the memory phenotype of Vd1 T cells were

highlighted as a feature differentiating ESKD�

and ESKD+ individuals with LTBI. Differentiation
of Vd1 T cells towards a CD27� phenotype has
previously been reported in CMV infection and is
associated with clonal expansion and
upregulation of cytotoxic mediators such as
perforin and granzyme.45 Within the ESKD�

cohort, CD27+ Vd1+ cells were the only cell type
to positively correlate with the same set of
inflammatory cytokines that correlate with
monocytes, and cTFH frequency/activation in the
ESKD+ group. Interestingly, other inflammatory
diseases associated with microbial translocation
(including HIV) similarly result in the expansion
of CD27� Vd1 T-cell populations.46 This begs the
question as to whether ESKD-associated
inflammation drives Vd1 T cells towards a
differentiated, CD27� phenotype.

Caveats to this study include small sample size,
the inability to collect samples from patients with
ESKD where LTBI reactivated, due to rapid

Figure 3. Correlation plots of non-parametric Spearman’s correlation. y-axis CD4+, Vd1+ and Vd2+/Vd1+ ratios, cTFH cells and monocytes. x-axis

cytokines of significance are highlighted in Figures 1 and 2. (a) (ESKD� R-values; min –0.56 to max 0.70); (b) (ESKD+ R-values); R ≥ 0.446 are

significant P < 0.05.
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mortality following reactivation. As this was a
cross-sectional study, we cannot determine
whether LTBI treatment or improvements in
patients’ kidney function impact the levels of
these inflammatory markers. Most patients within
this cohort were on several different medications
to treat ESKD, which can affect their serological
and cellular immune responses, and potentially
influence LTBI reactivation, such as corticosteroids.
Due to the size and heterogeneity of the cohort,
these medications were not controlled; however,
large cohort studies where the influence of
medications upon inflammation and reactivation
is monitored should be investigated in the future
studies.

This study brings together multiple concepts
relating to co-infection, inflammation and plasma
markers in the context of ESKD and LTBI. ESKD,
regardless of the aetiology, shares a common,
highly inflammatory course that promotes
monocyte activation, leukocyte chemoattraction
and generalised inflammation. Given the
substantial rates of TB reactivation in this patient
group and the mechanistic uncertainty, our study
furthers the understanding that ESKD+/LTBI+ co-
infection remains a highly inflammatory state
compared with ESKD�/LTBI+, with the highly
inflammatory state driven by the presence of
ESKD. Identifying the mechanisms of LTBI
reactivation in these patients may lead to
pharmacological agents that can block the action
of these specific cytokines or complement
proteins, preventing the facilitation of
reactivation. Further mechanistic research into this
area must be conducted and larger patient
cohorts enlisted.

METHODS

Study participants

This cohort of study participants with ESKD, LTBI and
healthy controls has been previously described.9–11

Individuals living with ESKD and undergoing haemodialysis
were recruited as part of the Renal Program at the Health
Sciences Centre in Manitoba, Canada. ESKD� control PBMCs
and plasma were selected from a TB immunology biobank
in Manitoba. ESKD� controls were demographically
matched in location and diabetic status where possible. All
participants were administered the QuantiFERON-TB Gold
In-TubeTM Test (Qiagen, Hilden, Germany) and were HIV,
HBV and HCV negative at the time of participation. All
participants provided informed consent. The study was
approved by the Research Ethics Board at the University of
Manitoba.

Peripheral blood collection and processing

Peripheral blood samples were collected for plasma and
PBMC collection. Plasma was stored at –80°C in aliquots for
antibody, cytokine and complement determination. PBMCs
were isolated via Ficoll (Bio-Strategy Lab, Melbourne,
Australia) gradient separation and cryopreserved prior to
stimulation and culture.

Antibody purification

IgG was purified from 100 µL of IgA-depleted plasma using
Melon Gel IgG Purification method (Thermo Fisher,
Massachusetts, USA). Purified IgG concentrations were
confirmed via ELISA.

Profiling of IgG N-linked glycans

Glycan analysis was performed on purified IgG using the
LabChip GXII Touch protein characterisation system
(PerkinElmer, Massachusetts, USA). To determine glycan
glycosylation samples were processed using a HT Protein
Express Reagent Kit (PerkinElmer, Massachusetts, USA)
according to the manufacturer’s instructions (protocol
CLS140171). For glycan profiling, samples were processed
using the ProfilerPro Glycan Profiling Assay Kit
(PerkinElmer, Massachusetts, USA). Briefly, samples were
reduced and digested with PNGase F to release N-glycans,
and the N-glycans fluorescently labelled. Glycans were
identified using a panel of commercially available N-glycan
standards (QA-Bio, California, USA), and the proportion of
each glycan was profiled with the LabChip GX Reviewer
software (PerkinElmer, Massachusetts, USA).

