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ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) pandemic is a challenge for intensive care 
units (ICU) in part due to the failure to identify risks for patients early and the inability to render an 
accurate prognosis. Previous reports suggest a strong association between hypercoagulability and poor 
outcome. Factors related to hemostasis may, therefore, serve as tools to improve the management of 
COVID-19 patients.
Aim: The purpose of this report is to develop a model to determine whether it is possible to early 
identify COVID-19 patients at risk for thromboembolic complications (TCs).
Methods: We analyzed electronic health record data of 108 consecutive COVID-19 patients admitted 
to the adult ICU of the Erasmus University Medical Center between February 27 and May 20, 2020. 
By training a decision tree classifier on 66% of the available data, a model for the prediction of TCs 
was developed.
Results: The median (interquartile range) age was 62 (53-70) years and 73% were male. Forty-three 
patients (40%) developed a TC during their ICU stay. Mortality was higher for patients in the TCs 
group compared to the control group (26% vs. 8%, P=0.03). Lactate dehydrogenase, standardized 
bicarbonate, albumin, and leukocytes were identified by the Decision Tree classifier as the most 
powerful predictors for TCs 2 days before the onset of the TC, with a sensitivity of 73% and a positive 
likelihood ratio of 2.7 on the test dataset.
Conclusions: Clinically relevant TCs frequently occur in critically ill COVID-19 patients. These 
can successfully be predicted using a decision tree model. Although this model could be of special 
importance to aid clinical decision making, its generalizability and clinical impact should be 
determined in a larger population.
Relevance for patients: Recently, severe TCs were observed in COVID-19 patients with progressive 
respiratory failure warranting ICU treatment. Timely identification of patients at risk of developing 
TCs is critical inasmuch as it would enable clinicians to initiate potentially salvaging therapeutic 
anticoagulation.

1. Background

A pandemic of severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) infection responsible for coronavirus disease 

2019 (COVID-19) [1] has led to large numbers of moderately 
and severely ill patients. Up to 5% of COVID-19 patients need 
intensive care unit (ICU) treatment [2] due to severe pulmonary 
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dysfunction, resulting in acute respiratory distress syndrome [3,4]. 
Previous reports suggest that endothelial dysfunction leads to 
secondary activation of the complement system and coagulation 
cascades, culminating in hyperinflammation, the formation of 
microthrombi, and corollary gas exchange disturbances and 
even fatal obstructive shock [5-8]. Early clinical identification of 
impending pulmonary issues is therefore crucial to initiate timely 
treatment.

Recently, severe thrombotic complications were observed 
in COVID-19 patients with progressive respiratory failure 
warranting ICU treatment [9]. Because there is a failure to 
identify and accurately manage this risk, the National Institute 
for Public Health of the Netherlands advised to lower the 
threshold of initiating therapeutic anticoagulation [10,11]. The 
clinical relevance of coagulopathy in these patients is mainly 
characterized by a positive correlation between elevated 
D-dimer levels and poor prognosis. Accordingly, therapeutic 
anticoagulation in high-risk individuals has yielded beneficial 
outcomes [12,13]. Furthermore, previous studies suggest that 
patients with a high probability of a pulmonary embolism could 
benefit from preemptive therapeutic anticoagulation, even 
before diagnostics based on computed tomography (CT) [14]. 
To date, studies regarding the early recognition of these high-
risk patients are lacking. Timely identification of patients at risk 
of developing thromboembolic complications (TCs) is critical 
inasmuch as it would enable clinicians to initiate potentially 
salvaging therapeutic anticoagulation. Especially in a stressful 
time, such as the COVID-19 pandemic, diagnosis of the 
thromboembolic disease is difficult because few clinical CT 
investigations are performed either due to the overwhelming 
workload or due to the severity of critical illness (clinical 
instability). Furthermore, CT scans are often performed without 
iodinated intravenous contrast and very high D-dimer levels are 
often observed (secondary to inflammation in the later phase), 
complicating the interpretation [15,16].

Vast amounts of patient data are generated at a high rate during 
the COVID-19 pandemic and it has been difficult for clinicians to 
keep up and interpret these data for each individual patient. Data 
analysis in the form of machine learning is capable of processing 
large amounts of complex patient data and may contribute to 
making more efficient use of data and generate accurate, patient-
specific predictions [17].

