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Background: The glioma-associated stromal cell (GASC) is a recently identified type of
cell in the glioma microenvironment and may be a prognostic marker for glioma. However,
the potential mechanisms of GASCs in the glioma microenvironment remain largely
unknown. In this work, we aimed to explore the mechanisms of GASCs in gliomas,
particularly in high-grade gliomas (HGG).

Methods: We used glioma datasets from The Cancer Genome Atlas (TCGA) and the
Chinese Glioma Genome Atlas (CGGA). We utilized the Single-sample Gene Set
Enrichment Analysis (ssGSEA) algorithm to discriminate between patients with high or
low GASC composition. The xCELL and CIBERSORT algorithms were used to analyze the
composition of stromal cells and immune cells. Risk score and a nomogram model were
constructed for prognostic prediction of glioma.

Results: We observed for the first time that the levels of M2 macrophages and immune
checkpoints (PD-1, PD-L1, PD-L2, TIM3, Galectin-9, CTLA-4, CD80, CD86, CD155, and
CIITA) were significantly higher in the high GASC group and showed positive correlation
with the GASC score in all glioma population and the HGG population. Copy number
variations of DR3 and CIITA were higher in the high-GASC group. THY1, one of the GASC
markers, exhibited lower methylation in the high GASC group. The constructed risk score
was an independent predictor of glioma prognostics. Finally, a credible nomogram based
on the risk score was established.

Conclusions:GASCs stimulate glioma malignancy through the M2 macrophage, and are
associated with the level of immune checkpoints in the glioma microenvironment. The
methylation of THY1 could be used as prognostic indicator and treatment target for
glioma. However, further studies are required to verify these findings.
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INTRODUCTION

Glioma is the most common primary malignant tumor of the
central nervous system, and it generally has a poor prognosis.
The World Health Organization (WHO) classified gliomas into
grades I-IV, with grades III and IV indicating high-grade gliomas
(HGG) (1). The current treatments for HGG involve tumor
resection, radiotherapy (RT), and temozolomide (TMZ), but this
strategy has not yielded optimal effects (2).

Immunotherapy has been extensively studied for human
malignant tumors in the past few years (3). However, due to
the “immune-cold” phenotype and inner complexity of glioma
(4), only a minority of glioma patients benefit from immune
Frontiers in Oncology | www.frontiersin.org 2
checkpoint (ICP) inhibitors (5). Researchers are deepening our
understanding of the complex interactions between glioma and
the immune system and trying to maximize the effectiveness of
immunotherapy for glioma (6).

The glioma-associated stromal cell (GASC) is a recently
identified important stromal cell in the glioma microenvironment,
with potential value for prognostic prediction and therapeutic
perspectives (7). The available evidence indicates that GASCs
facilitate angiogenesis, invasion, and tumor growth (7). However,
the potential mechanisms of GASCs remain largely unknown.

We aimed to identify the underlying mechanisms of GASCs
in a glioma microenvironment, particularly in HGG. Figure 1
illustrates the workflow of the study.
FIGURE 1 | Flow diagram of this investigation. HGG, high-grade glioma; DEGs, differentially expressed genes; 4 scores, stemness, mesenchymal-EMT, tumorigenic
cytokine, and angiogenic activity scores; SM, somatic mutations; CNV, copy number variations; ICPs, immune checkpoints.
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MATERIALS AND METHODS

Glioma Datasets
The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.
gov/) and Chinese Glioma Genome Atlas (CGGA, www.cgga.
org.cn/) are public databases. The mRNA sequencing data and
clinical information data for 702 glioma samples from TCGA
and 693 glioma samples from CGGA were downloaded. Among
these samples, 393 samples from TCGA and 504 samples from
CGGA were high-grade glioma (HGG). The somatic mutation
data for 666 glioma samples from TCGA were downloaded. The
copy number variation data for 692 samples from TCGA were
downloaded from the UCSC Xena Project database (http://xena.
ucsc.edu/). For methylation analysis, the methylation data for 34
samples from CGGA and mRNA sequencing data for 325
samples were downloaded from CGGA.

ssGSEA Analysis
A gene set of GASCmarkers (Table S1) was obtained fromClavreul
et al. (7). Enrichment scores for GASCs were separately calculated
for each sample with the Single-sample Gene Set Enrichment
Analysis (ssGSEA) algorithm. We also used the ssGSEA algorithm
to calculate the stemness score (8), mesenchymal-epithelial-to-
mesenchymal transition (EMT) score (9), tumorigenic cytokine
score (10) and angiogenic activity score (11) based on the
corresponding gene sets (Table S1). The “GSVA” R package
(version 1.34.0) was applied to conduct an ssGSEA analysis.

Principle Component Analysis (PCA)
PCA was used to show the differentiation of high- and low-
GASC groups and was visualized with the “ggfortify” R package
(version 0.4.11).

