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Abstract

Synovial macrophages are key mediators of OA pathology, and skewing of macrophage phenotype in
favour of an M1-like phenotype is thought to underlie the chronicity of synovial inflammation in OA.
Components of the metabolic syndrome (MetS), such as dyslipidaemia, can affect macrophage pheno-
type and function, which could explain the link between MetS and OA development. Recently published
studies have provided novel insights into the different origins and heterogeneity of synovial macro-
phages. Considering these findings, we propose an important role for monocyte-derived macrophages
in particular, as opposed to yolk-sac derived residential macrophages, in causing a pro-inflammatory
phenotype shift. We will further explain how this can start even prior to synovial infiltration; in the circu-
lation, monocytes can be trained by metabolic factors such as low-density lipoprotein to become extra
responsive to chemokines and damage-associated molecular patterns. The concept of innate immune
training has been widely studied and implicated in atherosclerosis pathology, but its involvement in OA
remains uncharted territory. Finally, we evaluate the implications of these insights for targeted therapy
directed to macrophages and metabolic factors.
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Introduction

OA is a painful and debilitating disease of the joint, char-
acterized by articular cartilage degeneration, osteophyte
formation and inflammation of the synovial membrane.
The old idea of OA as a wear-and-tear disease has be-
come increasingly repressed, and although mechanical
imbalances are still regarded to be important in the onset
and progression of disease, many researchers consider
that chronic inflammation of the synovium co-mediates

and accelerates OA development. This synovitis is char-
acterized by hyperplasia of the synovial lining and infil-
tration of especially monocytes, that consequently
differentiate towards macrophages in the tissue.
Abundance of these macrophages has been associated
to increased OA pathology in humans [1].

An important risk factor for OA development in the
modern-day world is the metabolic syndrome (MetS), a
cluster of cardiovascular risk factors that is defined by
meeting at least three out of five of the following criteria:
abdominal obesity, arterial hypertension, hyperglycaemia,
low serum high-density lipoprotein (HDL) and high serum
triglycerides (NCEP ATPIII 2005 revision [2, 3]). Besides
their increased risk of developing cardiovascular dis-
eases (CVD) and type 2 diabetes, individuals with MetS
are more susceptible to development of OA [4]. This was
also found for OA in non-weightbearing joints, which
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suggests that the association is not purely a result of
weight-mediated joint loading [5]. While the exact under-
lying mechanisms remain unclear, systemic manifesta-
tions of MetS like dyslipidaemia, hyperglycaemia,
oxidative stress and low-grade systemic inflammation
are thought to mediate OA pathology by promoting dele-
terious processes such as synovial inflammation. Lipid
accumulation is the main characteristic of obesity and a
large number of studies have therefore focussed on a
role for lipids in OA. This has resulted in the implication
of several lipid classes and lipid-derived factors in OA
pathophysiology, including lipoproteins, free fatty acids,
triglycerides and adipokines [6, 7].

Here, we will especially focus on the potential role of
dyslipidaemia and high levels of low-density lipoprotein
(LDL) in OA development in particular, one of many pleio-
tropic effects of dyslipidaemia subject to ongoing investi-
gations in OA [5]. Although the dyslipidaemia component
of MetS is not defined by blood levels of LDL but by levels
of HDL and triglycerides, LDL is strongly related to these
factors and plays a known central role in the development
of CVD events [8]. In addition, the effectiveness of
dyslipidaemia-modulating therapies used with the aim of
lowering cardiovascular risk, such as statins and proprotein
convertase subtilisin/kexin type 9 (PCSK9) inhibitors, is
monitored using LDL levels as a proxy measure [9–11].
PCSK9 mediates degradation of LDL, and its inhibition
using novel mAbs lowers blood LDL levels by an additional
60% when used on top of statins, and further decreases
risk of CVD events by 15–20% [12]. Given that atheroscler-
osis is strongly associated to OA and macrophages play a
key role in both disease processes, this suggests they may
share common biochemical pathways and patients might
thus benefit from similar treatment strategies. Although
some clinical trials in which the effects of statins on OA
were studied showed small improvements [13–15], other
studies did not [16–19]. However, the interpretation of
these results is complicated by varieties in distributions of
OA phenotypes, differences in treatment strategies and
readouts, and the presence of dyslipidaemia in the statin
non-user control group, which can result in underestima-
tion of treatment response [16, 20].

