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Abstract

The multiple testing problem arises not only when there are many voxels or vertices in an image 

representation of the brain, but also when multiple contrasts of parameter estimates (that represent 

hypotheses) are tested in the same general linear model. We argue that a correction for this 

multiplicity must be performed to avoid excess of false positives. Various methods for correction 

have been proposed in the literature, but few have been applied to brain imaging. Here we discuss 

and compare different methods to make such correction in different scenarios, showing that one 

classical and well known method is invalid, and argue that permutation is the best option to 

perform such correction due to its exactness and flexibility to handle a variety of common imaging 

situations.
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1. Introduction

A well known problem in brain imaging is the multiplicity of tests, which arises given the 

fact that a statistical test is performed on each voxel or vertex of an image representation of 

the brain. However, an equally common situation in which such multiplicity occurs is when 

multiple contrasts of parameter estimates of the same general linear model (GLM) are 

considered, or even multiple different such models. In effect, data acquisition is one of the 

most expensive and laborious stages of an experiment, such that often the same data are 
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reused and reanalysed in different ways to consider different models and hypotheses. If left 

uncontrolled, such multiplicity can lead to an undesirably high number of false positives.

For example, in the Human Connectome Project (HCP), the task fMRI N–back working 

memory experiment is conducted using different classes of stimuli (faces, places, tools and 

body parts) (Barch et al., 2013). Analyses involving these classes can be corrected using 

Bonferroni, but results would be overly conservative due to dependence among the tests. 

Comparisons among the classes using methods such as analysis of variance (ANOVA) 

followed by pairwise comparisons do not control the error rate, as we demonstrate later in 

this paper.

Even though a number of methods have been proposed for correction for similar problems in 

non-imaging fields (Hochberg and Tamhane, 1987; Hsu, 1996), most of these have seen little 

use in the brain imaging. In this technical note, we assert that such correction is necessary, 

discuss and compare a few existing methods through which it can be implemented, and 

provide an approach based on permutation tests that provides an exact (as opposed to 

conservative) control over the error rate, even when the multiple hypotheses being tested are 

not independent.

2. Theory

2.1. Notation and general aspects

Consider the general linear model (GLM) expressed by:

y = Xβ + ε (1)

where y is N × 1 vector containing the image data for N subjects at a given voxel (or vertex), 

X is the N × R full column rank design matrix with the modelled R explanatory variables, β 
is the R × 1 vector with the (to be estimated) parameters that linearly combine the variables 

in X to explain the variability observed in y, and ε is the N × 1 vector of random errors. The 

coefficients can be estimated via ordinary least squares as β = X’X −1X’y. The interest is to 

test K, K ≥ 1, null hypotheses, each of them represented as ℋk
0 :Ck’β = 0, k = 1, …, K , Ck is 

a R × Sk full rank matrix that defines the contrasts of parameter estimates. In ANOVA designs, 

the interest is a global (omnibus) null hypothesis of no difference among all groups, which 

can be tested using the F-statistic:

F =
β ’Ck C’k X’X −1Ck Ck’β

ν1
/ ε’ε

v2
(2)

where ν1 = rank(Ck) and ν2 = N − rank(X) are the degrees of freedom. Large values of F 

provide evidence against the null, and favours the alternative hypothesis ℋk
1 :Ck’β ≠ 0. If Sk 

= 1, Ck’β  is scalar and a t-statistic can be obtained from F as t = sign Ck’β F , or 

equivalently:
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t =
C’kβ C’k X’X −1Ck

− 1
2

ε’ε /ν2
(3)

Large values of t provide evidence against the null, and favours the alternative hypothesis 

ℋk
1 :Ck’β > 0. In either case, the test is said to be significant at the level α, 0 < α < 1, if the 

probability of observing a random statistic T larger or equal than t (or F) is smaller or equal 

than α when the null hypothesis is true, i.e., if ℙ T ⩾ t ⩽ α; in that case, the null hypothesis 

is rejected in favour of the alternative hypothesis. The probability ℙ T ⩾ t  if the null is true 

is the p-value; it can be computed based on distributional assumptions on t, or through a 

resampling procedure, such as a permutation test (Pesarin and Salmaso, 2010). For any test 

performed, if the probability of rejecting the null hypothesis when it is in fact true is exactly 

equal to α, the test is said to be exact; if the probability is smaller than α, the test is said to 

be conservative; and if the probability is larger than α, the error rate is not controlled and the 

test is invalid.

Permutation is a non-parametric method in which the distribution of the test statistic is 

ascertained by explicitly calculating all (or a large number of) the possible values that it 

could assume should the null hypothesis be true. The fundamental assumption that ensures 

validity of permutation methods is that of exchangeability under the null hypothesis, that is, 

the joint distribution of the data remains unchanged after permutations (see Helwig, 2019b, 

for a recent review). In other words, any permutation of the data is, under the null, as likely 

to have been observed as the original, unpermuted data. The distribution of the test statistic 

is then obtained by randomly rearranging the data as if the null hypothesis were indeed true 

(Nichols and Holmes, 2002; Winkler et al., 2014). For a number J of permutations of the 

data, each one associated with a test statistic tj, j = {1, 2, …, J}, for which larger values 

provide more evidence against the null hypothesis, the p-value can be calculated as the 

number of occurrences of a random (after permutation) tj that is larger or equal to the 

observed, original statistic t (obtained without any permutation) divided by the number of 

permutations performed. In other words, tj takes the role of the random statistic T described 

above. Note that t itself (computed from the model without any permutation) should also be 

counted among the set of J statistics computed after permutation, such that the smallest 

possible p-value in a permutation test cannot be smaller than 1/ J, and therefore cannot be 

zero (Phipson and Smyth, 2010).

2.2. Multiple testing

As more tests are conducted, the more likely it will be that at least one will be declared 

significant even if no actual effect exists. The problems associated with the multiplicity of 

tests across points (e.g., voxels or vertices) in an image representation of the brain are well 

known, and various strategies have been devised (for reviews, see Nichols and Hayasaka, 

2003; Farcomeni, 2008; Nichols, 2012). In general, approaches target the control of one of 

two different error quantities: the familywise error rate (FWER), which is defined as the 

chance of any false positive across all tests, and the false discovery rate (FDR), which is the 
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expected proportion of false positives across all tests in which an effect has been found 

significant.

When only one test is considered (that is, in the absence of multiple testing), all that is 

needed for a decision on rejecting or not the null hypothesis are the p-value p and a (usually 

pre-defined) test level α. When more than one test is performed, either the test level can be 

corrected (αcor), in which case it is changed to accommodate the multiplicity of tests (the p-

values remain unchanged), or the p-values can be adjusted (padj), in which case these are 

changed instead (the test level remains then unchanged). In either case, the modifications are 

such that the FWER or the FDR is controlled at the level α (though for FDR, test levels are often 

denoted as q).