In the current study, we describe the number of TCs in critically 
ill COVID-19 patients warranting ICU treatment and provide a 
decision tree model to predict the risk of TCs.

2. Methods

This is a single-center retrospective cohort study at the adult 
ICU of the Erasmus University Medical Center, Rotterdam, the 
Netherlands. To be included, patients must have a confirmed 
SARS-CoV-2 infection through nasopharyngeal swab and PCR 
and had to be older than 18 years of age. The first patient was 
enrolled on February 27, 2020. Patient data were censored at 
the time of data cutoff on May 20, 2020. All patients had at least 

14 days of hospital follow-up. All data were retrieved from the 
patient’s electronic health records. The study was approved by 
the institutional review board of Erasmus University Medical 
Center and the need for written informed consent was waived. 
All data were de-identified. The manuscript has been prepared 
in accordance with the transparent reporting of a multivariable 
prediction model for individual prognosis or diagnosis guideline 
for multivariable prediction models [18].

2.1. Predictors

As candidate predictors for the model, we considered 
demographic, diagnostic, and treatment data collected during ICU 
stay (including laboratory test results and radiologic assessments) 
(Table 1). Laboratory tests were performed routinely and 
radiologic assessments, including plain chest radiography, arterial 
and/or venous ultrasound, and CT pulmonary angiogram, were 
performed at the discretion of the treating physician [9].

2.2. Outcomes

The primary outcome was a TC. Patients were considered TC-
positive (event) if they were diagnosed with pulmonary embolism 
established by lung CT or cardiac ultrasound (direct visualization 
of thromboembolism in the heart, right ventricular dilation, and/
or pulmonary hypertension) or with deep vein thrombosis during 
hospital admission. Plain chest radiography, arterial and/or venous 
ultrasound, and CT pulmonary angiogram were performed at the 
discretion of the treating physician. Patients were considered 
TC-negative (reference group/non-event) if (1) radiological 
assessment ruled out a TC during ICU stay and/or (2) if they 
were discharged from the ICU during the study period and had 
no clinical indication for radiological assessment during ICU stay 
nor during follow-up.

Table 1. Predictors used in the prediction of thromboembolic 
complications.
Patient information (3 features) Age, gender, BMI

Prior diseases (8 features) Hypertension, diabetes mellitus, other 
cardiovascular diseases,
ischemic stroke, tumor, chronic renal 
insufficiency,
chronic lung disease, congestive heart 
failure

Laboratory results (32 features) Lymphocytes, neutrophils, neutrophil/
lymphocyte ratio, CRP, leukocytes, 
eosinophils, Il-2R, IL-6, thrombocytes, 
LDH, D-dimer, CKMB, hsTNT, NT-
proBNP, albumin, ALAT (GPT), BSE, 
CK, cystatin-C, ferritin, fibrinogen, KL6, 
creatinine, NGAL, PCT, pO2, PTINR, 
bicarbonate, suPAR, triglyceride, APTT, 
APTT ratio

BMI: Body mass index, CRP: C-reactive protein, IL-2R: Interleukin-2 receptor, 
IL-6: Interleukin-6, LDH: Lactate dehydrogenase, hsTnT: High-sensitive troponin 
t, NT-proBNP: N-terminal prohormone of brain natriuretic peptide, ALAT: Alanine 
aminotransferase, NGAL: Neutrophil gelatinase-associated lipocalin, PCT: Procalcitonin, 
PTINR: Prothrombin time international normalized ratio, suPAR: Soluble urokinase-type 
plasminogen activator receptor, APTT: Activated partial thromboplastin time
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2.3. Sample size

No statistical sample size calculation was performed a priori. 
Sample size was equal to the number of patients treated during the 
study period.

2.4. Data preprocessing

Predictors that contained ≥30% missing data were removed. We 
started by considering the day of diagnosis of a TC as a mark point. 
We analyzed all data until 5 days before this mark point for the 
TC-positive patients. In the TC-negative patients with radiological 
assessment, we selected all data from the day with the most 
available measurements in the period from 2 to 0 days before the 
radiological assessment. For the TC-negative patients who were 
already discharged and had no clinical indication for radiological 
assessment, data were collected from the day with the most 
available measurements in the period of day 2-day 6 of ICU stay. 
We chose day 6 because this was the median day of TC diagnosis. 
This time window was selected to ensure that the collected data 
would be comparable to that of the other patients included in the 
study. To additionally test model performance for the day of ICU 
admission, we also included data on the day of admission.