Differential Analysis of Expressed Gene
We used Morpheus (https://software.broadinstitute.org/
morpheus) to identify significantly differentially expressed
genes (DEGs) between the high- and low-GASC groups. P <
0.05 and |log2 FC (fold-change)| ≥ 1 were selected as the cutoff
values for statistically significant DEGs. A heatmap of DEG
expression was produced by the “pheatmap” R package
(version 1.0.12).

Functional Annotation
To reveal the probable biofunctions and signaling pathways that
were correlated with the DEGs, we performed Gene Ontology
(GO) annotations enrichment analysis, Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis and enrichment
analysis, and Gene Set Enrichment Analysis (GSEA) using the
“clusterProfiler” (12) package (version 3.14.3) in R. Adjusted p <
0.05 was selected as the cutoff criterion.

xCELL Analysis and Cell Type Identification
by Estimating Relative Subsets of RNA
Transcripts (CIBERSORT) Analysis
xCell is an R package (version 1.1.0) that estimates the
comprehensive levels of 64 cell types, which include 14 stromal
cells. CIBERSORT can accurately quantify the abundance scores
Frontiers in Oncology | www.frontiersin.org 3
of 22 types of immune cells for each sample. We applied xCELL
and CIBERSORT to separately calculate the abundance scores
for stromal cells and immune cells in glioma samples.

Analysis of Somatic Mutations and Copy
Number Variations
The somatic mutations of glioma samples from TCGA were
calculated and visualized by the “Maftools” R package (version
2.2.10) (13). The copy number variations were visualized by the
“ComplexHeatmap” R package (version 2.2.0).

Prediction of the Immunotherapy
Response
The Tumor Immune Dysfunction and Exclusion (TIDE)
algorithm (14) was employed to predict the clinical response of
immune checkpoint inhibitors for each glioma sample.

Construction of Prognostic Model
The glioma datasets from TCGA and CGGA were used
separately as a training dataset and validation dataset during
the construction of the prognostic model. In the filtering process,
least absolute shrinkage and selection operator (LASSO)
regression analysis was applied to filter input parameters with
p < 0.05. The input parameters included GASC score, GASC
markers, immune checkpoints, stemness score, mesenchymal-
EMT score, tumorigenic cytokine score, angiogenic activity
score, stromal cell scores, and immune cell scores. Then,
multivariate Cox regression analysis was conducted, and the
risk score for glioma was computed via this formula: risk = score

on
i=1bi � Xi :Xi indicates the input parameter of multivariate

regression analysis, and bi represents the coefficient of Xi. Risk
score and clinicopathological features were used to construct a
prognostic model with uni- and multivariate Cox regression
analysis. A nomogram was built to show the prognostic model.
Receiver operating characteristic (ROC) curve analysis was
conducted to evaluate the effect of the prognostic model in the
training and validation datasets. “glmnet” (version 4.1), “rms”
(version 6.1.0), and “timeROC” (version 0.4) R packages were
used for the construction of prognostic model.

Statistical Analysis
All statistical analyses were performed utilizing R software
(version 3.5.1), and statistical significance was set at p < 0.05.
Comparisons between 2 continuous variables were evaluated by
Student’s t-test and one-way ANOVA with ≥ 3 variables.
Boxplots and bar charts were utilized to display these
comparisons using the “ggplot” R package (version 3.3.3). The
chi-square test or Fisher’s exact test were used for comparisons of
categorized variables. The Kaplan-Meier approach was
conducted for survival analysis, and the log-rank test was used
to compare the overall survival (OS). Spearman correlation
analysis was applied to evaluate two continuous variables, and
the data were visualized with “ggplot” and “corrgram” (version
1.13) R packages. Univariate Cox regression was applied to
identify potential predictors of survival, and the data were
displayed with “forestplot” (version 1.10.1) R package.
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RESULTS

Identification of High- and Low-GASC
Groups With ssGSEA
To analyze the potential mechanisms of GASCs in the glioma
microenvironment, we obtained mRNA sequencing data for 702
samples from TCGA and 693 samples from CGGA, and then
Frontiers in Oncology | www.frontiersin.org 4
calculated the GASC score for each sample using the ssGSEA
algorithm (Figure 1). Samples from TCGA and CGGA were
classified separately into high- or low-GASC groups according to
the median of the GASC score. Information for the high- and
low-GASC groups is shown in Figures 2A, B and Table 1.
Separate classification was also performed for 393 HGG samples
from TCGA and 504 HGG from CGGA into high- and low-
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FIGURE 2 | Identification of high- and low-GASC groups. (A, B) Heatmap of GASC markers in all glioma population (A for TCGA and B for CGGA). (C–F) Kaplan-
Meier overall survival (OS) curves for samples in high- and low-GASC groups from all glioma population (C for TCGA and D for CGGA) and high-grade glioma
population (E for TCGA and F for CGGA). (G–J) Principal component analysis of high- and low-GASC groups from all glioma population (G for TCGA and H for
CGGA) and high-grade glioma population (I for TCGA and J for CGGA).
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GASC groups using the same method. K-M curves were drawn,
and the results revealed that a higher GASC score was associated
with worse OS in all glioma population and the HGG population
(p < 0.0001; Figures 2C–F). PCA showed robust differences in
the expression portraits of the GASC markers between the high-
and low-GASC groups (Figures 2G–J).