In contrast to clinical trials, studies in animal models
with varying degrees of inflammation have confirmed
increased OA pathology in the context of dyslipidaemia,
and hint at a crucial but complex role for synovial macro-
phages in causing these aggravated symptoms. We pre-
viously discussed this in a review published in 2016 [21].
The current review provides an updated overview of the
most important and most recent literature regarding the
role of synovial macrophages in MetS-associated OA de-
velopment, and expands on this by proposing that espe-
cially macrophages derived from infiltrating monocytes
are important in preventing the synovitis from resolving
during the disease initiation stage. We substantiate this
concept by speculating about how prior immune training
of circulating monocytes may co-mediate this process.

Dyslipidaemia aggravates OA via skewing
of the synovial macrophage population

Epidemiological evidence showing that MetS is
associated with OA

In 2009, two separate studies reported an increased preva-
lence of MetS in the OA population, with each individual
component of MetS also being more prevalent [4, 22].
Since these epidemiological studies were cross-sectional,
questions concerning the longitudinal relationship between
MetS and OA remain unanswered; do components of
MetS drive OA development? Or, could OA also be causa-
tive for MetS via, for instance, hampered mobility and other
lifestyle alterations? In the following years, multiple studies
were published in favour of the former [23, 24]. Most re-
cently, Niu and colleagues showed that in the Framingham
OA study, pre-existing MetS and its components are risk
factors for subsequent symptomatic knee OA [25]. These
studies suggest that components of MetS can indeed drive
OA, even though this does not exclude co-existence of the
inverse causal relationship and of other shared risk factors
that precede both.

If MetS indeed drives OA, what is the relative contribu-
tion of each individual component? In particular, is the
link purely biomechanical by nature as a consequence of
weight-mediated abnormal joint loading, or is it also de-
pendent on metabolic perturbations and associated sys-
temic inflammation? Multiple studies showed that MetS
is associated to knee OA, but also OA in non-weight
bearing joints, which was irrespective of BMI in some
cases [26–28]. In addition, high dietary fat consumption
and serum fatty acid chain length change were associ-
ated with both radiographic and symptomatic knee OA
independent of BMI [29, 30]. These studies led research-
ers to argue that metabolic involvement in OA is likely. In
contrast, the Framingham OA study showed that correc-
tion for BMI using a binary regression model nullified the
association between OA and MetS, as well as most of
its individual components, with only diastolic blood pres-
sure remaining significant after correction for BMI [25].
This instinctively implies a link between MetS and OA
that runs more via weight-mediated processes.

To our understanding, however, it remains unclear if
correction for BMI does not also simultaneously correct
for other components of MetS that correlate with BMI. In
other words, whether multicollinearity occurrs. As
pointed out in an editorial by Appleton and colleagues,
BMI and body weight are closely correlated to abdominal
obesity, which might influence OA via fat-mass driven
metabolic derangement [31]. In addition to fat mass,
some studies report a significant positive correlation be-
tween BMI and LDL, although this was found to be insig-
nificant in others [32–34]. Therefore, the relative
contribution of abnormal joint loading vs metabolic de-
rangement remains unclear until an alternative factor can
be found that adjusts for weight-mediated processes in
isolation from metabolic processes.

The Framingham OA study further underlines that in-
volvement of weight-mediated processes should always
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be taken into account when considering which MetS
components drive OA, expanding on literature showing
obesity as the MetS component most commonly associ-
ated with OA across most studies [31]. Systemic meta-
bolic risk factors for OA probably do not influence OA
pathology completely independently, but more likely in
addition of or in synergy with abnormal joint loading. The
sustained plausibility of these scenarios maintains the
need to investigate the role of metabolic derangement in
driving OA development, especially when considering
the pre-clinical studies showing involvement of dyslipi-
daemia in experimental OA and macrophage phenotype
skewing in particular, which we will discuss in more de-
tail later [35–41].