We chose to focus on 2 days before the mark point because 
this time point is clinically relevant and demonstrated good values 
in the preliminary analysis. When multiple measurements of 
the same item were available per day, we selected only the first 
measurement, usually occurring between 6 am and 9 am as part of 
the daily routine laboratory testing. BR and MD were responsible 
for data analysis and modeling.

2.5. Statistical analysis

Continuous variables are presented as the median and 
interquartile range (IQR). Categorical variables were reported 
as counts and percentages (%). To assess whether a particular 
predictor was significantly different between groups, we 
performed a Wilcoxon rank-sum test for continuous variables and 
a Fisher’s exact test for categorical (binary) variables. P<0.05 was 
considered statistically significant. Furthermore, the correlation 
between continuous variables was evaluated using Spearman’s 
rank correlation coefficient. Data processing and statistical 
analyses were performed in R 3.6.3 (R foundation) [19] and 
Python 3.7 (Python software foundation) [20].

2.6. Model development

To create the prediction model, we trained a decision tree 
classifier. Our choice to select a decision tree is motivated by our 
attempt to create an easily clinical interpretable and easy-to-use 
prediction model. We collected 53 predictors that encompassed 
several inflammation-related and coagulation-related markers 
(Table 1). Only predictors that exhibited a P-value of ≤0.05 
between TC-positive and TC-negative patients were considered 
for modeling. We opted for this P-value cutoff to (1) select the 
patient characteristics that are more likely associated with TC and 
(2) to reduce the number of predictors.

To enable machine learning, patients with missing data 
in one of the selected predictors were removed from the 
dataset. The predictive model was obtained by training a 
decision tree classifier on a randomly selected subset of 66% 
out of the available data. Hyperparameters (maximum tree 
depth: 3, minimum samples per leaf: 3, minimum samples per 
split: 7, and criterion: Gini, class weights: 1 [TC-negative], 2.5 
[TC-positive]) were obtained using a grid search with 5-fold 
repeated 5-fold cross-validation to prevent the model from 
overfitting to the data. The adjusted class weights achieve a 
higher probability of false positives compared to false negatives 
(missing less patients that will experience TCs). To assess 
generalizability to earlier days, we backtested the model after 
admission to the ICU and of the 5 days before the diagnosis. 
We assessed model performance by generating the area under 
the receiver operating characteristics (AUROC) using class 
probabilities. [21,22] In addition, we calculated the models’ 
sensitivity (%), specificity (%), and positive likelihood ratio. 
The “decision tree classifier” of the Python sklearn-library [23] 
was used for modeling.

3. Results

From the date of the first confirmed case up to May 20, a total 
of 134 patients were admitted to our ICU, of whom 108 patients 
were included in the analysis (Figure 1).

Demographic characteristics are presented in Table 2. The 
median age was 62 years (IQR, 53-70); 73% were male. Patients 
had a median body mass index of 28.5 (IQR, 25.9-33.0 kg/m2). 
Hypertension (38 patients; 35%) and diabetes mellitus (34 patients; 
31%) were the most common chronic medical conditions. 
Comparing patients with TCs and those without TCs, we found 
no difference in the occurrence of chronic conditions. Forty-three 
(40%) patients developed TCs, of whom 35/43 (81%) manifested 
as a pulmonary embolism. Twenty-six percent of the patients 
with a TC died in the ICU compared to 8% in the non-TC group 
(P=0.03).

3.1. Algorithm derivation and validation

To early identify patients at risk for developing TCs, we trained a 
decision tree model on the available patient data. Albumin, D-dimer, 
leukocytes, lymphocytes, standard bicarbonate (bicarbonate), and 
lactate dehydrogenase (LDH) were selected (P<0.05) to compare 
TC-positive to TC-negative patients (Table 3). The neutrophil/
lymphocyte ratio was excluded due to a high correlation with 
lymphocytes (Spearman Rank correlation >0.8).

Patients with missing data in one of the selected predictors 
were removed, yielding a final set of 76 patients for predictive 
modeling (33 TC-positive and 43 TC-negative). The training 
dataset included 50 patients (22 TC-positive and 28 TC-negative), 
and the testing dataset included 26 patients (11 TC-positive and 
15 TC-negative).

