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Abstract

Researchers often require customised variations of plasmids that are not commercially available. Here we demonstrate the
applicability and versatility of standard synthetic biological parts (biobricks) to build custom plasmids. For this purpose we
have built a collection of 52 parts that include multiple cloning sites (MCS) and common protein tags, protein reporters and
selection markers, amongst others. Importantly, most of the parts are designed in a format to allow fusions that maintain
the reading frame. We illustrate the collection by building several model contructs, including concatemers of protein
binding-site motifs, and a variety of plasmids for eukaryotic stable cloning and chromosomal insertion. For example, in 3
biobrick iterations, we make a cerulean-reporter plasmid for cloning fluorescent protein fusions. Furthermore, we use the
collection to implement a recombinase-mediated DNA insertion (RMDI), allowing chromosomal site-directed exchange of
genes. By making one recipient stable cell line, many standardised cell lines can subsequently be generated, by fluorescent
fusion-gene exchange. We propose that this biobrick collection may be distributed peer-to-peer as a stand-alone library, in
addition to its distribution through the Registry of Standard Biological Parts (http://partsregistry.org/).
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Introduction

The construction of specific plasmid DNA sequences is a

routine technique in molecular biology laboratories [1]. The most

widely used DNA sequences (for instance, a promoter followed by

a fluorescent protein, a multiple cloning site and a polyadenylation

signal) are easily found in commercially-available plasmids [2,3].

However, when requirements start to become more stringent,

multiple plasmid modifications are required and, although many

changes may be relatively simple to perform, multiple modifica-

tions may become time-consuming cloning challenges.

Complex, multi-factor plasmids have to be built frequently for the

applications of synthetic biology [4,5,6], often with the combina-

torial use of different DNA parts [7]. To simplify such types of

constructions an idempotent cloning system has recently been

developed by Tom Knight [8] (described in the BioBrick

Foundation Request for Comments #10, BBF RFC 10; http://

biobricks.org/). Briefly, this system uses a specific set of restriction

enzyme sites at the 39 and 59 ends of each DNA cassette (‘biobrick’),

such that a biobrick ‘A’ may be fused with a biobrick ‘B’ to produce

‘AB’. ‘AB’ contains an uncleavable ‘scar’ sequence between ‘A’ and

‘B’ and, importantly, the exact same set of restriction enzyme sites as

the initial biobricks, at the 39 and 59 ends. In other words, every

biobrick fusion product is itself a new biobrick and may even be used

iteratively for the assembly of concatemers (See Figure 1). Given the

physical idempotent characteristics of the system, biobricks may be

fused together in any combination of parts, with few restrictions in

the number of the biobricks, and no restrictions on the order (‘BA’

would be as simple to construct as ‘AB’).

The RFC 10 Biobrick format [8] is itself very useful and has

formed the core of engineering challenges such as the annual

International Genetically Engineered Machine (iGEM) competi-

tions [9], where students are asked to engineer systems using

biobricks. It is a well-documented system with a large and growing

collection of parts that use the prefix GAATTCGCGGCC-

GCTTCTAGAG (or GAATTCGCGGCCGCTTCTAG for

protein coding parts starting with ATG) and the suffix TAC-

TAGTAGCGGCCGCTGCAG. However, the original scheme

has certain limitations, such as the difficulty of fusing parts coding

for protein domains, since the fusion ‘scar’ changes the codon

reading frame from biobrick ‘A’ to biobrick ‘B’. Phillips and Silver

[10] resolved this issue by presenting a slight modification to the

initial design (removing the last G of the prefix and the first T of

the suffix thereby conserving the reading frame in the scar).

Special attention is required when preparing new parts in this

format (BBF RFC 23), since the removal of the last G of the prefix

means that a Dam methylation site may be formed if the part starts

with TC, which blocks restriction with Xba I. Since the scar

resulting from a RFC 23 fusion (ACTAGA) codes for threonine-

arginine, a chimeric protein ‘AB’ may be assembled from two

RFC 23 biobricks ‘A’ and B’. When preparing such RFC 23

protein fusions, users should be aware that the arginine from the

scar may be problematic since it is positively charged.