A pro-inflammatory macrophage phenotype shift
underlies the chronicity of synovitis in OA

During initiation of inflammation resulting from cell or tis-
sue damage, macrophages sense damage-associated
molecular patterns (DAMPs) via pattern recognition
receptors (PRRs) such as toll-like receptors (TLRs),
which triggers polarization towards a pro-inflammatory
phenotype and release of cytokines. The eventual reso-
lution of inflammation is dependent on a phenotypical
transition of macrophages from pro-inflammatory to anti-
inflammatory, commonly referred to as an M1 phenotype
and M2 phenotype, respectively. Although this termin-
ology implies that macrophage polarization status is bin-
ary, this is a drastic oversimplification of the complex
phenotypic variation of in vivo macrophages. It is instead
closer to a spectrum that includes a large number of
unique and plastic phenotypes influenced by the specific
microenvironment. We will refer to macrophage pheno-
types as M1-like and M2-like, depending on whether it is
considered to be more on the pro-inflammatory or anti-
inflammatory side of the spectrum, respectively.

In OA, the inflammatory response does not seem to
resolve and rather turns into a chronic inflammation that
causes deregulation of both catabolic and anabolic proc-
esses. Phenotype skewing of the synovial macrophage
population in favour of the M1-like phenotype is thought
to underlie the chronicity of inflammation in OA [7, 42,
43]. This is supported by clinical studies showing that
the CD11c/CD206 expression ratio in SF and the quan-
tity of activated macrophages in the synovium is associ-
ated to severity of radiographic knee OA, although it
remains an area of ongoing investigation [1, 44]. The
exact cause, or causes, of the phenotype shift remains
unclear. Possible scenarios include sustained presence
of DAMPs as a result of re-occurring or continued cell
and tissue damage, such as extracellular matrix compo-
nents leaking from damaged cartilage (including fibro-
nectin, hyaluronan and Tenascin-C [45]). In addition, the
macrophage phenotype could be skewed under the in-
fluence of other factors, such as circulating metabolic
factors and metabolic intermediates. Numerous pre-
clinical studies have linked a phenotype shift of synovial
macrophages towards the M1-like phenotype to
increased pathology of experimental OA in the context

of dyslipidaemia, which includes a long list of potential
mediators including LDL-cholesterol.

Dyslipidaemia causes a pro-inflammatory macro-
phage phenotype shift and aggravates experimental
OA

In mice, a MetS-like phenotype is often simulated by
feeding of a calorie-rich diet like a high-fat diet (HFD) or
a Western diet (WD), a variation of a HFD that aims to
reproduce human high caloric fast-food feeding. Wu and
colleagues reported in 2015 that obese mice fed HFDs
rich in saturated and omega-6 fatty acids, which en-
hance systemic inflammation, developed more severe
OA and more macrophage infiltration during a destabil-
ization of the medial meniscus (DMM) model of OA com-
pared with mice fed HFDs rich in omega-3 fatty acids
[35]. Interestingly, weight-matching and multivariate
models showed that injury-induced OA was not associ-
ated with body mass, but was associated to dietary fatty
acid content and serum adipokines leptin and resistin. In
addition, two studies in rats showed that HFD-feeding
caused increased M1-like macrophage infiltration and
accelerated OA progression [36, 37]. However, the spe-
cific metabolic factors responsible for these effects re-
main unanswered.