The strongest resulting decision model assessed the levels 
of LDH (U/L), leukocytes (×109/L), bicarbonate (mmol/L), and 
albumin (g/L) (Figure 2). Five-fold cross-validation of the model 
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on the training dataset (66% of available data) yielded an accuracy 
of 72% and a sensitivity of 80% on average.

3.2. Algorithm performance

Evaluation of this model on 33% remaining data (test dataset 
of 26 patients) yielded an AUROC of 0.76, a sensitivity of 73%, a 
specificity of 73%, and a positive likelihood ratio of 2.7. Based on 
these findings, we subsequently assessed whether the model could 
identify patients up to 5 days before TC diagnosis (Figure 3). Over 
time, the model demonstrated a varying sensitivity ranging from 
50%, 5 days before TC, to over 90% 2 days before TC (on the total 
dataset). Specificity increased to 77% on 2 days before TC diagnosis.

4. Discussion

In this single-center case series study, we demonstrated that a 
machine learning-derived decision algorithm, using commonly 
available laboratory values, is able to predict TCs in critically ill 

COVID-19 patients. Model testing demonstrated high sensitivity 
and specificity with a positive predictive value of 67%, indicating 
that this decision model can improve risk stratification.

We found a high incidence of TCs in critically ill COVID-19 
patients, mostly manifesting as pulmonary embolism, associated 
with increased mortality and as such expanding on the work of 
Tang et al. [24] and Tu et al. [7]. Since the global number of 
COVID-19 ICU patients is still increasing drastically, early 
detection of complications is paramount to enable appropriate and 
effective interventions. This study not only affirms the association 
between coagulation and poor outcome but also adds the clinical 
translation to actual prediction of such TCs.

Our model could benefit the global treatment of COVID-19 
ICU patients because it is generalizable and can be reproduced 
in other ICU departments across the globe. Moreover, our model 
uses standard laboratory assessments that are easily available. 
Additional tests (CT-pulmonary angiography and trans-thoracic 
ultrasound) can be targeted to true patients at risk of developing 
a TC, thereby shortening the diagnostic delay and enabling early 
initiation of therapeutic anticoagulation therapy. However, the 
individual risk of bleeding must be assessed very carefully for 
each patient before initiating therapeutic anticoagulation.

Previous studies demonstrated that D-dimer levels were 
significantly elevated in COVID-19 patients admitted to the ICU 
with severe disease [25-27]. Increased levels of D-dimer and other 
fibrin degradation products have been reported in fatal cases [24] 
and it has even been suggested that therapy that blunts the increase 
in D-dimer levels might improve outcome [28,29]. In line with 
these observations, the National Institute for Public Health of 
the Netherlands advised to lower the threshold of initiation of 
therapeutic anticoagulation. However, this is not without possible 
harm because of the side effects of systemic anticoagulation and 
consequent bleeding. Poisey et al., therefore, recently advised to 
be more reticent [11]. Although D-dimer was a strong predictor 
of TCs and was significant difference between groups, this value 
was not selected by machine learning. In preliminary analysis, a 
model including D-dimer was created but revealed no superior 
accuracy, sensitivity, and specificity over the current model. In 
addition, D-dimer contained 10% more missing data than the other 
variables considered for modeling and thus reduced the number of 

Table 2. Patient characteristic of patients on the day of a thromboembolic 
complication.

No TCs, n=65 TCs, n=43 P-value

Patient information
Age (years) 61 (46, 70) 65 (56.5, 70.5) 0.14
Sex (% male) 44 (68%) 35 (81%) 0.13
BMI (kg/m2) 30 (26, 33) 27 (25, 32) 0.10

Prior diseases
Hypertension (%) 22 (34%) 16 (38%) 0.83
Diabetes mellitus (%) 18 (27%) 16 (38%) 0.62
Other cardiovascular diseases 3 (6%) 1 (2%) 0.63
Ischemic stroke 3 (6%) 0 (0%) 0.25
Tumor (hematological/solid) 9 (14%) 1 (2%) 0.07
Chronic renal insufficiency 0 (0%) 3 (8%) 0.08
Chronic lung disease 14 (22%) 9 (20%) 0.99
Congestive heart failure 10 (16%) 8 (18%) 0.99