Multiple image points, such as voxels or vertices, are not the only way in which multiple 

testing can occur in brain imaging; various other sources of multiplicity that are not simply 

multiple spatial tests are possible; some of us have previously used the term multiple testing 
problem type II (MTP-II), to distinguish them from the usual multiplicity due to the many 

measurements taken across space (MTP-I)1 (Winkler et al., 2016b). The multiplicity of 

contrasts of model parameter estimates belongs to that class. As with correction over voxels 

or vertices (MTP-I), which is performed across all image points of interest (e.g., the whole 

brain, or within a region of interest), it is desirable that the correction in the MTP-IIx considers 

only the hypotheses of interest. In other words, it is not always the case that all and every 

possible contrast of parameter estimates is relevant or meaningful to be tested; for example, 

when investigating G groups, one may only be interested in each group individually (G 
tests), or the interest may lie on differences among specific groups, and not necessarily on all 

the G(G – 1) possible pairwise group comparisons.

Methods to account for the multiplicity of contrasts include the same that can be used over 

any set of p-values, such as Bonferroni or FDR, or can be specific to the context of the general 

linear model. Below we briefly summarise some of these methods (see also Table 1). 

Although the methods below target control over the FWER, the conceptualisation of correction 

across contrasts, particularly in the case of permutation tests, remains similar for FDR.

Dunn–Šidák.—The probability that two independent events can occur simultaneously is 

given by the product of their probabilities. Thus, when multiple independent statistical tests 

are conducted, the corrected test level can be computed as αcor = 1 − (1 – α)1/τ, where τ is 

the number of tests (when the correction is applied to multiple contrasts, and using our 

notation, τ = K). This idea was considered by Tippett (1931), and later proved in a related 

context by Dunn (1958) and Šidák (1967). The Dunn–Šidák (DS) equation is often described 

as an adjustment of one or more p-values instead of correcting α, that is, padj = 1 − (1 − 

punc)τ, where punc is the original (uncorrected) p-value obtained in a given test. In this case, 

the FWER is controlled for the adjusted p-values without the need to modify the test level α. 

The equality holds only if the tests are independent; the adjustment is conservative 

otherwise.

1Both MTP-I and MTP-II refer to the excess of false positives that arises when multiple tests are performed. The MTP-I should not be 
confused with type II errors, which refer to the false negative test results.
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Fisher’s least significant difference.—This is a two-step procedure suggested by 

Fisher (1935) as a way to identify which tests were responsible for driving the overall 

(omnibus) result of an ANOVA (it does not appear that Fisher was concerned with multiple 

testing when proposing this test). In this method, a global F-test is performed to detect if 

there are any group differences; if and only if the F-test is significant at α, a second stage is 

performed, in which follow up (post hoc) t-tests between each pair of groups are evaluated at 

the same level α. However, it has been demonstrated (Hayter, 1986) that the maximum 

probability of finding at least one incorrect result can greatly exceed the test level, growing 

rapidly as the number of groups exceed 3, and is therefore not recommended (Hsu, 1996). 

The test remains valid for up to and including 3 groups, though.

Bonferroni.—Based on Boole’s inequality, which states that, given a series of events, the 

probability that at least one happens is smaller or equal to the sum of the probabilities of 

each of the individual events, Bonferroni (1936) suggested an approximation for the 

corrected test level as αcor = α/τ. The simplicity and intuitive appeal of this approximation 

were certainly determinants to its enormous popularity across all scientific domains over 

many decades. However, even for independent tests, Bonferroni’s method is slightly 

conservative when compared to Dunn–Šidák (which is exact). If the tests are not 

independent, the correction becomes yet more conservative. For the relation between 

Bonferroni and Dunn–Šidák, see Appendix A.

Tukey.—For one-way ANOVA layouts, Tukey (1953) proposed that p-values for the 

comparison between each pair of group means could be computed with reference to the 

studentised range distribution (SRD), that is, padj = 1 − Qcdf t 2; G, ν2 , where Qcdf represents 

the cumulative distribution function (cdf) from the SRD, G is the number of groups and ν2 is 

the number of degrees of freedom. Unlike Fisher’s LSD, this method does not require an 

initial F-test. This procedure assumes that all possible pairwise comparisons could be of 

interest, where the greatest difference between means is the most likely to be rejected. When 

the groups are unbalanced, the procedure is known to be conservative, and the degree of 

conservativeness varies with the number of groups and the severity of the unbalance 

(Hochberg and Tamhane, 1987). Although this method has been applied mainly for ANOVA 

designs, it could also be considered for scenarios in which multiple comparisons are 

performed among regression coefficients for continuous variables (e.g., comparing different 

continuous signals against a single reference regressor). This method, and variants of it, have 

received a number of different names in different settings, including T-Procedure, wholly 
significant difference (WSD), honestly significant difference (HSD), and, when applied to 

unbalanced models, Tukey–Kramer test. For simplicity, here we call it simply “Tukey” for 

both balanced and unbalanced experiments.

Scheffé.—Under the null hypothesis that all group means are equal, the adjusted p-value 

can be obtained as padj = 1 − Fcdf
sign t t2

G − 1 ; G − 1, ν2 , where Fcdf is the cumulative distribution 

function of the F distribution, with ν1 = G − 1 and ν2 degrees of freedom, and sign(t) is the 

sign of t-statistic.2 This method was proposed by Scheffé (1953) as a way to correct the 

statistic across all possible contrasts, and not only pairwise group comparisons. Therefore, it 
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has the advantage of correcting across contrasts that investigate more complex comparisons 

among groups, which is not possible with Tukey or Fisher’s LSD. However, when only 

pairwise comparisons are of interest, this method is much more stringent than Fisher’s LSD or 

Tukey methods.

Fisher–Hayter.—Hayter (1986) proposed that the p-value could be adjusted by changing 

the second step of Fisher’s LSD to accommodate the SRD as padj = 1 − Qcdf t 2; G − 1, ν2 . In 

comparison with Tukey’s method, this procedure has greater power due to the loosening of 

G to G − 1, and still maintains control of the FWER due to the F-test applied in the first step of 

the procedure. Without this first step, the FWER would be slightly greater than the defined α 
level. Being a modification of Fisher’s LSD, this method is sometimes named Fisher–Hayter 

(FH) procedure (Seaman et al., 1991).