It is of interest to note that biobricks in the RFC 23 format may

still be assembled with biobricks in the RFC 10 format without

requiring new restriction enzymes. Although such a RFC 23-RFC

10 cross-fusion does not maintain the 6-bp scar required for the

maintenance of a codon frame, N-terminal fusions of RFC 23
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protein coding parts may still be performed as long as the

frameshift is corrected by an adaptor part. In addition, the RFC

23-RFC 10 cross-fusion may be useful for assemblies that do not

require the maintenance of a reading frame or a specific scar size,

such as linking non-coding biobricks (e.g. transcription factor

binding sites). We refer to this compatibility between RFC 23 and

RFC 10 as ‘assembly compatibility’, that should not be confused

with ‘RFC 23 compatibility’ that is reserved for fusion between

biobricks that maintain the reading frame. Further biobrick

formats (with only limited cross-compability) were later proposed

and are documented as BBF RFCs.

Engineering with the Biobrick system is usually accompanied

with an abstraction hierarchy perspective. With this perspective in

mind, one uses ‘DNA’ to design basic ‘parts’ that may then be

assembled into a single functional ‘device’ with a specific function.

Finally, several of these ‘devices’ may be put together to design a

synthetic ‘system’ with a high-level functionality. This hierarchy

facilitates synthetic engineering since, ideally, a researcher

working, for instance, at the ‘system’ level does not need to know

the specific details on how to engineer and build the ‘devices’ used

in that ‘system’.

Synthetic biologists are now in the process of developing and

characterizing basic ‘parts’ or part sets (‘devices’ [11]) that may be

used to engineer biological machines [12,13,14] and to model

them [15]. These parts are available from the Registry of Standard

Biological Parts (http://partsregistry.org/) which is supported by

the BioBricks Foundation (http://bbf.openwetware.org/).

Although the registry is available to any researcher, whether or

not they work in the field of synthetic biology, we believe that the

size of the registry, the existence of different biobrick formats (not

always compatible with each other), and the limited communica-

tion of this resource to non-synthetic biologists, may hamper the

evolution and distribution of biobricks. We therefore developed a

cloning tool that should be of interest outside the field of synthetic

biology; a biobrick toolkit for the construction of custom

eukaryotic expression plasmids, using frequently-used compo-

nents. We originally noted that many biobrick parts that one

would require for eukaryotic projects were apparently missing

Figure 1. The biobrick assembly principle [8,10]. (A) Each biobrick part has the same prefix and suffix, containing restriction enzyme sites. (B)
Following restriction digests, a two-insert ligation into the biobrick vector results in a biobrick fusion. (C) The new biobrick part regenerates the
original prefix and suffix, but contains an in-frame Thr-Arg scar in protein-coding fusions. (D) MS2 binding site concatemers (MS2 BS), built with
iterative biobrick assembly, from 1 to 12-copies (4 steps). M = marker (1 kb ladder). The upstream and downstream sequences between the primer
annealing sites and the biobricks contribute 312 bp, while each MS2 BS is 39 bp.
doi:10.1371/journal.pone.0023685.g001
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from the registry. These parts included: several multiple cloning

sites with different reading frames; an extensive range of reporter

proteins; eukaryotic selection markers; eukaryotic internal ribo-

somal entry sites; and protein epitope tags. Importantly, most of

these parts should be compatible with each other [10,16]. In

addition, the novel use of MCS biobricks facilitates the cloning of

DNA fragments of interest (e.g. open reading frames, promoters),

without having to first remove any internal cleavage sites of the

biobrick enzymes in order to render them ‘biobrick compatible’.

This work is intended to highlight the potential of the biobrick

system to construct custom plasmids for eukaryotic cell lines, for

both synthetic and non-synthetic biologists. Since many parts that

we consider important did not exist in the registry, we have built a

distribution of 9 previously existing and 43 new biobricks. We

demonstrate the utility of the new biobricks with some examples of

assemblies. In addition, we use the created library to establish a

gene-switching system, from tdTomato to EGFP expression, using

recombinase-mediated DNA insertion (RMDI). Finally, we

propose that this collection be distributed peer-to-peer as an

independent library, as well as being available from the registry,

and discuss some advantages in having this type of collection.

Materials and Methods

Preparation of parts
New parts were designed following the recommendations in

BBF RFC 23. Briefly, parts were formatted to contain the prefix

59-GAATTCGCGGCCGCTTCTAGA-39 and the suffix 59-

ACTAGTAGCGGCCGCTGCAG-39. Construction of the parts

was done using 1) oligonucleotide inserts, 2) PCR with

oligonucleotide-directed mutagenesis when required [1] or 3)

synthesized directly by GenScript Corporation (Piscataway, NJ).