Systems serology

Multiplex bead-based human inflammation assay

The plasma as described above from the study samples
(N = 40) was assessed using the Bio-Plex ProTM Human
Inflammation Panel 1, 37-Plex #171AL001M (Bio-Rad,
California, USA) on a Luminex FlexMap 3D machine
(Luminex, Texas, USA), following the manufacturer’s
recommendations at a 1:2 plasma dilution. The following
37 analytes were assessed: APRIL/TNFSF13, BAFF/TNFSF13B,
sCD30/TNFRSF8, sCD163, Chitinase-3-like 1, gp130/sIL-6Rb,
IFN-a2, IFN-b, IFN-c, IL-2, sIL-6Ra, IL-8, IL-10, IL-11, IL-12
(p40), IL-12 (p70), IL-19, IL-20, IL-22, IL-26, IL-27 (p28),
IL-28A/IFN-k2, IL-29/IFN-k1, IL-32, IL-34, IL-35, LIGHT/
TNFSF14, MMP-1, MMP-2, MMP-3, Osteocalcin, Osteopontin,
Pentraxin-3, sTNF-R1, sTNF-R2, TSLP, TWEAK/TNFSF12.
Thirty-six of the 37 analytes assayed were included in
analyses as IL-20 showed undetectable levels in all plasma
samples.

Multiplex bead-based complement assay

Plasma study samples were also assessed for complement
using the Merck Millipore Milliplex Human Complement
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Panel 1 (HCMP1MAG-19K) and Human Complement Panel 2
(HCMP2MAG19K) (Merck Millipore, Massachusetts, USA),
following the manufacturer’s recommendations on a
Luminex FlexMap 3D. The plasma samples were prepared at
a dilution of 1:200 as recommended for Panel 1 and 1:40
000 as recommended by Panel 2. The following analytes
were assessed in Panel 1: C2, C4b, C5, C9, Factor D
(Adipsin), Mannose Binding Lectin (MBL) and Factor I. The
following analytes were assessed in Panel 2: C1q, C3, C3b/
iC3b, C4, Factor B, Factor H and Properdin.

Tuberculosis and influenza-specific antibody
multiplex assay

A customised TB multiplex assay was designed to assess for
Ab specific for Ag85B, MPT64, TX114 proteins, TB
peptidoglycan, Ag85 complex and ESAT-6 (BEI resources,
Manassas, USA). ATBI-positive serum from a different
cohort was used as a control to verify Mtb antigen binding.
H3 influenza haemagglutinin (Sino Biological A/
Switzerland/9715293/2013, HA; Sino Biological, Beijing,
China) was also included in the array as a positive antigen
control. Briefly, magnetic carboxylated beads (Bio-Rad,
California, USA) were covalently coupled to Mtb and Flu
antigens by carbodiimide reaction as previously described.47

The isotypes and subclasses (IgG, IgA1, IgA2, IgG1-4) of
antigen-specific Abs were assessed as previously described.48

Flow cytometry

PBMCs were thawed and stained as previously
described.10,11 Briefly, cryopreserved PBMC were thawed,
stained with live dead blue and incubated with a cocktail
of surface antibodies for 30min at 4°C. Cells were then
washed, fixed in BD Cytofix/Cytoperm (BD, New Jersey,
USA) and acquired on a BD LSR Fortessa using BD FACS
Diva (BD, New Jersey). Data were analysed in FlowJo v10
(FlowJo, Oregon, USA). Gates were set according to
fluorescent minus one controls. Surface antibody cocktails
(BioLegend, California, USA): CX3CR1 FITC (2A9-1), CD14
PerCP-Cy5.5 (MOP9), CD16 AlexaFluor700 (3G8), HLA-DR
APC-Fire750 (L243), CCR2 BV421 (48607), CD3 BV510 (SK7),
CD4 BV605 (RPA-T4), CD8 BV650 (RPA-T8), CD11b BV785
(ICRF44), Vd2 PE (B6), CD20 Pe-Dazzle594 (2H7), CD56
BUV395 (NCAM16.2), CXCR5 BB515 (RF8B2), CCR7 Alexa647
(G043H7), CD25 APC-R700 (2A3), CD69 APC-Fire750 (FN50),
PD-1 BV421 (EH12.2H7), CCR6 BV785 (G034E3), CXCR3 PE-
Dazzle594 (G02H57) and CD45RA PeCy7 (HI100).

Statistical analysis

Data normalisation

For all multivariate analysis, influenza positive controls
were removed. Right shifting was performed on each
immune feature if any negative values were observed by
adding the minimum value of the feature back to all
samples. For PCA, to transform the features to have a
normal distribution, data were log-transformed following
the equation y = log10 (x + 1), where x is the right-shifted

data. Data were further normalised by mean centring and
variance scaling.

Feature selection

Key immune features (signatures) that contributed to
differences between cohorts were identified using the least
absolute shrinkage and selection operator (LASSO)
penalised regression feature selection method in MATLAB
(MathWorks, Massachusetts, USA) using the statistics and
machine learning tool box.47 Cross-validation was
performed iteratively (repeated 10 000 times, 10-fold cross-
validation) to find the optimal regularised parameters.

PCA

Principal component analysis (PCA) was performed in
MATLAB using the statistic and machine learning toolbox,
in order to visualise the variance of all measured features
for each sample. Each measure immune feature is assigned
a loading, with the linear combinations of these loadings
forming the observed principal component (PC). Each
sample is scored using their individual measured immune
responses and plotted. Separation on the scores plots
indicates unsupervised separation of cohorts based on all
measured features.

Software

Univariate analyses were performed using GraphPad Prism 9
software (GraphPad, California) with normalisation of data
pre-analysis with MATLAB scripts. Univariate analyses were
unpaired and did not assume normal distributions. Data
normalisation, feature selection and PCA were completed
using MATLAB with statistics and machine learning toolbox
(MathWorks, Massachusetts, USA). PCA scores and loading
plots were graphed in Prism.
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