Westfall–Young (permutation).—Using permutation tests to calculate the distribution of 

the maximum statistic across the set of tests that are being corrected, the adjusted p-value 

can be computed as padj = 1 − tcdf
max t = 1

J ∑j
J I tjmax ⩾ t , where J is the total number of 

permutations, I(·) is the indicator function and tjmax is the maximum value of tj across the 

contrasts3 (Westfall and Young, 1993). The reason why this works is that the test whose 

statistic is maximum across all tests being considered is also the one that has the maximum 

statistic for any subset of tests that includes it, such that this approach constitutes a closed 
testing procedure (Marcus et al., 1976). Such closed procedures are known to strongly 

control the FWER; for a recent discussion, see Proschan and Brittain (2020); for strong and 

weak control, see Hochberg and Tamhane (1987); Nichols and Hayasaka (2003). The use of 

permutation tests allows the application of Westfall–Young correction for data following any 

distribution, as long as they are exchangeable and that the calculated statistic is pivotal 

(more specifically, it is required that the distribution of the test statistic for each test does not 

depend on others being considered, a condition known as subset pivotality).

Wang–Cui.—It has been suggested that a lower critical level for the first stage (the F-test) 

of the Fisher–Hayter method can be found in a single, holistic procedure that integrates the 

results of all possible pairwise group comparisons from the second stage. To accomplish 

this, a Monte Carlo distribution of the F-statistic is computed under the assumption of 

complete normality but, crucially, for a given Monte Carlo realization m, whenever 

tij
m < Qcdf

−1 α; G − 1, ν2  for all i ≠ j groups, F(m) is defined as 0, as opposed to the actual 

calculated F-statistic for that realization. Wang and Cui (2017) argue that this procedure is 

more powerful than Fisher–Hayter, being exact for balanced designs, and conservative 

otherwise (yet more powerful than Fisher–Hayter).

2For negative arguments, Fcdf evaluates as zero; for two-tailed t-tests, the term sign(t) can be omitted.
3If multiple image points are also considered, then tjmax is the maximum value of tj across both image points and contrasts.
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2.3. Use in permutation tests

In principle, all methods discussed above and summarised in Table 1 could be used with 

permutation tests. Bonferroni and Dunn–Šidák, which use as starting point the uncorrected 

p-values, can be adjusted regardless of whether the p-values are obtained parametrically or 

non-parametrically; for these methods, all that is needed is independence among the tests 

and that, under the complete null hypotheses, the p-values are uniformly distributed; if tests 

are not independent, the resulting inferences are conservative, yet valid. Fisher’s LSD, Tukey, 

Scheffé, Fisher–Hayter and Wang–Cui, as originally proposed, require that the test statistic 

at one or two stages are compared to some reference distribution, under the assumption of 

normality. However, nothing prevents that these distributions are also obtained non-

parametrically, via permutations. For example, the F-distribution used in Fisher’s LSD, 

Fisher–Hayter, and Scheffé can be obtained applying a permutation test using all possible 

unique (linearly independent) comparisons among the groups. For Tukey, Fisher–Hayter and 

Wang–Cui, the SRD Q-distribution can likewise be obtained using the permutation 

distribution of the largest difference among all comparisons, using only permutations that 

change subjects among those groups that are being tested in a given contrast (Petrondas and 

Gabriel, 1983). For each of these cases, a specific algorithm would be built, and 

permutations could make these tests robust to departures from normality.

The Westfall–Young method stands distinct from these other, potential methods in that it is 

intrinsically non-parametric, whereby the distribution of the maximum statistic is obtained 

via permutations. As with such other potential methods, normality is not assumed, nor 

independence, since the synchronized permutations over which the maximum statistic is 

obtained implicitly captures eventual dependencies among the tests. Furthermore, the 

procedure is optimal in that it targets the very definition of familywise error rate: if the 

maximum is significant, then surely at least one rejection of the null hypothesis has 

happened; if the null is true for all tests, then that is a familywise error. The distribution of 

the maximum statistic is, therefore, a direct way to control the FWER. Moreover, it is 

algorithmically simpler than permutation versions of the other tests, and requires the 

permutation of data only for the hypotheses of interest. The Westfall–Young is the de facto 
method for permutation-based FWER-corrected inference. Henceforth, and consistent with the 

literature, when referring to correction using permutations, we are referring to this method.

3. Evaluation methods

3.1. Synthetic data

To investigate the error rates and power of each method, we considered one-way ANOVA 

designs, with simulated data representing 2000 voxels (these could also be construed as 

vertices, or any other type of imaging element). The dataset consisted of random variables 

following a normal distribution with zero mean and unit variance. We considered 2500 

realisations of 8 different scenarios where three simulation parameters were manipulated: 

presence or absence of signal, balanced or unbalanced designs, and the correction over all 

possible pairwise group comparisons or only the largest subset of linearly independent 

contrasts.
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With respect to signal, when it was added, it was to all voxels of subjects in groups 1 and 2, 

and with size defined as Xβ with β = [β1, β2, 0, …, 0]’, where β1 = +st, β2 = −st and 

st = tcdf
−1 1 − α; ν2 C’ X’X −1C 1/2/2. C = [+1, −1, 0, …, 0]’ is the contrast vector and α = 

0:05 is the test level. By adding a positive signal to group 1 and a negative signal to group 2, 

both with magnitudes determined by st, an approximate power of 50% irrespective to the 

sample size or number of groups can be expected in all simulations for the contrast 

comparing these two groups before any adjustment has been made for the multiplicity of 

tests (in this case, multiplicity of contrasts). Details on how to add signal that confers a 

specific power before the correction are described in Appendix B. Also, although stronger 

effects are expected to be detected in the comparisons between groups 1 and 2, smaller 

effects can also be detected when groups 1 or 2 are compared with any other group. Thus, 

power calculations below consider effects in any comparison involving groups 1 or 2. The 

contrasts used to calculate power were excluded from the FWER calculation.

The simulations used sample sizes of 40, 50, 70 or 90 subjects. For the balanced scenarios, 

subjects were divided in 4, 5, 7 or 9 groups respectively, always with 10 subjects per group. 

For the unbalanced scenarios, subjects were likewise divided into 4, 5, 7 or 9 groups, for the 

same respective sample sizes, however with each group consisting of a random number of 

participants under the constraint that each group had at least 4 subjects.

The comparisons considered (1) all possible pairwise group differences and (2) a subset of 

linearly independent comparisons. In the latter case, we tested the hypotheses that group 3 

were greater than every one of the other groups. The reason to investigate a correction over a 

subset of independent contrasts is that all possible pairwise group differences imply 

dependencies among them (for example, for three groups, the difference between groups 2 

and 3 is fully determined once differences between groups 1 and 2, and 1 and 3 are known). 

Such dependencies do not exist for a subset of contrasts that are independent from each 

other, and by selecting all contrasts involving group 3, we obtain the minimum set of 

contrasts that can be tested while representing all possible groups. This type of model is very 

common, for example, when testing various patient groups against one control group, and is 

also a case that demonstrates that not all possible pairwise group comparisons might be of 

interest. For the analyses using this subset, power can be calculated as the proportion of 

detected true effects in contrasts where group 3 is greater than groups 1 and 2. The greatest 

proportion of signal is expected in the contrast testing that group 3 is greater than 2, which 

gives an approximate (expected) power of 20.6% before any correction is applied. The FWER 

is estimated as the proportion of tests in which the null hypothesis is rejected for contrasts 

that compare whether group 3 is greater than each of the groups from 4 to G.