Continuous variables are presented as median and interquartile range (25th and 75th percentile 
per group). Categorical variables were reported as counts and percentages (%). The P-value 
was calculated using Wilcoxon rank-sum test (continuous variables) or Fisher’s exact 
test (categorical variables), a P<0.05 was considered significant. TC: Thromboembolic 
complications, BMI: Body mass index

Figure 1. Schematic depiction of the extraction of patient data for machine learning. Data of COVID-19 positive ICU patients were extracted from the 
in-house database. For patients with TCs, data from 2 days before diagnosis was selected, whereas for all other patients, the data was selected to be 
comparable regarding the length of stay in the ICU (see section 2.4 “Data preprocessing” for more details). Finally, the predictive model was trained 
and tested using the resulting patient data table.
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Table 3. Patient characteristic on the day of a thromboembolic complication.
No TCs, n=65 TCs, n=43 P-value

Patient characteristics
CT scan (%) 25 (38%) 43 (100%) <0.01
Pulmonary embolism (%) 0 (0%) 35 (81%) <0.01
Venous thrombosis (%) 0 (0%) 8 (21%) <0.01
Day of CT scan (number of days in ICU) 4 (3, 11) 7 (4.5, 10) 0.23
ICU days (until day when lab values were extracted) 4 (3, 4) 4 (2.5, 8) 0.06
Total ICU days 4 (4, 5) 5 (2.5, 8.5) 0.14
SOFA 5 (4, 7.5) 5 (5, 7) 0.47
ICU mortality (%) 4 (8%) 8 (26%) 0.03
pO2 10.55 (9.1, 12.65) 10.7 (9.9, 12.3) 0.42

Laboratory results
Activated partial thromboplastin time (s) 31.5 (26.3, 46.5) 27.5 (24.5, 33) 0.19
Activated partial-thromboplastin time ratio 1.2 (1, 1.6) 1.05 (0.95, 1.33) 0.27
D-dimer, mg/L 1.205 (0.85, 2.425) 3.275 (1.7275, 4.26) <0.01
Fibrinogen, g/L 6.8 (5.85, 7.95) 7 (5.95, 8.2) 0.49
PTINR 1.3 (1.2, 1.5) 1.2 (1.1, 1.25) 0.05
Platelets, × 109/mL 276 (197, 403) 309 (261, 433) 0.13
CK, U/L 116 (50, 425) 133 (69, 248) 0.63
CKMB, U/L 1.4 (0.8, 3.5) 1.3 (0.8, 2.6) 0.57
hsTnT ng/L 18 (9, 40) 16 (10, 53) 0.58
NT-pro-BNP, pmol/L 25 (13, 62) 37 (18, 70) 0.17
Eosinophils, × 109/mL 1.4 (0.575, 2.125) 1 (0.2, 1.75) 0.36
Leukocytes, × 109/mL 8.2 (6.1, 10.95) 10.9 (9.25, 15.6) <0.01
Lymphocytes, % 12.6 (8.8, 17.75) 9.5 (6.8, 12.8) 0.02
Neutrophil/lymphocyte ratio 4.7 (3.5, 8.65) 7.6 (5.25, 10.5) 0.01
Neutrophils, × 109/mL 74.3 (68.93, 79.85) 79.1 (74.4, 83.1) 0.04
Serum ferritin, µg/L 992 (492, 1819) 1255.5 (787.5, 2376.25) 0.31
CRP, mg/L 190 (89, 242) 189.5 (127.5, 317.75) 0.09
IL-6, pg/L 88 (37, 125.5) 102 (64.5, 336.5) 0.07
Procalcitonin, ng/mL 0.645 (0.2, 1.895) 0.815 (0.325, 1.715) 0.31
Triglycerides, mmol/L 2.105 (1.573, 3.17) 2.23 (1.7075, 2.9925) 0.95
Creatinine, mcmol/L 76 (64, 102.75) 83.5 (74.75, 110.75) 0.16
NGAL, ng/mL 171(107, 224.25) 233 (176, 441) <0.01
suPAR, ng/mL 12.5 (9, 20.5) 13 (11.5, 19) 0.71
ALAT (GPT), U/L 42 (26, 74) 44 (28.5, 67.5) 0.81
KL6, U/L 378 (249, 637) 548 (399, 701) 0.02
LDH, U/L 301 (247, 415.5) 355 (315.5,450.5) <0.01
Bicarbonate, mmol/L 26.3 (23.975, 28.7) 28.5 (24.8, 31.6) 0.02
Albumin (g/L) 20 (17, 23) 16 (14, 18.75) <0.01