Gierman and colleagues presented convincing evi-
dence that high cholesterol has the potential to mediate
OA. They showed increased cartilage damage with
higher percentages of dietary cholesterol, which was
ameliorated by the cholesterol-lowering drug atorvastatin
in a humanized dyslipidaemia mouse model [38]. Further
highlighting a role for cholesterol, and LDL-cholesterol in
particular, our group has previously shown that WD-
feeding of WT, Ldlr–/– and Apoe–/– mice—genetic models
commonly used in combination with a WD to induce
hypercholesterolaemia—leads to aggravated OA, indi-
cated by increased osteophyte formation combined with
increased synovial activation as shown by enhanced
S100A8 expression [39, 40]. Presumably, synovial inflam-
mation characterized by local production of reactive oxy-
gen species (ROS) is a prerequisite for making high
blood LDL a risk factor for worsened OA symptoms.
ROS can oxidize LDL to form oxidized LDL (oxLDL),
which has the potential to locally stimulate macrophages
to activate tumour growth factor-b (TGF-b) [41].
Interestingly, monocyte-derived macrophages that have
differentiated in presence of oxLDL adopt a unique
phenotype, different from macrophages polarized to-
wards an M1 or M2 phenotype [46]. This phenotype has
shown increased PPARc activity, which promotes fatty
acid oxidation, OXPHOS and oxLDL uptake via scaven-
ger receptors such as CD36 and SR-A. Atypical to an
M2-like macrophage however, it has also shown
increased NF-jB activity and secretion of cytokines such
as IL-1b [46–50]. In addition to macrophage skewing in
the local inflammatory environment, oxLDL exposure in
solely the monocyte stage can train monocyte-derived
macrophages to react more strongly to a secondary
TLR4 stimulus [51]. We will elaborate on the possible
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involvement of monocyte training in OA later in this
review.

Altogether, these in vivo studies present convincing
evidence that the dyslipidaemia component of MetS can
mediate OA pathology. Interestingly, increased pathology
was commonly accompanied by an increase in M1-like
macrophages, or M1-like macrophages were speculated
to be involved. The exact molecular drivers of macro-
phage skewing and the origins of these macrophages re-
main unclear. In vitro and in vivo studies have shown
that metabolic factors can cause skewing of macro-
phages towards a pro-inflammatory M1-like phenotype,
which suggests that this can occur locally in the syno-
vium. Several of these mechanisms are described in de-
tail in an excellent review by Dickson and colleagues,
focussing on the role of metabolic sensors AMPK,
mTOR1 and HIF-1a in particular [7]. In addition to local
macrophage skewing, the pro-inflammatory phenotype
shift could be partly driven by increased influx of mono-
cytes from the circulation.

Can metabolic activation of circulating
monocytes drive a synovial macrophage
phenotype shift?

Resident vs monocyte-derived macrophages

Recent studies have contested the idea that tissue mac-
rophages exclusively originate from the bone marrow,
and have shown that yolk sac–derived macrophages
populate organs during early development and self-
sustain their numbers via proliferation [52–55]. A compre-
hensive study by Culemann and colleagues has clarified
the structural organization and origins of different types
of synovial macrophages in a healthy mouse knees, and
how this changes during inflammation [56]. Using fate
mapping techniques in mice, they identify a distinct
population of CX3CR1þ tissue resident macrophages
which form a dense physical barrier that secludes IA
structures from the capillary network of healthy syno-
vium. This protective macrophage barrier was shown to
be locally renewed by proliferating CX3CR1– interstitial
macrophages, which were derived from early embryonic
haematopoiesis and maintained its numbers independent
of monocyte-derived macrophages. These resident mac-
rophages were shown to have anti-inflammatory M2-like
properties. During the onset of experimental arthritis, the
resident lining macrophages rapidly changed their
morphology and abrogated cell–cell contacts, but stably
maintained their anti-inflammatory phenotype.
Meanwhile, a cluster of monocyte-derived macrophages
displaying an M1-like expression profile expanded during
progression. Considering that the resident macrophages
showed a more anti-inflammatory and monocyte-derived
macrophages a more pro-inflammatory phenotype, the
latter seems to be the most likely suspect in pushing the
overall phenotype of synovial macrophages towards the
M1-like phenotype, as seen in MetS mouse models and
during OA [35–51]. It is unknown whether MetS may also

skew a pro-inflammatory phenotype shift in residential
synovial macrophages, which could work in conjunction
with influx of monocytes to push the overall synovial
macrophage phenotype towards pro-inflammatory.