All methods were evaluated using custom code written in GNU Octave (Eaton et al., 2014). 

Tukey, Fisher–Hayter and Wang–Cui correction, however, used critical values pre–

calculated with the functions “ptukey” and “qtukey” from the R statistical software (R Core 

Team, 2018), whereas Westfall–Young permutation method used PALM – Permutation 

Analysis of Linear Models (Winkler et al., 2014) with 2500 permutations. Bonferroni and 

Dunn–Šidák were applied over parametric p-values computed using Student’s t distribution.
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3.2. Real data

We used data from the Healthy Brain Network (HBN) (Alexander et al., 2017) made publicly 

available by the Child Mind Institute (CMI, New York, NY, USA) to evaluate how correction 

over the number of contrasts could affect a realistic data analysis. The data collection, as 

well as their distribution in anonymized format, was approved by their institutional ethics 

review board. Structural, T1-weighted magnetic resonance images were processed using 

FreeSurfer (Dale et al., 1999; Fischl et al., 1999). Quality control was performed based on 

visual inspection of the reconstructed pial and inflated surfaces, with particular emphasis on 

the subjects with extreme values for the metrics produced by the tool MRIQC (Esteban et al., 

2017), and most extreme Euler numbers for either of the hemispheres (Rosen et al., 2018); 

the threshold for the Euler number was − 80,4 and subjects in which either hemisphere had 

values more negative than this threshold were excluded. This allowed selection of 278 

subjects that successfully finished the FreeSurfer processing, that passed quality control, and 

further, that had complete data for the variables that we selected to be used in the statistical 

analysis (described below).

As dependent variables, we investigated the volume of the subcortical structures 

automatically segmented by FreeSurfer: thalamus, caudate, putamen, pallidum, 

hippocampus, amygdala, nucleus accumbens, and ventral diencephalon (VDC, a group of 

structures whose precise limits are not typically discernible with T1-weighted scans, and that 

includes hypothalamus, mammillary bodies, lateral and medial geniculate nuclei, 

subthalamic nuclei, substantia nigra and nucleus ruber) (Fischl et al., 2002, 2004). We also 

investigated associations with the estimated total intracranial volume (eTIV) (Buckner et al., 

2004).

As independent variables, we chose two disparate measures for investigation, one related to 

social factors (Barratt simplified measure of social status, BSMSS) (Barratt, 2006) and another 

related to physiological factors (extracellular water, ECW). Two analyses of covariance 

(ANCOVA) designs were considered, one to investigate BSMSS and another for ECW. The 

subjects were divided in 5 groups using the 20th, 40th, 60th and 80th percentiles of each of 

these two variables, so that the grouping of subjects of BSMSS was different from the 

grouping of ECW. By dividing the continuous variable into discrete units, we can more easily 

consider an AN(C)OVA scenario for which some of the correction methods were originally 

devised (even though no such limitation exists for West-fall-Young, Dunn–Šidák or 

Bonferroni), and further, we can accommodate the possibility of certain non-linear effects. It 

should be emphasised, however, that this division is completely arbitrary, and is done here 

solely for convenience. Age (5–15 years, mean = 9.85, standard deviation = 2.65) and sex 

(180 males, 98 females) were included as nuisance variables.

Two different sets of contrasts were tested: one (set 1), with four contrasts, was used to 

investigate whether subjects from the first group (those with lowest BSMSS and ECW) would 

4Currently there are no guidelines for the ideal threshold for the Euler number, which may be dataset- or population-specific (Rosen et 
al., 2018). The value −80 was chosen based on visual inspection of pial and inflated surfaces of both hemispheres, and on the signal-
to-noise ratio and the percent artifact voxels reported by MRIQC, to exclude images with too many defects both on the voxels and on 
the surfaces; there is no intention that the threshold used here becomes a reference.
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have smaller cortical volume than subjects from the other groups; another (set 2), with 20 

contrasts, was used to investigate all possible pairwise group differences. The reason for 

using two sets is that methods that rely on the SRD, i.e., Tukey, Fisher–Hayter and Wang–Cui, 

assume that there is interest in investigating all pairwise group differences; other methods do 

not make this assumption. Investigating both ways provides a more comprehensive view of 

error rates and power for the two situations. Fig. 1 shows the contrasts tested.

Statistical analysis used PALM with 10,000 permutations and tail approximation (Winkler et 

al., 2016a) to calculate p-values for the t-statistic, both uncorrected (for contrasts) and 

corrected with West-fall-Young permutation method. All other methods were investigated 

using custom code written on GNU Octave. Bonferroni and Dunn–Šidák were applied over 

parametric p-values using Student’s t distribution. As with the synthetic data, for Tukey, 

Fisher–Hayter and Wang–Cui, we invoked the functions “ptukey” and “qtukey” from R. As 

requested by an anonymous reviewer, a side analysis using the G-statistic (Winkler et al., 

2014), which is robust to heteroscedasticity, was also performed. Not all methods can easily 

accommodate statistics that are robust to heteroscedasticity, such that only Westfall–Young 

is considered in this case; these additional results are shown in the Supplementary Material.

4. Results

4.1. Synthetic data

Fig. 2 shows the error rates and power of each simulation testing all pairwise comparisons. 

All evaluated procedures controlled the FWER in the absence of signal, that is, when the null 

hypothesis was true for all K = G(G − 1) contrasts, for both balanced and unbalanced 

models.

However, in the presence of signal for some of the contrasts, Fisher’s LSD substantially 

exceeded the error rate of 5% for those contrasts that did not have signal (Fig. 2, B and E). 

Although with 4 groups the FWER was only slightly above the nominal level (5.51% and 

5.62% for balanced and unbalanced groups, respectively), with 9 groups the FWER reached 

14.30% for balanced and 15.07% for unbalanced models, which is around three times higher 

than the expected, nominal level of 5%. All other methods maintained the control over the 

FWER in the presence of signal for some of the contrasts. Permutation and Tukey had a 

similar FWER for all group configurations, as well as Fisher–Hayter and Wang–Cui when 4 

and 5 groups were used. Bonferroni had a FWER slightly smaller than Dunn–Šidák, with a 

ratio around 0.9770 between them.5 The most conservative method was Scheffé, with the 

highest observed FWER of 0.67%, when 5 groups were considered.