Importantly, the part sequences do not start with a TC since this

forms a Dam methylase site (GATC) and digestion with XbaI can

be inhibited. The Biobrick sequences are available at the Registry

of Standard Biological Parts website (http://partsregistry.org/), at

GenBank (http://www.ncbi.nlm.nih.gov/genbank/) and in the

Supporting Information S1.

Biobrick assemblies
Assemblies were performed similarly to the method presented in

the Biobrick assembly kit from New England Biolabs (NEB; Ref.

E0546S) and the Gingko Bioworks manual (http://ginkgobio-

works.com/support/). Alternatively, one may use the adapted

streamlined protocol we have previously reported [14].

Briefly, 500 ng of the upstream part are digested with 20000 U

of EcoRI (NEB) and 10000 U of SpeI (NEB) in NEB EcoRI

buffer. At the same time, 500 ng of the downstream part are

digested with 20000 U of XbaI (NEB) and 20000 U of PstI (NEB)

in NEB Buffer 3. Finally and concomitantly, 500 ng of the

destination plasmid are digested with 20000 U of EcoRI and

20000 U of PstI in NEB EcoRI Buffer. Digestions are performed

at 37uC for 1 hour followed by heat inactivation at 80uC for

20 minutes. Note that the recipient pSB1A* plasmids in the library

contain a ccdB death cassette that is removed in the digestion.

Furthermore, each assembly should contain an antibiotic resis-

tance gene that is not present in either the upstream or the

downstream part (e.g. if the upstream part is in the pSB1AK3

plasmid, containing ampicillin and kanamycin resistance, and the

downstream part is in the pSB1AC3 plasmid, containing

ampicillin and chloramphenicol resistance, the destination plasmid

should be the pSB1AT3 plasmid since it contains the tetracycline

resistance not present in the other plasmids).

Since the destination plasmid contains the ccdB death cassette, a

two-way ligation of the fragments can be done using the Roche

rapid DNA ligation kit, according to the manufacturer’s

instructions, without need for gel isolation or other purifications.

Briefly, 4 ml of the upstream part digestion, 4 ml of the downstream

part digestion and 2 ml of the destination plasmid digestion are

used. 2 ml of the ligation product are transformed in one shot

competent Top10 E. coli (Invitrogen), according to the manufac-

turer’s instructions, and are subsequently plated onto LB agar

plates. The plates contain antibiotic for the resistance provided by

the destination plasmid (in the example above one should use LB

agar plates containing tetracycline) and are incubated overnight.

PCRs of Biobricks (from plasmid DNA or bacterial colony) were

performed using NEB Taq polymerase, using the manufacturer’s

instructions, and using the standard sequencing primers

BBa_G00100 (59-TGCCACCTGACGTCTAAGAA-39) and

BBa_G00101 (59-ATTACCGCCTTTGAGTGAGC-39) with 20

cycles at 55uC annealing temperature, with appropriate denatur-

ation and elongation steps. PCR products were analyzed on

agarose gels and positive colonies were grown overnight for DNA

isolation using the Qiagen spin miniprep kit according to the

manufacturer’s instructions. All clones were verified by DNA

sequencing.

Cell culture and transfection
HEK293 cells were purchased from ATCC. Cells were

propagated in Dulbecco’s Modified Eagle Medium (Gibco)

supplemented with 10% fetal bovine serum (Gibco) and 1%

penicillin-streptomycin (Gibco). Transfection of the cells was

performed with lipofectamine 2000 (Invitrogen), according to the

manufacturer’s instructions, in 6-well plates: cells were incubated

for 4 hours with 4 mg of DNA and 10 ml of lipofectamine reagent.

Stable clones were prepared by selection with 0.5 mg/ml G418

(Sigma).

Cloning small Espin into the MCS of a custom-made
plasmid

Rat small Espin (sEspin) [17] was amplified by PCR, from a

plasmid kindly provided by the group of Hernán López-Schier,

using the primers sEspinF (59-AAGAGGGATCCATGAACT-

CCC-39) and sEspinR (59-CTTCTTACCGGTTTACTTAGG-

GATCTCCCCCTTC-39) at 55uC annealing temperature. The

PCR product was cloned into the Biobrick custom plasmid using

the restriction enzymes BamHI and AgeI.

Microscopy
After transfection, cells were allowed to recover overnight and

were dispensed into glass bottom culture dishes (MatTek). 24 h

later, the medium was replaced with PBS for observation under

the microscope.