Monocyte infiltration into OA synovium is associated
to clinical disease parameters

Recently published studies are in support of the idea
that especially monocytes and monocyte-derived macro-
phages are important drivers of OA pathology. Zhao and
colleagues reported higher expression of the chemokines
CCL2, CCL3 and CCL4 in SF of knee OA patients com-
pared with isolated knee meniscus injury patients [57].
Further evaluating the pathogenic role of the CCL3/
CCR1 and CCL2/CCR2 axes, the authors used the
collagenase-induced OA (CiOA) mouse model to show
that blockade of these pathways resulted in decreased
synovial lining thickness and number of F4/80þ cells in
the synovium. It is noteworthy that the decrease in F4/
80þ cells caused by chemokine and chemokine receptor
blocking was observed in both the lining and the sub-
lining, with the numbers of F4/80þ cells in the sub-lining
being lower but reflective of the numbers in the lining.
Given that blood-derived monocytes infiltrate the syno-
vium in the sub-lining, this could suggest that the thick-
ening of synovial lining is, at least in part, a result of
monocyte-infiltration as opposed to resident macro-
phage proliferation. Although speculative, this could
mean that thickened OA synovium has a higher content
of monocyte-derived macrophages, thereby making the
lining more pro-inflammatory.

Since monocyte-derived macrophage precursors
largely develop in bone marrow and blood, exposure
to MetS-associated factors at this stage might already
skew their phenotype prior to entry into the synovium.
Related to this, a study focussing on circulating mono-
cytes in knee OA patients showed increased monocyte
activation compared with healthy controls, demon-
strated by increased CD16, HLA-DR and CCR2 cell
surface expression and increased TNF-a and IL-1b
production on a per cell basis following stimulation
with DAMPs [58]. High serum TNF and BMI were posi-
tively correlated with CCR2 expression on circulating
classical monocytes, and monocyte CCR2 expression
was correlated with worse pain. Whether these effects
were mediated by BMI or other MetS-associated
aspects was not investigated here. The results led the
authors to suggest that the circulating monocytes of
OA patients are activated prior to their entry into the
synovium. Also, studies focussing on MetS patients
and patients with familial hypercholesterolemia have
shown that their circulating monocytes show a pro-
inflammatory phenotype and increased migratory cap-
acity, as shown by increased expression of chemokine
receptors, monocyte chemotactic protein-1 (MCP-1)
and activation markers compared with healthy individ-
uals [59–61]. Interestingly, several studies have shown
that this was downregulated after treatment with the
LDL-lowering drugs atorvastatin and PCSK9 inhibitors
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[60–62], suggesting that LDL is a MetS-associated fac-
tor that mediates activation of circulating monocytes.
Providing this, it is surprising that studies showing an
association between familial hypercholesterolemia and
OA are scarce.

To this day, activation of circulating monocytes has
not been linked to OA development. However, recent
developments in the research field investigating other
non-communicable diseases have provided intriguing
insight into this process and the factors involved,
which might prove to also be relevant for OA.
Atherosclerosis, for example, is comparable to OA in
the sense that it is strongly associated to MetS and is
mediated by local DAMP-induced inflammation and
consequent infiltration and differentiation of monocytes
and monocyte-derived macrophages. A process
termed innate immune training, which involves reprog-
ramming of monocytes, has been studied in the con-
text of atherosclerosis and is suggested to be involved
in the disease process [63, 64].

Metabolic activation of circulating monocytes: innate
immune training

The concept of trained immunity is relatively new, and
initially was used to explain how the innate immune sys-
tem has evolved non-specific adaptive mechanisms that
provides protection against future infections. More spe-
cifically, an initial activation of innate immune cells by
specific pathogen associated molecular patterns
(PAMPs), like b-glucan, primes the cells to stay in an
activated state for a prolonged period of time, during
which they will respond more vigorously to a secondary
pro-inflammatory stimulus [65, 66]. In contrast, some
other types of PAMPS, like lipopolysaccharide (LPS) and
tuberculosis vaccine Bacille Calmette-Guerin (BCG),
have shown to induce immune tolerance, dampening the
inflammatory response to a secondary stimulus [67, 68].