When all possible pairwise comparisons were analysed, and considering only the methods 

that control the FWER at the nominal level, Wang–Cui had the greatest mean power, with 

23.58% and 24.61% for balanced and unbalanced models, respectively, when 4 groups were 

considered. Permutation had a slightly smaller power of 23.41% and 24.16% for balanced 

and unbalanced models, and was closely followed by Tukey, which had an observed power 

5For 4, 5, 7 and 9 groups, there are 12, 20, 42 and 72 contrasts being tested. The expected ratio between Bonferroni and Dunn–Šidák 
is 0.9760 for 12 tests and 0.9751 for 72 tests (see Appendix A).
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of 23.34% and 23.82% for balanced and unbalanced models. It should be noted, though, that 

Wang–Cui, Westfall–Young and Tukey did not differ significantly (see confidence intervals 

in Fig. 2, C and F). Fisher–Hayter started with a competitive power of 24.18% in unbalanced 

models with 4 groups, but as the number of groups increased, the power of Fisher–Hayter 

decreased at a faster rate than the other methods (Fig. 2, C and F). Dunn–Šidák, with a 

power of 21.04% when 4 unbalanced groups were considered, showed a slightly greater 

power than Bonferroni, with a power of 20.76% in the same configuration. Scheffé was the 

most conservative method, with a power of 16.56% in balanced and 16.91% unbalanced 

models with 4 groups.

In general, the FWER and the power had similar values for experiments with both balanced 

and unbalanced designs. The exception was in the simulation of unbalanced groups in 

complete absence of signal (Fig. 2, D), in which Tukey exhibited a small reduction in the 

observed FWER and power in relation to the balanced case. This slight reduction was 

proportional to the number of groups in the unbalanced model. However, the same trend did 

not appear in the FWER in the presence of signal.

The greatest difference in the performance of the various methods appeared when only a 

subset of linearly independent contrasts was used (Fig. 3). In this case, Tukey, Fisher–Hayter 

and Wang–Cui were very conservative and had a power smaller than 1.4% in the simulation 

with 9 groups. In the subset of linearly independent contrasts, West-fall-Young had the 

greatest power among the valid methods, 10.95% and 11.35% in the experiment with 4 

groups, for balanced and unbalanced respectively.

4.2. Real data

Division of the subjects into 5 groups using the 20th, 40th, 60th and 80th percentiles resulted 

in unbalanced groups with 56 subjects on average. Table 2 shows the range from BSMSS and 

ECW, as well as the values used to divide the subjects into these discrete groups.

Without correction for the multiplicity of contrasts, four effects were detected among BSMSS 

groups in the contrast set 1, which consisted of the first group compared to all others: group 

1 had smaller volume in the hippocampus and amygdala from both hemispheres when 

compared to group 5 (contrast 4). These results are shown in Fig. 4. After correction using 

Westfall–Young, only the effect in the left hippocampus and right amygdala remained 

significant; using the G-statistic did not affect these results, as shown in the Supplementary 

Material. After correcting with Dunn–Šidák or Bonferroni, only the effect in the left 

hippocampus remained. No effect survived the correction using Fisher’s LSD, Tukey, Scheffé, 

Fisher–Hayter or Wang–Cui.

In the contrast set 2, that consisted of all possible pairwise group comparisons, some other 

effects were detected between BSMSS groups before correction across contrasts, as shown in 

Fig. 5: subjects in group 2 had smaller mean cortical volume in the right pallidum than 

group 4 (contrast 7), smaller volume in the left thalamus, left hippocampus, both amygdalas, 

right pallidum and eTIV than group 5 (contrast 8), and greater volume in the left nucleus 

accumbens than subjects from groups 3 and 4 (contrasts 10 and 14); subjects from group 3 

had smaller cortical volume in the hippocampus, left thalamus, left VDC and eTIV (contrast 
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12); and subjects from group 4 showed smaller right amygdala volume than group 5 

(contrast 16). However, after correcting with any of the methods, none of these effects 

remained significant.

For ECW, contrast set 1, a total of 54 effects were detected without correction, pointing to a 

number of regions with smaller volumes for group 1 in relation to all other groups, as shown 

in Fig. 6: thalamus, caudate, hippocampus, amygdala, and ventral diencephalon from both 

hemispheres, as well as the eTIV and the left pallidum (contrasts 1 to 4); the accumbens and 

the right pallidum from group 1 were found smaller than some of the other groups (contrasts 

2 to 4). After correction across contrasts, 40 effects survived with Westfall–Young; among 

all methods, this was the one that detected the largest number of effects. Dunn–Šidák and 

Bonferroni identified the same effects as each other, and when compared to Westfall–Young, 

they did not identify a significant difference between group 1 and groups 3 and 4 in the right 

amygdala (contrasts 2 and 3). Wang–Cui, Fisher–Hayter and Tukey detected almost the 

same effects as each other, except by an effect in the right caudate, showing smaller volume 

in group 1 than in group 3 (contrast 2) that was detected with Wang–Cui and Fisher–Hayter, 

but not with Tukey; the latter detected 21 effects in total. Scheffé was the most conservative 

method and detected only 6 effects (contrasts 2 and 3).

When all pairwise comparisons (contrast set 2) were tested for ECW, a number of regions 

were found to have smaller volumes for group 1 than all other ECW groups (contrasts 1 to 4), 

as well as smaller left pallidum, right thalamus and right hippocampus in the group 2 than 

some of the groups 3 to 5 (contrasts 6 to 8) using uncorrected p-values; these results are 

summarised in Fig. 7. From these, effects in eTIV, as well as right pallidum, amygdala and 

accumbens did not survive correction across contrasts using any method. Among the 

correction methods, Fisher–Hayter and Wang–Cui led to the same results. The results with 

Westfall–Young and Tukey were similar to each other, differing only in the detection of 

smaller left amygdala volume in group 1 in relation to group 2 (contrast 1); the amount of 

differences was more pronounced when compared with those obtained with Fisher–Hayter 

or Wang–Cui, in which a difference in the volume of the left accumbens that was significant 

with Westfall–Young was no longer so after Fisher–Hayter (contrast 2, G1 < G3), and 

another effect was significant with Fisher–Hayter and Wang–Cui in the right caudate, but not 

with permutation (also contrast 2). A much sparser set of results was observed with the 

Dunn–Šidák, Bonferroni and Scheffé approaches. Dunn–Šidák did not identify the same 

effects as permutation in the left hemisphere in the caudate, pallidum, amygdala, and ventral 

diencephalon (contrasts 1, 2 and 4), nor the same effects that remained after the correction 

with Fisher–Hayter or Wang–Cui in the right caudate. Furthermore, the effect in the left 

pallidum (contrast 4) was not detected with Bonferroni, whereas the smallest amount of 

effects, only in the thalamus, left pallidum, and right hippocampus (contrasts 2 and 3), were 

detected with Scheffé. While a substantial number of comparisons remained significant after 

Fisher’s LSD correction, the simulations had already demonstrated that these results are 

invalid; nonetheless, these are also shown in Fig. 7.
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5. Discussion

5.1. Error rates and power

The Westfall–Young permutation method was the only procedure that performed well in all 

simulation scenarios and always controlled the FWER at the test level. While methods such as 

Wang–Cui, Fisher–Hayter and Tukey had good performance in some cases, they have 

limitations: they do not extend trivially to studies that do not follow an AN(C)OVA design, they 

take into account all possible pairwise comparisons, and do not perform as well when only a 

subset of them are of interest. Moreover, Fisher–Hayter and Wang–Cui require, along with 

LSD, an initial F-test, whereas for the others this step is bypassed altogether, with the 

correction applicable directly to the t-tests.