Enrichment Analysis of DEGs Between the
High- and Low-GASC Groups
DEGs between the high- and low-GASC groups were identified
with the Morpheus webtool (Figure S1). Functional enrichment
revealed a significant association between DEGs and immune-
related terms. Biological process (BP) terms enriched in the GO
analysis included “lymphocyte chemotaxis” and “neutrophil
activation” in all glioma population (Figures 3A, D and Table
S2) and the HGG population (Figures 4A, D and Table S2). The
“JAK-STAT signaling pathway” and “IL-17 signaling pathway”
were enriched in the KEGG analysis in all glioma population
(Figures 3B, E and Table S3) and the HGG population (Figures
Frontiers in Oncology | www.frontiersin.org 5
4B, E and Table S3). GSEA analysis revealed immune-related
terms such as “Antigen processing and presentation” and “PD-
L1 expression and PD-1 checkpoint pathway” in all glioma
population (Figures 3C, F and Table S6) and the HGG
population (Figures 4C, F and Table S6).
Correlation of Stemness, Mesenchymal-
EMT, Tumorigenic Cytokine, and
Angiogenic Activity Scores With GASCs
To explore the potential mechanisms of GASCs in glioma, we
also calculated stemness, mesenchymal-EMT, tumorigenic
cytokine, and angiogenic activity scores for each glioma sample
using the ssGSEA algorithm (Table S1). The results showed that
mesenchymal-EMT, tumorigenic cytokine, and angiogenic
activity scores were significantly higher in the high-GASC
group (Figure 5A), and were positively correlated with the
GASC score in all glioma population (Figures 5B, C) and the
HGG population (Figures 5D, E).
TABLE 1 | Correlations between GASC groups and clinical characteristics in glioma patients.

Characteristic TCGA CGGA

H_GASC L_GASC p-value H_GASC L_GASC p-value

All cases 351 351 346 347
Age (yeas) 51.11 ± 15.89 43.25 ± 13.54 <0.001* 45.06 ± 13.30 41.51 ± 11.15 0.003*
Gender 0.126 0.792
Female 123 132 149 146
Male 193 161 197 201

Grade <0.001* <0.001*
Grade II 65 151 64 124
Grade III 114 127 102 153
Grade IV 137 15 180 69

Histology <0.001* <0.001*
A + rA 28 27 46 73
AA + rAA 69 45 70 82
AO + rAO 21 66 25 57
GBM + rGBM 137 15 180 69
O + rO 20 97 17 43

PRS type 0.006*
Primary 193 229
Recurrent 153 118

1p19q codeletion status <0.001* <0.001*
Codel 28 141 44 101
Non-codel 301 194 267 211

IDH mutation status <0.001* <0.001*
Mutant 139 289 134 222
Wildtype 187 47 190 96

MGMTp methylation status 0.696
methylated 158 157
un-methylated 110 117

Radiotherapy status 0.219
treated 259 251
un-treated 61 75

Chemotherapy status 0.013
TMZ treated 257 229
un-treated 67 94
April 20
21 | Volume 11 | Article
A, astrocytoma; O, oligodendroglioma; AA, anaplastic astrocytoma; AO, anaplastic oligodendroglioma; GBM, glioblastoma; r, recurrence; PRS type, primary-recurrent-secondary type;
TMZ, temozolomide; *p < 0.05.
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Associations Between GASCs
and Stromal Cells
To discover the relationship between GASCs and other stromal
cells, we computed the levels of 14 stromal cells using the xCELL
algorithm. Bar charts showed that endothelial cells, lymphatic
endothelial cells, and microvascular endothelial cells were higher
in the high-GASC group in all glioma population from the
TCGA (Figure 6A) and CGGA (Figure 6D) databases.
Univariate Cox regression revealed that the level of
mesenchymal stem cells is a protective factor for glioma
(Figures 6B, E). A coefficient matrix showed that the GASC
score was positively correlated with the levels of endothelial cells,
lymphatic endothelial cells, and microvascular endothelial cells
(Figures 6C, F). Similar results were found in the HGG
population (Figure S3).

Immune Landscape of the High- and
Low-GASC Groups
Because some immune-related terms were enriched in the
functional annotation analysis, we explored the relationship
Frontiers in Oncology | www.frontiersin.org 6
between GASCs and the immune microenvironment. The
CIBERSORT algorithm computed the relative abundance of 22
types of immune cells, which are shown in Figure 7. Overall, the
adaptive immunity was at a relatively lower level in the high-
GASC group compared with that in the low-GASC group.
Notably, the level of M2 macrophages was significantly higher
in the high-GASC group (Figures 8A, C) and was positively
correlated with GASC score (Figure 9A) in all glioma
population. Univariate Cox regression also revealed that the
level of M2 macrophages is a risk factor for glioma (Figures
8B, D). Similar results were found in the HGG population
(Figures 8E–H, 9B).