In addition to PAMPs, non-infectious triggers like
DAMPs or WD-associated factors such as oxLDL also
have the ability to prime innate immune cells. Bekkering
and colleagues showed in 2014 that in vitro oxLDL-
priming of human monocytes induces memory
responses via epigenetic programming [51]. Some years
later, Christ and colleagues showed in vivo that short-
term WD feeding of Ldlr–/– mice led to functional reprog-
ramming of innate immune cells as shown by an
increased TNF-a and keratinocytes-derived chemokine
(KC) response to TLR ligands, which persisted for sev-
eral weeks after switching back to a standard diet [69].
The NRLP3 inflammasome was identified as a crucial
mediator of this systemic process. Furthermore, other
studies showed that dyslipidaemia caused higher ex-
pression of the ROS-producing enzyme NOX2 and
increased oxidative stress. Besides being able to induce
immune activation via various pathways including NLRP3
[70, 71], NOX2-derived ROS may potentially also facili-
tate LDL oxidation in the joint [72–74].

Do resident macrophages contribute to oxLDL-
mediated OA symptoms?

The previous paragraphs describe how metabolic factors
like (ox)LDL can prime monocytes in the circulation to
become more sensitive to chemokines and DAMPs, and
may consequently infiltrate the synovium in higher num-
bers and respond more strongly when locally encounter-
ing OA-related stimuli such as S100A8/A9 (Fig. 1). These
particular macrophages may thus promote OA develop-
ment by further stimulating the chronic inflammation of
the synovium via continued production of chemokines,
catabolic factors and pro-inflammatory factors, which
can simultaneously mediate OA-associated cartilage
breakdown. However, solely an increase in monocyte-
derived macrophages would not explain the increase in
ectopic bone formation that was observed in the context
of high LDL in several previously mentioned studies [39,
40]. This is a process mediated by growth factors, most
importantly being TGF-b, which is more produced by
M2-like macrophages than M1-like macrophages. Pre-
clinical studies in which synovial macrophages were se-
lectively depleted using clodronate-filled liposomes have
demonstrated that macrophages in particular mediate
osteophyte formation during experimental OA [75].
Osteophyte size was severely reduced in macrophage-
depleted joints (56–85% reduction among all locations),
and this was accompanied with a strong reduction in
TGF-b. In addition, the generation of pro-inflammatory
cytokines and MMPs was significantly decreased in the
absence of synovial macrophages in both human and
mouse OA synovium [76, 77].

It remains unclear whether it is primarily resident mac-
rophages or monocyte-derived macrophages that medi-
ate these processes. Interestingly though, other
macrophage-depletion studies showed that IA TGF-b in-
jection led to osteophyte formation also in naı̈ve mice
joints, whereas this was drastically reduced in
macrophage-depleted joints (70% and 64% histological
score reduction with 20 and 200 ng of TGF-b, respect-
ively) [78]. In addition, repeated IA oxLDL injections led
to increased TGF-b activation in naı̈ve mice joints but
not in macrophage-depleted joints [41]. Given that in
these studies, macrophages were depleted before injec-
tion of TGF-b and oxLDL in naı̈ve mice joints, there is no
reason to assume that high numbers of monocyte-
derived macrophages were present in the synovium at
this stage. This would suggest that (oxLDL enhanced)
TGF-b activation is mediated mostly by resident lining
macrophages in a non-inflamed microenvironment.
However, it remains possible that monocyte-derived
macrophages are also involved, despite their lower num-
bers, but that they are depleted by the clodronate-filled
liposomes along with the residential macrophages.

Intriguingly, oxLDL injection led to an increase in
MCP-1 and macrophage inflammatory protein 1-a (MIP-
1-a) production, and increased monocyte infiltration only
in macrophage depleted joints. OxLDL injection in these
joints led to development of a thicker synovial lining that
produced higher protein levels of S100A8 compared with
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PBS and LDL injection 7 days post-depletion [41]. This
suggests a dual role for oxLDL, in which it stimulates
TGF-b activation when interacting with residential macro-
phages, but initiates chemokine-mediated monocyte at-
traction and thickening of the lining when interacting
with cells in the sub-lining such as fibroblasts. The latter
alludes to the idea that the newly attracted, potentially
primed, monocyte-derived macrophages repopulate the
lining and thereby compromise its natural protective and
anti-inflammatory function, and rather turn it pro-
inflammatory. It would be interesting to investigate if this

indeed occurs, and if so, how this repopulated lining
mediates OA-related processes like TGF-b activation
and MMP production compared with the resident lining.