Continuous variables are presented as median and interquartile range (25th and 75th percentile per group). Categorical variables were reported as counts and percentages (%). The P-value was 
calculated using the Wilcoxon rank-sum test (continuous variables) or Fisher’s exact test (categorical variables). A P<0.05 was considered significant. TC: Thromboembolic complications, 
CT: Computed tomography, ICU: Intensive care unit, PTINR: Prothrombin time international normalized ratio, hsTnT: High-sensitive troponin t, NT-proBNP: N-terminal prohormone of brain 
natriuretic peptide, CRP: C-reactive protein, NGAL: Neutrophil gelatinase-associated lipocalin, ALAT: Alanine aminotransferase, LDH: lactate dehydrogenase

patients that could be included in the study. Our model instead 
selected LDH, leukocytes, bicarbonate, and albumin. LDH is an 
intracellular enzyme found in lung tissue (isozyme 3) and can be 
released to the circulation in severe infections as part of cytokine-
mediated tissue damage. Correspondingly, it makes sense from a 
pathophysiological point of view that LDH is released in high-risk 
COVID-19 patients. Earlier studies demonstrated that LDH levels 
can be used as a hallmark of disease in in patients with MERS 

and COVID-19 [30]. Metabolic acidosis, which is influenced by 
bicarbonate, is not a benign condition and signifies an underlying 
disorder that needs to be corrected to improve outcomes. Metabolic 
acidosis was found to be markedly lower in deceased COVID-19 
patients than in recovered patients [15].

ICUs provide a highly challenging environment for healthcare 
workers. Continuous routine monitoring in combination with 
repeated diagnostic assessments provides large amounts of data 
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throughout the day. Rapid and appropriate decision making is 
therefore required to increase diagnostics throughput and to 
avoid a delay in treatment. Machine learning algorithms can 
provide decision support by uncovering hidden clinically relevant 
patterns. By using routinely collected data, our method can 
easily be translated to other clinics. Given their routine adoption 
in clinical chemistry and role in COVID-19-related pulmonary 
pathophysiology, it makes perfect sense that our model selected 
LDH, leukocytes, bicarbonate, and albumin as the strongest 
predictors of our model. Applying our model to all data up to 5 
days before diagnosis revealed a sensitivity ≥74% already starting 
on day 4 before a diagnosis of a TC, which is a powerful statistic 
despite our small sample size.

This study has several limitations. First, not all patients in the 
TC-negative group underwent radiological assessment (n=25, 
38%). The indication for additional radiological assessment was 
based on the decision of the attending physician in the wake of 
lacking international guidelines [10]. Second, we used a decision 
tree model to identify the early predictors of TCs. Decision trees 
are one of the many machine learning options to make use of the 
available data. In our preliminary analysis, we also considered and 
shortly investigated other algorithms such as logistic regression 
and neural networks. We selected a decision tree classifier over 

other algorithms since the decision tree is easier to interpret and 
implement in clinical settings than the output of, for example, a 
logistic regression [31]. Third, the small size of the validation 
cohort might limit the reliability of our model. External validation 
in a larger or prospective dataset could further address this 
limitation but is not yet possible as we are currently still building 
a national registry in the Netherlands (https://covidpredict.org) to 
perform more comprehensive data analysis.

5. Conclusions

In this single-center case series study in COVID-19 patients 
admitted to the ICU, we demonstrated a high incidence of TCs 
associated with increased mortality. A simple and generalizable 
decision tree demonstrated a powerful model to early recognize 
patients at risk for TCs. This model uses conventional clinical 
biochemical tests and as such represents an easy stratification tool. 
Further research should focus on improving model and classification 
performance, evaluating its performance, generalizability, and 
clinical impact in a larger ICU patient population.
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Figure 2. Schematic representation of the decision model to identify ICU patients at risk for TCs. By following the depicted decision rules, assessing 
LDH, standard bicarbonate, albumin, and leukocytes, patients that are likely to develop TCs in the next 2 days can be identified.

Figure 3. Model performance on the days before diagnosis. (A) Sensitivity and specificity of the decision model on the 5 days before diagnosis 
expressed in percentages. (B) AUC of the decision model on the 5 days before diagnosis.
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