We also analyzed the correlation of GASCs and 14 important
ICPs. As shown in Figure 10, the expression levels of most ICPs
were statistically higher in the high-GASC group. The univariate
Cox regression showed that the expression levels of PD-L2,
TIM3, CD80, CD86, CD155, and CIITA were risk factors for
glioma in all glioma population and the HGG population.
Correlation analysis indicated strong positive correlations
within ICPs. The GASC score was positively correlated with
A
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FIGURE 3 | Functional annotation of upregulated DEGs between the high- and low-GASC groups from all glioma population. (A, B) GO analysis (A) and KEGG
pathway analysis (B) of up-regulated DEGs from TCGA data. (C) GSEA analysis of genes from TCGA data. (D, E) GO analysis (D) and KEGG pathway analysis (E)
of up-regulated DEGs from CGGA data. (F) GSEA analysis of genes from CGGA data.
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PD-1, PD-L1, PD-L2, TL1A, TIM3, Galactin-9, CTLA-4, CD80,
CD86, CD155, LAG3, and CIITA in all glioma population and
the HGG population (Figure 9).

Copy Number Variations (CNVs) in DR3
and CIITA Indicated Worse OS
We also downloaded the somatic mutation and CNV data for
glioma to analyze the difference in genomic alterations between
the high- and low-GASC groups in all glioma population. The 20
genes with the greatest amounts of somatic mutations and CNVs
are shown in Figure S4. We also compared the somatic
mutations and CNVs of GASC markers between the high- and
low-GASC groups (Figure S5), but found no significant
difference in genomic alterations. However, in the comparison
of somatic mutations and CNVs of ICPs between the high- and
low-GASC groups (Figure S6), the results showed that the CNVs
of DR3 and CIITA were significantly higher in the high-GASC
group (Figure S6E). Survival analysis indicated that the CNVs of
DR3 and CIITA significantly decreased the OS of glioma patients
(Figures S6F, G).
Frontiers in Oncology | www.frontiersin.org 7
Higher THY1 and CD80 Methylation
Indicated Better OS
In the search for a possible treatment target for glioma, we
conducted methylation analysis of GASC markers and ICPs.
Because there was not a satisfactory match between samples with
methylation data in the CGGA database and samples in the
CGGA_693 mRNA dataset, we also downloaded the CGGA_325
mRNA dataset and separated these samples into high- and low-
GASC groups with the previously mentioned method. Overall,
26 glioma samples (6 in the high-GASC group and 20 in the low-
GASC group) and 8 normal samples with methylation data
were included.

The GASC markers indicated that the methylation levels of
THY1, CD9, CD14, CD44, ITGAM, and ACTA1 were significantly
different among the high-GASC, low-GASC, and normal groups
(Figure 11A and Figure S7). Then, we divided the glioma samples
into high- and low-methylation groups according to the median of
the gene methylation level. Survival analysis indicated that statistical
difference was only observed between high- and low-THY1
methylation groups (p = 0.018; Figure 11B). High THY1
A
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FIGURE 4 | Functional annotation of upregulated DEGs between the high- and low-GASC groups from the high-grade glioma population. (A, B) GO analysis (A)
and KEGG pathway analysis (B) of up-regulated DEGs from TCGA data. (C) GSEA analysis of genes from TCGA data. (D, E) GO analysis (D) and KEGG pathway
analysis (E) of up-regulated DEGs from CGGA data. (F) GSEA analysis of genes from CGGA data.
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methylation suggested greater patient OS. In the methylation
analysis of ICPs, significant differences were detected in Galactin-
9, CD80, CD155, and LAG3 (Figure 11C and Figure S8). However,
only high- and low-CD80 methylation groups showed statistical
difference in the survival analysis (p = 0.031; Figure 11D), and high
CD80 methylation indicated better OS.

Predicted Potential Immunotherapy
Responses Between the High- and
Low-GASC Groups
The TIDE webtool was applied to predict the likelihood of
immune response for each sample. The results showed that in
all glioma population, the low-GASC group (56%, 197/351 in
Frontiers in Oncology | www.frontiersin.org 8
TCGA; 40%, 138/347 in CGGA) was more likely to respond to
immunotherapy than the high-GASC group (40%, 141/351 in
TCGA; 29%, 102/346 in CGGA). However, in the HGG
population, difference was found only in the TCGA dataset
(high-GASC vs. low-GASC: 31% vs. 44%; Figures S9A–E).