When some of the pairwise comparisons contained signal, Fisher’s LSD vastly exceeded the 

5% error rate for the comparisons that did not contain signal, confirming the results obtained 

by Hayter (1986), and showing that Fisher’s LSD offers only weak control of the FWER, i.e., it 

controls the FWER only when no true effects are present in any of the hypotheses being tested, 

and becoming invalid (that is, extrapolating the test level) when signal is present in some of 

the contrasts. The other methods, in turn, offered strong control when their assumptions 

were met, that is, they ensured an FWER equal to or smaller than the test level, both in the 

absence and in the presence of true effects. It should be noted that since Westfall–Young is a 

closed testing procedure, it controls the FWER in the strong sense for any number of contrasts, 

independently of their dependency structure, as long as the exchangeability assumption 

holds and that the sampling distribution of the test statistic does not depend on unkwown 

parameters.

Among the methods tested, Scheffé led to the lowest observed FWER among all methods in 

all scenarios. When all pairwise group comparisons are considered, that is, the case in which 

there are dependencies among the tests, Dunn–Šidák and Bonferroni were also very 

conservative, substantially below the nominal test level of 5%, resulting in low power. With 

linearly independent contrasts, however, Dunn–Šidák and Bonferroni became less 

conservative, and their difference in power when compared to Westfall–Young was always 

below 1.5%. Between Dunn–Šidák and Bonferroni, the former is more powerful, and it is 

exact when the tests performed are independent (whereas even in these cases, Bonferroni is 

slightly conservative).

In the complete absence of signal, as the number of groups increased, the FWER for most 

methods either remained stable, or became smaller, towards conservativeness, except for 

Fisher’s LSD. With signal in groups 1 and 2, the observed FWER tended to approach the test 

level as the number of groups increased, presumably due to the smaller proportion of 

contrasts that contain signal. This is not surprising, although the rate with which these 

methods approached the test level differed substantially.

From the simulation results presented in Figs. 2 and 3, it is clear that, although there are 

performance differences among the methods, as more tests are conducted, the more strict the 

correction becomes. Although here the focus is on controlling the FWER across contrasts, 

ensuring a high power, i.e., lower false negative rate, is equally important, and thus, a careful 
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definition of the research hypotheses must precede statistical analysis. This, again, favours 

permutation methods, and in this case also Dunn–Šidák and Bonferroni. The reason is that 

all other methods perform a broad correction that implicitly considers all possible pairwise 

comparisons (or even any possible contrasts, as in Scheffé), many of which might not be of 

any interest, a feature that unduly penalises power (Fig. 3, panels C and F).

5.2. Correction over contrasts and brain imaging

Accommodating correction over contrasts in brain imaging requires that both types of 

multiple testing, that is, across space (MTP-I), and across contrasts (MTP-II) (Winkler et al., 

2016b) are considered together. For the former, permutation tests offer a solution that is 

valid, powerful, and based on minimal assumptions (Westfall and Young, 1993; Nichols and 

Holmes, 2002; Winkler et al., 2014), and that extends to the latter in a quite simple manner: 

the correction can use the distribution of the maximum statistic across imaging units (voxels, 

vertices, regions) and also across contrasts. This is simple enough to be included in any 

permutation testing algorithm.

The same cannot be said for the other methods discussed: corrections that would bypass the 

need for permutations for both contrasts and imaging units would need to rely not only on 

non-permutation methods for correction across contrasts for AN(C)OVA designs such as those 

presented here, but also on the many assumptions associated with methods as the random 

field theory (RFT; Worsley et al., 1996) for correction across image points. Furthermore, there 

are no known RFT results for fields following the SRD. The converse, that is, correcting first 

for the number of image points, and then across contrasts, would find other difficulties since, 

likewise, there are no known results for the Euler characteristic across multiple, possibly 

non-independent, search volumes in the context of the RFT. All these would impose 

substantial challenges to guarantee control over the FWER. The most direct way to solve 

either of these is to use a permutation test, and once that is used for one kind of multiple 

testing, correction for the other can be included in the same algorithm, with negligible 

further computational overhead.

Furthermore, methods relying on the SRD have fewer applications since this distribution 

assumes that differences between quantities (e.g., between groups) are being tested. 

Although we focused on pairwise comparisons, AN(C)OVA designs may include more complex 

contrasts involving multiple groups, as for example, averaging two groups and comparing 

them against a third group. Contrasts may also test hypotheses that involve arbitrary 

combination of continuous and discrete regressors, or some contrasts comparing groups 

while others test continuous regressors (for example, in a design where categorical groups, 

age and sex are modelled, there may be interest in testing group differences, as well as linear 

and/or quadratic effects of age, or sex differences). Such heterogeneity, that goes beyond 

mere group comparisons, is not easily accommodated by methods based on the SRD, such as 

Tukey, Fisher–Hayter or Wang–Cui, but are handled easily by the West-fall-Young 

permutation method, which is very general. More complex designs as these are very 

common in neuroimaging; Table 3 shows the applicability of the different methods for 

various common designs.
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Moreover, if one-sided t-tests are used to investigate both positive and (separately) negative 

effects, further correction is necessary for the fact that two tests are being considered, a point 

brought forward recently by Chen et al. (2019), and that can be solved trivially with the 

West-fall-Young permutation method, as not only it allows correction for the multiplicity of 

tests that occur when testing any type of regressors, but it also allows inclusion of both 

positive and negative tests along with any other combination of contrasts of interest, possibly 

involving other regressors. The method provides valid inferences while retaining the 

directional information for each individual test, holds even for cases in which positive and 

negative tests are not independent, and further, can be considered for tests of regression 

coefficients estimated for different designs; all that is necessary for Westfall–Young is that 

the assumption of exchangeability holds, as well as the condition of subset pivotality. 

Additionally, to the extent that the permutation tests can accommodate statistics that are 

robust to heteroscedasticity (Guillaume et al., 2014; Winkler et al., 2014; DiCiccio and 

Romano, 2017; Helwig, 2019a), the Westfall–Young method remains valid also in these 

cases; the same cannot be said for the other, mostly parametric methods.