Implications for therapeutic options

Although it should be more thoroughly investigated
whether metabolic training of monocytes indeed plays a
role in OA, the current evidence provides interesting
opportunities to speculate on the possibility to thera-
peutically target MetS components, or monocyte-derived

FIG. 1 Metabolic activation of circulating monocytes aggravates OA development via an increase of pro-inflammatory
synovial macrophages

Schematic overview of the theoretical mechanism that describes how MetS-associated factors, such as oxLDL, can
activate circulating monocytes to obtain an increased migratory capacity and cytokine response. In the event of cell/
tissue damage, alarmins such as S100A8/A9 are released in the synovium, which can attract these monocytes from
the circulation by promoting chemokine production. This consequently leads to an increase in more reactive mono-
cyte-derived macrophages in the synovium (coloured red), which are pro-inflammatory and contribute to degradative
processes and the chronicity of inflammation. In contrast, resident synovial macrophages (colored blue) maintain their
protective and anti-inflammatory phenotype during inflammation, but may still contribute to OA symptoms via, for in-
stance, activation of TGF-b. MetS: metabolic syndrome; LDL: low-density lipoprotein; oxLDL: oxidized LDL; ROS: re-
active oxygen species.
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macrophages, to treat or slow down OA progression.
Cholesterol lowering or anti-oxidative drugs in individuals
with MetS may help to prevent oxLDL-mediated mono-
cyte and macrophage skewing. Indeed, statin use was
associated to reduced clinical OA outcome in some
studies [19, 79], although other studies were unable to
find this association [17, 18]. Besides therapeutic
options, the call for a shift towards individual responsibil-
ity to prevent and self-manage disease is increasing [80].
Weight reduction and dietary interventions should be
applied by both healthy individuals and OA patients to
limit the risk for OA development and progression. For
management of serum levels of LDL-cholesterol specific-
ally, individuals should focus on reducing intake of satu-
rated fat while having sufficient intake of LDL-lowering
nutrients such as plant stanols and sterols [43, 80, 81].

In this review, we particularly focussed on LDL-
cholesterol as a MetS-associated factor that could
underly the link between MetS and OA because of its
known involvement in OA pathology in mice and athero-
sclerosis pathology in humans. This, of course, does not
exclude the possibility that other components of MetS,
such as hyperglycaemia, could also be involved in simi-
lar processes and likewise form interesting factors to be
investigated further as potential therapeutic targets.
Indeed, hyperglycaemia is known to cause systemic
macrophage activation [82], and the glucose-lowering
drug metformin was shown to limit progression of injury
induced OA [83]. The purpose of this review is to explain
the role of LDL in MetS-associated without dismissing a
possible role for other aspects of MetS and dyslipidae-
mia. Additional studies and reviews should be consulted
in order to get a complete understanding of the proc-
esses underlying the link between MetS and OA.

Aa an alternative to targeting metabolic factors, systemic
inflammation could be dampened using anti-inflammatory
drugs. In this context, a retrospective exploratory analysis
of the CANTOS study (Canakinumab Antiinflammatory
Thrombosis Outcome Study)—a large clinical trial involving
10 061 patients with previous myocardial infarction and
high systemic inflammation—provided interesting results;
the rate of total knee and hip replacements was lower in
patients treated with mAb against IL-1b, canakinumab [84].

The increasing evidence showing an important role for
synovial macrophages in OA, and MetS-associated OA
in particular, appeals to the idea to target macrophages
specifically as means to alleviate OA symptoms.
However, attempts to do this have had limited success
so far. Specifically targeting monocyte-derived macro-
phages might be a more efficient strategy, due to their
supposedly important role in skewing synovial macro-
phage phenotype as shown by the evidence presented
in this review. Using factors that stabilize PPARc could
aid in skewing macrophage phenotype to become more
anti-inflammatory [85]. Alternatively, inhibiting monocyte
infiltration by blocking CCL2 or CCR2 (a phase 2 clinical
trial using CCR antagonist CNTX-6970 is currently on-
going), or inducing innate immune tolerance via

vaccination with BCG, are some of many possible
options to interfere in this process in an attempt to find
a novel therapy for OA.
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