In order to further analyze the immune infiltration between the
responder and no responder groups, we compared the levels of
immune cells between these two groups. The results showed that
in all glioma population, the responder group had lower “T cells
CD8” and “Macrophages M0” and higher “Mast cells activated”
(Figures S9F, G). For the HGG population, “T cells CD8” was
lower in the responder group, and “Mast cells activated” was
higher in the responder group (Figures S9H, I).
A
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FIGURE 5 | Correlations between GASCs and Stemness, Mesenchymal-EMT, Tumorigenic cytokine, and Angiogenic activity scores. (A) Correlations between
GASC groups and stemness, mesenchymal-EMT, tumorigenic cytokine and angiogenic activity scores. (B–E) Scatterplot of GASC score and 4 scores in all glioma
population (B for TCGA and C for CGGA) and high-grade glioma population (D for TCGA and E for CGGA). *Statistical significance.
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Construction of a Risk Score System and
Establishment and Validation of a
Nomogram Survival Model
The mRNA sequencing data from TCGA (702 samples) was used
as training dataset, and the data from CGGA (693 samples) was
set as an independent validation dataset. For the training dataset,
GASC score, GASC markers, immune checkpoints, stemness
score, mesenchymal-EMT score, tumorigenic cytokine score,
angiogenic activity score, stromal cell scores, and immune cell
scores were filtered using LASSO regression with the “glmnet” R
package. The change in trajectory of each variable was plotted in
Figure 12A. We utilized 10-fold cross-validation to construct the
model, and Figure 12B shows the confidence interval under each
Frontiers in Oncology | www.frontiersin.org 9
lambda.When lambda equaled 0.03431609, themodel reached the
optimal value, and 19 variables were selected for the next analysis.
In the multivariable Cox regression analysis, the number of
variables was reduced to 9, and the final 9-variable signature
formula was: Risk score = 0.20 × CSPG4 – 0.30 × ALCAM +
35.16 ×Adipocytes – 11.11 ×Osteoblast – 7.05 × Pericytes – 2.50 ×
Plasmacells +0.22×CD274+0.16×CD80+13.45×angiogenesis.
The risk score was calculated for each sample in the training and
validation datasets. Thus, we divided samples into high- and low-
risk groups according to the median risk score. Survival analysis
revealed that in the training dataset, glioma patients in high-risk
group have worse OS (p < 0.0001; Figure 12C), which was also
confirmed in the validation dataset (p < 0.0001; Figure 12D).
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FIGURE 6 | Associations between GASCs and stromal cells in all glioma population. (A, D) Bar charts illustrating the differences of xCELL scores between high- and
low-GASC groups (A for TCGA and D for CGGA). ns: p > 0.05, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. (B, E) Forest plots of univariate Cox regression
analysis of stromal cells (B for TCGA and E for CGGA). (C, F) Correlograms of GASC score and stromal cells intercorrelation (C for TCGA and F for CGGA).
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Then, we constructed a nomogram model to predict the
prognosis of glioma, which included the risk score and
clinicopathologic features. The uni- and multivariate Cox
regression analysis (Figure 12E) indicated that risk score was
an independent predictor for glioma prognostics. We finally
included four features (age, WHO grade, isocitrate
dehydrogenase (IDH) mutation status, and risk score) in the
nomogram model (Figure 12F). Time-dependent ROC analysis
further indicated that the area under the curve (AUC) for 1-, 3-,
and 5-year OS were 0.902, 0.948, and 0.911, respectively, in the
training dataset (Figure 12G). These AUCs were better
compared with IDH mutation status, which is a traditional
indicator, and were 0.842, 0.862, and 0.813 at the 1-, 3-, and 5-
year marks (Figure 12I). Similar results were obtained in the
validation datasets (Figures 12H, J).
DISCUSSION

The GASC is a recently identified particular type of cell in the
glioma microenvironment, with various names, e.g., glioma-
associated human MSCs (GA-hMSCs) (7). The phenotypic and
functional properties of GASCs are similar to those of cancer-
associated fibroblasts and mesenchymal stem cells. The
Frontiers in Oncology | www.frontiersin.org 10
mechanism of GASCs in the glioma microenvironment is still
largely unknown. In this work, we explored the potential
mechanisms of GASCs in the glioma microenvironment, and
discovered that GASCs may upregulate the level of M2
macrophages and ICPs. We also found that the CNVs of DR3
and CIITA were higher in the high-GASC group, and the
methylation level of THY1 was lower in the high-GASC group,
which could be a potential treatment target for glioma,
particularly in HGG.

The tumor microenvironment determines the invasiveness of
glioma. The EMT regulates this invasive state of glioma,
particularly in HGG (9). Studies reported that GASCs drive
cell invasion through HA synthase-2 (HAS2) induction (15), the
UCA1/miR-182/PFKFB2 axis (16), the C5a/p38/ZEB1 axis (17)
and CCL2/JAK1/MLC2 signaling (18). In the current work, we
also discovered that the GASC score was positively correlated
with the mesenchymal-EMT score in all glioma population and
the HGG population (Figure 5). Terms from functional
annotation include adhesion-related terms (Tables S2, S6), e.g.,
“Cell adhesion molecules”.