5.3. Real data

Using real data, two examples where contrast correction can be applied to an ANCOVA were 

considered, one in which only some comparisons between groups were of interest (contrast 

set 1) and other where all pairwise comparisons were of interest (contrast set 2). Both used 

discrete groups by arbitrarily dividing subjects into subsets using the percentiles of two 

continuous variables. Although the correction for the multiplicity of contrasts should be 

done even when testing continuous regressors in the GLM, Fisher’s LSD, Tukey, Fisher–Hayter 

and Wang–Cui methods are designed for use in tests of differences between groups, and do 

not extend trivially to studies that do not follow AN(C)OVA design, as discussed above.

In the contrast set 1, after correction with Westfall–Young, Dunn–Šidák or Bonferroni, 

subjects with BSMSS score lesser than or equal to 35 (group 1) were found to have smaller 

hippocampus volume in the left hemisphere than subjects with BSMSS score greater than or 

equal to 61 (group 5). Additionally, the volume of the right amygdala was also found smaller 

in group 1 than in group 5. However, in contrast set 2, in which all pairwise comparisons are 

analysed, and thus the correction for multiplicity of tests is more stringent due to a greater 

number of tests being performed, these effects were not found. The BSMSS score ranges 

between 8 and 66 and can be used as a proxy for the social status by assessing, for a child, 

the occupation of their parents and level of schooling (Barratt, 2006). Although it does not 

measure the social class directly, neither the economic status, some studies have found 

correlations between socioeconomic status (SES), income, and/or stress related to SES and 

measurements derived from brain regions such as the hippocampus and the amygdala 

(Hanson et al., 2011, 2015; Hair et al., 2015; Jednoróg et al., 2012; Luby et al., 2013; Yu et 

al., 2018; Dufford et al., 2018; McDermott et al., 2019). Still, none of them investigated the 

relation between the brain morphology and only the social status. Moreover, other studies 

classified the subjects as “in” or “out” of the poverty class, while in the ANCOVA example 

subjects were divided into five groups using the data as available publicly. Thus, these 

results must be interpreted cautiously, and may represent false positives.
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For ECW, in both contrast sets analysed, many subcortical structures were found to have 

smaller volume in group 1 than in other groups. The methods relying on the SRD assume that 

all pairwise comparisons among groups are of interest, and thus, they lead to the same 

results in both sets 1 and 2 for the contrasts that are present in both; Scheffé, which assumes 

that all comparisons among any groups are of interest, hence leading to fewer results 

compared to the other methods. Westfall–Young, Dunn–Šidák and Bonferroni consider only 

the contrasts that are truly of interest, and thus, when fewer contrasts are tested (as in set 1), 

they can potentially find more effects than when many contrasts are tested (as in set 2). In 

effect, in contrast set 1, Westfall–Young detected almost twice the number of effects found 

with methods that rely on the SRD. In set 2, the results are generally similar across the 

methods, with only small differences compared to Westfall–Young (Fig. 7) and the other 

valid methods (except for Scheffé, which is the most conservative). This suggests that it is 

unlikely that these results are mere false positives. To the best of our knowledge, there are no 

studies investigating the correlation between the body ECW and the cortical volume of any 

areas. The possibility that these ECW effects are true positives would be strengthened after 

correcting for the number of regions considered, that is, the 8 regions from each hemisphere, 

plus the eTIV (these here take the role of image points). However, doing so in this analysis 

would unduly punish all methods except Westfall–Young, Bonferroni and Dunn–Šidák, 

since only these can accommodate directly the MTP-I.

It should be noted that any conclusive interpretation of these results, as to whether they 

represent true positives or not, need to take power into consideration: any approach to 

correct for multiple testing has the drawback of a drop in statistical power, as evidenced in 

the real data example, where groups were artificially divided using BSMSS or ECW scores. 

While one traditionally worries about type I error, type II error rate is also a consequence of 

low accuracy of parameter estimates in low powered studies. The noted discrepancies in the 

literature may be a consequence of random sampling error, since reductions in power are 

necessary to control the amount of error type I in the multiple testing context. Moreover, 

presumably much of the published literature on the topic suffers from low statistical power, 

regardless (for further discussion, see Mumford, 2012; Button et al., 2013; Cremers et al., 

2017; Szucs and Ioannidis, 2017).

6. Conclusions

We compared different methods for multiple testing correction across contrasts in the 

context of the GLM, for both synthetic and real data, and argued that such correction is 

necessary to avoid excess of false positives. Among the methods, Westfall–Young offers a 

set of key advantages, some of which were demonstrated. It controls the error rate close to 

the nominal level, and it is also the most flexible, as it can be used with arbitrary GLM 

designs, allows correction over specific hypotheses of interest, and allows correction of 

various sources of multiplicity, all of which can be implemented with minimal 

computational cost.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A.: Relation between Dunn–Šidák and Bonferroni

Dunn–Šidák can be seen as a special case of Kimball’s inequality, which states that the 

probability of all events in a set is equal to or greater than the product of their individual 

probabilities, and where the equality holds only if these events are independent. Dunn–

Šidák’s inequality was proved valid for data following a multivariate normal distributions 

with positive definite correlation matrix (Hochberg and Tamhane, 1987), and therefore, can 

accommodate some negative correlations between tests. Bonferroni is an approximation of a 

similar inequality devised by Boole, which establishes the probability of any of the events in 

a set. Although always valid (independently of the correlation structure of the tests), it is an 

approximation and, therefore, is never exact. In general, the relation between Dunn–Šidák 

and Bonferroni is expressed as (Abdi, 2007):

αcor ⩾ αDS ⩾ αB

where αDS and αB are, respectively the Dunn–Šidák and Bonferroni’s corrected test level. 

The equality between Dunn–Šidák and Bonferroni holds only for τ = 1. As more tests are 

performed, αB is always smaller than αDS, stabilizing at a ratio of approximately 0.975 for 

an uncorrected test level αunc = 0.05, as shown in Figure A.1. The smaller the p-values, 

smaller is this ratio. If the tests are independent, the correction using Dunn–Šidák is exact, 

that is, αcor = αDS.

Alberton et al. Page 17

Neuroimage. Author manuscript; available in PMC 2021 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://hpc.nih.gov


Fig. A.1. 
Comparison between the correction performed with Bonferroni and Dunn–Šidák, where 

RB/DS = αB/αDS. Note that the ratio increases with the number of tests and decreases with 

the uncorrected level αunc used.