In the current study, we found a strong correlation between
the GASC score and tumorigenic cytokine score, indicating the
tumor-supporting function of GASCs. Studies reported that
GASCs have tumor-promoting effects in vitro and in vivo (19–21).
A

B

FIGURE 7 | The relative abundances of the 22 types of immune cells. (A) Results from TCAG data. (B) Results from CGGA data.
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Additionally, Figueroa et al. also suggested that the tumor-
supporting role of GASCs is mediated by the exosomal
delivery of specific oncogenic miRNAs (21).

Although GASCs infiltrate into the glioma stroma, they are
predominantly located around blood vessels (22), particularly
abnormal vessels (23). Previous studies indicated that GASCs
increase the angiogenesis of glioma (24, 25). Zhang et al.
suggested that CD90low (THY1) GASCs stimulate angiogenesis
Frontiers in Oncology | www.frontiersin.org 11
via vascular endothelial cells (25). In the current work, we
detected a high correlation between the GASC score and the
angiogenesis score (Figure 5) in all glioma population and the
HGG population. We also found that in addition to endothelial
cells, the GASC score also was positively correlated with
microvascular endothelial cells (Figures 6 and Figure S3). The
levels of endothelial cells and microvascular endothelial cells
were higher in the high-GASC group (Figures 6 and Figure S3).
A

B D
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F

G

H

C

FIGURE 8 | Associations between GASCs and immune cells. (A, C, E, G) Bar charts illustrating the differences in CIBERSORT scores between high- and low-
GASC groups in all glioma population (A for TCGA and C for CGGA) and high-grade glioma population (E for TCGA and G for CGGA). (B, D, F, H) Forest plots of
univariate Cox regression analysis of immune cells in all glioma population (B for TCGA and D for CGGA) and high-grade glioma population (F for TCGA and H for
CGGA). ns: p ≥ 0.05, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001
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These results indicated that GASCs may promote angiogenesis of
glioma by stimulating the growth of both blood vessels and
microvessels, which requires further verification.

Tumor-associated macrophages (TAMs) play an emerging
role in glioma progression and are found in high proportions in
the immune landscape of malignant glioma (26, 27). There are
continuous phenotypes in the activation state of TAMs, in which
M1 and M2 represent two extreme phenotypes (28). M2 has an
anti-inflammatory phenotype, which leads to downregulation of
immune responses, and thus prevents tissue damage and
supports healing processes (27). In this work, our results
suggest for the first time that GASCs are highly correlated with
M2 macrophages in the glioma microenvironment. Based on our
results, the level of M2 macrophages in the high-GASC group is
statistically higher than that in the low-GASC group in all glioma
population and the HGG population (p ≤ 0.0001; Figure 8). We
Frontiers in Oncology | www.frontiersin.org 12
also found high correlation coefficients between GASC scores
and M2 macrophages in all glioma population (R = 0.46
(TCGA); R = 0.30 (CGGA); Figure 9A) and the HGG
population (R = 0.44 (TCGA); R = 0.26 (CGGA); Figure 9B).
These results indicated that TAMs may be phenotypically
polarized to M2 macrophages by GASCs, which may further
depress the immunity of the microenvironment and stimulate
malignant progression of glioma. Conversely, the M2
macrophages may also upregulate the level of GASCs and
further increase the malignant properties of glioma, e.g.,
invasion and angiogenesis.

Immune checkpoint blockade is the most developed
immunotherapy in clinical use (4), but its efficiency still
remains doubtful. We analyzed the expression levels of 14
important ICPs and found that the expression levels of most
ICPs were higher in the high-GASC group. Although this result
A

B

FIGURE 9 | Correlogram of GASC score, immune cells, and expression of ICP intercorrelation. (A) Correlogram of data in all glioma population. (B) Correlogram of
data in high-grade glioma population.
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suggested that the high-GASC group may have a more optimal
immunotherapy response, the results from the TIDE prediction
were puzzling because they showed a contrary tendency
(Figure S9). These contradictory results reflect the inner
complexity of glioma, and in response to this, further high-
quality studies of immunotherapy in glioma are required.
Frontiers in Oncology | www.frontiersin.org 13
McDonald et al. reported that deletion of DR3 (Tumor
Necrosis Factor Receptor Superfamily Members 25, TNFRSF25)
was found in oligodendroglioma (29). The results from Qian
et al.’s work suggested that suppression of CIITA (class II
transactivator) downregulates the expression of MHC class II
molecules in glioma (30). In the current study, we discovered
A
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F
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H

C

FIGURE 10 | Associations between GASCs and expression of ICPs. (A, C, E, G) Bar charts illustrating the differences of ICP’ expressions between high- and low-
GASC groups in all glioma population (A for TCGA and C for CGGA) and high-grade glioma population (E for TCGA and G for CGGA). (B, D, F, H) Forest plots of
univariate Cox regression analysis of ICP’ expressions in all glioma population (B for TCGA and D for CGGA) and high-grade glioma population (F for TCGA and
H for CGGA). ns: p > 0.05, *p ≤ 0.05, ***p ≤ 0.001, ****p ≤ 0.0001
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that the CNVs of DR3 (P < 0.001) and CIITA (p = 0.015) were
significantly higher in the high-GASC group (Figure S6E). The
glioma patients with amplified/deleted DR3 or amplified CIITA
had worse OS compared with wild-type glioma patients (Figures
S6F, G). These results indicate that the CNVs of DR3 and CIITA
may be potential prognostic indicators for glioma, and further
studies are expected to verify their efficiency.
Frontiers in Oncology | www.frontiersin.org 14
THY1 (CD90) is a surrogate marker for a variety of stem cells,
including glioblastoma stem cells (GSC) (31) and GASC (7).
Svensson et al. detected CD90- and CD90+ GASC subpopulations
by cell sorting and discovered that the CD90- subpopulation
exhibited greater tumor vascularization and immunosuppression
activity than the CD90+ subpopulation (32). Zhang et al. further
investigated these two subpopulations. They found that CD90high
A B

DC

FIGURE 11 | Methylation analysis of GASC markers and ICPs. (A) Box plots illustrating the differences in THY1, CD9, CD14, CD44, ITGAM and ACTA1 methylation
levels across high-GASC, low-GASC and normal groups. (B) Kaplan-Meier overall survival (OS) curves for samples in high- and low-methylation groups of THY1,
CD9, CD14, CD44, ITGAM and ACTA1. (C) Box plots illustrating the differences in Galectin-9, CD80, CD155 and LAG3 methylation levels across high-GASC, low-
GASC and normal groups. (D) Kaplan-Meier OS curves for samples in high- and low-methylation groups of Galectin-9, CD80, CD155 and LAG3.
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GASCs drove glioma progression via increasing proliferation,
migration, and adhesion. However, CD90low GASCs contributed
to glioma progression through the stimulation of vascular formation
via vascular endothelial cells (25). In the current work, we
discovered that the methylation levels were different among high-
GASC, low-GASC, and normal groups (Figure 11A), and the high
THY1 methylation group had better OS compared with the low
THY1 methylation group (p = 0.018; Figure 11B). These results
suggested for the first time that the methylation of THY1 could be a
potential prognostic indicator of glioma as well as a treatment target.

To create a comprehensive risk score, we included the
following features, produced from mRNA sequencing data, in
Frontiers in Oncology | www.frontiersin.org 15
the filtering process: GASC score, stemness score, mesenchymal-
EMT score, tumorigenic cytokine score, angiogenic activity
score, stromal cell scores, and immune cell scores. The results
showed that the risk score could be used to differentiate patients
with high or low risk (Figures 12C, D), and the risk score was an
independent prognostic indicator for glioma (Figure 12E). The
validation results from the CGGA validation dataset verified the
robustness of our nomogram model (Figure 12H). We also
compared the efficiency of the nomogram model with a
traditional prognostic indicator, IDH mutation status. The
AUCs for the nomogram model were better than those for
IDH mutation status in the training dataset (Figures 12G, I)
A

B

D

E F

G IH J

C

FIGURE 12 | Construction of the risk score system and establishment and validation of the nomogram survival model. (A, B) LASSO Cox regression analysis of
training dataset. (C, D) Kaplan-Meier overall survival (OS) curves for samples in high- and low-risk score groups (C for training dataset and D for validation dataset).
(E) Uni- and multi-variate Cox regression analysis for prognostic model. *Statistical significance. (F) The nomogram for predicting 1-, 3‐, or 5‐year OS. (G, H) Time-
dependent ROC curves of the nomogram prediction on the 1-, 3-, and 5-year survival rates (G for training dataset and H for validation dataset). (I, J) Time-
dependent ROC curves of the IDH mutation status prediction on the 1-, 3-, and 5-year survival rates (I for training dataset and J for validation dataset).
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and the validation dataset (Figures 12H, J). To verify the
credibility of this nomogram model, further high-quality
clinical studies are required.

There are limitations in our study. First, because of a lack of
public mRNA resources with proportions of GASCs, stromal
cells, and immune cells, we selected the ssGEAS algorithm to
compute these data, because it has been widely used with proven
reliability. Second, because this is a retrospective study, the
efficiency of our risk score and nomogram model needs to be
verified in further high-quality prospective cohorts. In addition,
our predicted results for immunotherapy response were
contradictory with the expression level of ICPs. Glioma,
particularly HGG, is characterized by remarkably high tumor
heterogeneity and an “immune-cold” phenotype, denoting an
immunosuppressive microenvironment. The GASC is an
important cell type in the microenvironment and might
influence immunotherapy responses. Based on previous
research, the overexpression of some ICPs on malignant cells
may increase the anti-tumor immune responses (33).
Nevertheless, although our data suggested that higher ICP
expression occurs in the high-GASC group, TIME prediction
revealed worse immunotherapy responses in the high-GASC
group. This contradiction may result from the inner
complexity of the glioma microenvironment. Further
prospective clinical trials to test immunotherapy for glioma
with the GASC proportion data are required to produce a
reliable conclusion regarding the relationship between GASCs
and immunotherapy responses.
CONCLUSION