Appendix B.: Simulated signals with the t-statistic

In general, simulated datasets are obtained by sampling random variables that follow a 

specific distribution (e.g. normal) consistent with the null hypothesis. If the interest is in the 

alternative hypothesis, a signal with a specific size can be added as a function of the desired 

power P, the test statistic, test level, and sample size. In the context of the GLM, the sample 

size is represented in the design efficiency, expressed as C’(X’X)−1C 1/2, where X and C are 

known, and the effect size is given by st = ts (C’(X’X)−1C1/2, where 

ts = tcdf
−1 1 − α; ν2 + tcdf

−1 P ; ν2  is the location of the peak of signal distribution. Figure B.1 

shows two examples of signal added to the normal distribution, one with 50% and the other 

with 80% power. Note that with 50% power (P = 0:50), ts = tcdf
−1 1 − α; ν2  because the peak 

distribution of the alternative hypothesis is placed over the critical α level. In ANOVA designs, 

where the group means are compared, this signal can be further divided among groups (e.g. 

half of the signal for each group, as described in Section 3.1).
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Fig. B.1. 
Signal distribution and its relation with the null distribution. Two signals with different 

powers are exhibited, one with 50% (A) and the other with 80% (B) power.
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Fig. 1. 
List of contrasts used to compare groups. Set 1 used C1 through C4, that is, testing whether 

G1 would have smaller gray matter volume than each one of the other four groups, whereas 

set 2 used C1 through C20, that is, testing all possible pairwise comparisons among the five 

groups (G1, …, G5) as encoded by the design matrix (not shown). The last two regression 

coefficients modelled age and sex, in an ANCOVA design.
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Fig. 2. 
Mean familywise error rate and power after correcting across contrasts using Dunn–Šidák, 

Fisher LSD, Bonferroni, Tukey, Scheffé, Fisher–Hayter, West-fall-Young permutation method 

and Wang–Cui when testing all pairwise comparisons. Vertical bars represent the 95% 

confidence interval (tables with FWER and power, along with respective confidence intervals, 

are available in the Supplementary Material). Starting with balanced models, (A) shows the 

FWER results in the absence of signal when all contrasts are considered, (B) shows the FWER in 

the presence of signal, but considering the contrasts that have no signal, and (C) the 

respective power, i.e., the ability to detect signal for the contrasts that had signal; panels (D), 

(E), and (F) show, respectively, the same, for unbalanced models. A power of 50% was 

expected before any correction was performed.
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Fig. 3. 
Mean familywise error rate and power after correcting across contrasts using Dunn–Šidák, 

Fisher LSD, Bonferroni, Tukey, Scheffé, Fisher–Hayter, West-fall-Young permutation method 

and Wang–Cui when testing only a subset of linearly independent contrasts. Vertical bars 

represent the 95% confidence interval (tables with FWER and power, along with the respective 

confidence intervals, are available in the Supplementary Material). Starting with balanced 

models, (A) shows the FWER results in the absence of signal when all contrasts are 

considered, (B) shows the FWER in the presence of signal, but considering the contrasts that 

have no signal, and (C) the respective power, i.e., the ability to detect signal for the contrasts 

that had signal; panels (D), (E), and (F) show, respectively, the same, for unbalanced models. 

A power of 20.6% was expected before any correction was performed.
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Fig. 4. 
Effects in both hemispheres per contrast detected when dividing the subjects into five groups 

using the percentiles from BSMSS and testing contrast set 1, that is, when testing whether 

subjects with lower scores of BSMSS (group 1) have smaller cortical volume than subjects 

from the other four groups (with higher scores of BSMSS). Contrast 1 tests if group 1 has 

smaller volume than group 2, contrast 2 tests if group 1 has smaller volume than group 3, 

and so forth (see Fig. 1 for the list of contrasts tested).
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Fig. 5. 
Effects in both hemispheres per contrast detected when dividing the subjects into five groups 

using the percentiles from BSMSS and all 20 pairwise comparisons were considered (contrast 

set 2). Before the correction across contrasts, some effects were detected (left panel), but no 

effect survived the correction performed with any of evaluated methods.
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Fig. 6. 
Effects in both hemispheres per contrast detected when dividing the subjects into five groups 

using the percentiles from extracellular water and testing contrast set 1, that is, testing 

whether subjects with lower extracellular water volume (group 1) have smaller cortical 

volume than subjects from the other 4 groups (with higher scores of extracellular water 

volume). Contrast 1 tests if group 1 has smaller volume than group 2, contrast 2 tests if 

group 1 has smaller volume than group 3, and so forth (see Fig. 1 for the list of contrasts 

tested).
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Fig. 7. 
Effects in both hemispheres per contrast detected when dividing the subjects into five groups 

using the percentiles from extracellular water and all 20 pairwise comparisons were 

considered (contrast set 2).
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Table 1

Summary comparison of methods for correction across contrasts.

Method Global test p-value Local tests’ adjusted p-values

Dunn-Šidák - 1 - (1 - punc)τ

Bonferroni - τ · punc

Fisher’s LSD 1 - Fcdf (F; G - 1, v2) 1 - tcdf (t; v2)

Tukey - 1 − Qcdf t 2; G, ν2

Scheffé - 1 − Fcdf
sign t t2

G − 1 ; G − 1, ν2

Fisher-Hayter 1 - Fcdf (F; G - 1, v2) 1 − Qcdf t 2; G − 1, ν2

Westfall-Young
- 1 − tcdf

max t

Wang-Cui 1 − Fcdf
wc F ; G − 1, n 1 − Qcdf t 2; G − 1, ν2

Most of these methods are performed in a single, local step that produces the final, adjusted p-value; others require an initial global (omnibus) test, 
which, if significant, is followed by local tests (also known, in this context, as post hoc tests). If the initial global test is not significant, then the 
procedure stops, and padj = 1, that is, not significant. Fisher’s LSD and Fisher–Hayter require an initial F-test with (G − 1) and ν2 degrees of 

freedom. Scheffé’s adjusted p-values include the sign of t statistic, so that when a negative statistic is used, Fcdf evaluates as zero, and, thus, padj = 

1 (for two tailed tests, the term sign(t) can be omitted). The global test in Wang–Cui use the F-statistic compared against a null distribution 
computed through Monte Carlo methods, and which depends on the number of groups and also on a vector n that contains the sizes of each group 
(thus explicitly accommodating unbalancedness). Note that the adjustment in Bonferroni can lead to p-values larger than 1, which reflects the fact 
that this method is an approximation (to Dunn–Šidák).
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Table 2

Measures and its percentiles used to divided the data into groups.

Measure Range Percentiles

20th 40th 60th 80th

BSMSS 9–66 35.05 48 54.5 61

ECW (liters) 4.23–49.59 11.28 15.39 19.24 26.20
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Table 3

Applicability of methods to correct the multiplicity of tests across contrasts in common neuroimaging designs. 

Methods relying on the SRD, such as Tukey, Fisher–Hayter and Wang–Cui, can only be applied to tests of 

pairwise differences, whereas methods that do not assume that the data follow any distribution (i.e., Westfall–

Young, Dunn–Šidák and Bonferroni) have many more applications. When there are dependencies among tests, 

the correction performed with Dunn–Šidák is conservative, but is exact if the tests are independent. Note that 

Fisher’s LSD is only valid for experiments with 2 or 3 groups.
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