We found potential mechanisms of GASCs in the glioma
microenvironment, particularly HGG, and we also discovered
that GASCs are positively correlated with the level of M2
macrophages and ICPs. The methylation of THY1 decreased in
the high-GASC group, which could be a prognostic indicator and
treatment target for glioma. We also developed a prognostic
nomogram for glioma. Further studies to verify these findings
and the performance of our model with large prospective cohorts
are warranted.
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Supplementary Figure 1 | Differential analysis of expressed genes.
(A, B) Heatmap of DEGs in all glioma population (A for TCGA and B for CGGA).
(C, D) Heatmap of DEGs in high-grade glioma population (C for TCGA and D for
CGGA).

Supplementary Figure 2 | Functional annotation of downregulated DEGs
between the high- and low-GASC groups. (A, B) GO analysis (A) and KEGG
pathway analysis (B) of down-regulated DEGs in all glioma population from TCGA
data. (C, D) GO analysis (C) and KEGG pathway analysis (D) of down-regulated
DEGs in all glioma population from CGGA data. (E, F) GO analysis (E) and KEGG
pathway analysis (F) of down-regulated DEGs in high-grade glioma population from
TCGA data. (G, H) GO analysis (G) and KEGG pathway analysis (H) of down-
regulated DEGs in high-grade glioma population from CGGA data.

Supplementary Figure 3 | Associations between GASCs and stromal cells in the
high-grade glioma population. (A, D) Bar chart illustrating the differences in xCELL
scores between high- and low-GASC groups (A for TCGA andD for CGGA). ns: p >
0.05, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. (B,E) Forest plot of
univariate Cox regression analysis of stromal cells (B for TCGA and E for CGGA).
(C,F) Correlogram of GASC score and stromal cells intercorrelation (C for TCGA
and F for CGGA).

Supplementary Figure 4 | Comparison of genomic alterations between the
high- and low-GASC groups in the TCGA dataset. (A, B) Differential copy number
variation analysis between high- (A) and low- (B) GASC groups. (C, D) Differential
somatic mutation analysis between high- (C) and low- (D) GASC groups.

Supplementary Figure 5 | Comparison of genomic alterations of GASC markers
between the high- and low-GASC groups in the TCGA dataset. (A, B) Differential
copy number variation analysis between high- (A) and low- (B) GASC groups.
(C, D) Differential somatic mutation analysis between high- (C) and low- (D) GASC
groups. (E) Correlations between GASC groups and somatic mutation of GASC
markers.

Supplementary Figure 6 | Comparison of genomic alterations of ICPs between
the high- and low-GASC groups in the TCGA dataset. (A, B) Differential copy
number variation analysis between high- (A) and low- (B) GASC groups.
(C, D) Differential somatic mutation analysis between high- (C) and low- (D) GASC
groups. (E) Correlations between GASC groups and somatic mutation of ICPs.
(F,G) Kaplan-Meier overall survival (OS) curves for samples of amplified, deleted and
wildtype DR3 groups (F) and CIITA groups (G).

Supplementary Figure 7 | Methylation analysis of GASC markers. (A) Box plots
illustrating the differences in CD34, ALCAM, CSPG4, ENG, GFAP, S100A4, NT5E,
PDGFRB, PECAM1 and PTPRC methylation levels across high-GASC, low-GASC
and normal groups.

Supplementary Figure 8 | Methylation analysis of immune checkpoints. (A) Box
plots illustrating the differences in PD-1, PD-L1, PD-L2, DR3, TL1A, CTLA-4, CD86,
TIM3 and CIITA methylation levels across high-GASC, low-GASC and normal
groups.

Supplementary Figure 9 | Predicted potential immunotherapy responses
between the high- and low-GASC groups. (A–D) Predicted potential
April 2021 | Volume 11 | Article 672928

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://www.cgga.org.cn/
https://www.frontiersin.org/articles/10.3389/fonc.2021.672928/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2021.672928/full#supplementary-material
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Cai et al. GASC in Glioma
immunotherapy responses of samples from all glioma population (A for TCGA and
B for CGGA) and high-grade glioma population (C for TCGA and D for CGGA).
(E) Correlation of GASC and Predicted immunotherapy responses. (F–I) Bar chart
Frontiers in Oncology | www.frontiersin.org 17
illustrating the differences in immune cell scores between responder and no
responder groups in all glioma population (F for TCGA and G for CGGA) and high-
grade glioma population (H for TCGA and I for CGGA).
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