Recombinase-mediated DNA inclusion plasmid
preparation

The plasmid used for the creation of the stable clone expressing

tdTomato was prepared using an assembly of the biobricks

between the CMV promoter and polyadenylation (pA) signal. The

assembled plasmid was digested with XbaI and PstI and cloned

into pEGFP-C1 digested with NheI and PstI, thereby removing

the EGFP sequence and providing the CMV upstream and pA

downstream of the biobrick insert. Neomycin resistance used for

selection is provided by the pEGFP-C1 plasmid backbone under

the expression of the SV40 early promoter. The EGFP plasmid for

inclusion was prepared using the biobrick collection.

Biobrick Library for Custom Eukaryotic Plasmids
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Table 1. List of biobrick parts for eukaryotic plasmids.

Group Nickname Description Registry GenBank

Backbones pSB1A3* High copy number plasmid carrying ampicillin resistance. pSB1A3

pSB1AK3* High copy number plasmid carrying ampicillin and kanamycin resistance. pSB1AK3

pSB1AC3* High copy number plasmid carrying ampicillin and chloramphenicol resistance. pSB1AC3

pSB1AT3* High copy number plasmid carrying ampicillin and tetracyclin resistance. pSB1AT3

Construction Kozak Simple Kozak sequence protein head domain [26] BBa_J96000 JN204869

Stop Tail domain with stop codons in all three frames BBa_J96001 JN204870

CMV* Cytomegalovirus immediate-early promoter BBa_I712004

SV40pA* Eukaryotic – derived from SV40 early poly A signal sequence BBa_J52016

MCS1a Multiple cloning site version 1, first frame BBa_J96002 JN204871

MCS1b Multiple cloning site version 1, second frame BBa_J96003 JN204872

MCS1c Multiple cloning site version 1, third frame BBa_J96004 JN204873

MCS2a Multiple cloning site version 2, first frame BBa_J96005 JN204874

MCS2b Multiple cloning site version 2, second frame BBa_J96006 JN204875

MCS2c Multiple cloning site version 2, third frame BBa_J96007 JN204876

MCS3a Multiple cloning site version 3, first frame BBa_J96008 JN204877

MCS3b Multiple cloning site version 3, second frame BBa_J96009 JN204878

MCS3c Multiple cloning site version 3, third frame BBa_J96010 JN204879

Selection FNeomycin Resistance to G418/neomycin gene [1] BBa_J96011 JN204880

FPuromycin Resistance to puromycin gene [1] BBa_J96012 JN204881

FHSTK Herpes simplex thymidine kinase conferring toxicity to ganciclovir [27] BBa_J96013 JN204882

Reporters tdTomato Engineered red fluorescent protein [28] BBa_J96029 JN204883

EGFP Engineered green fluorescent protein [29] BBa_J96031 JN204884

Cerulean Engineered cyan fluorescent protein [19] BBa_J96032 JN204885

EBFP2 Engineered blue fluorescent protein [30] BBa_J96033 JN204886

mCherry* Engineered red fluorescent protein [28] BBa_J63000

RLuciferase Renilla luciferase gene [31] BBa_J96034 JN204887

Tags Flag FLAG affinity tag [32] BBa_J96035 JN204888

HA HA affinity tag [33] BBa_J96036 JN204889

His His affinity tag [34] BBa_J96037 JN204890

StrepII Strep II affinity tag [35] BBa_J96038 JN204891

Localization SP Membrane or secretion: IgK leader peptide with Kozak [36] BBa_J96014 JN204892

TMD PDGF Receptor Transmembrane Domain [36] BBa_J96015 JN204893

Myristoylation Myristoylation signal sequence with Kozak [37] BBa_J96016 JN204894

NLS* Nuclear Localization Signal from SV40 [38] BBa_J63008

Recombination Loxp Lox p sequence [39] BBa_J96017 JN204895

Lox66 Directional lox sequence compatible with lox71 [40] BBa_J96018 JN204896

Lox71 Directional lox sequence compatible with lox66 [40] BBa_J96019 JN204897

Cistron IRES Internal ribosomal entry site [41] BBa_J96040 JN204898

P2A Self cleaving 2A peptide [42] BBa_J96041 JN204899

T2A Self cleaving 2A peptide [42] BBa_J96042 JN204900

PS3 Short DNA sequence for ribosome recruitment (mini-IRES) [43] BBa_J96043 JN204901

PS4 Short DNA sequence for ribosome recruitment (mini-IRES) [43] BBa_J96044 JN204902

Others Linker 24 aa flexible linker, rich in Gly and Ser. BBa_J96020 JN204903

Spacer1* Randomized DNA spacer BBa_J96021

Spacer2 Randomized DNA spacer BBa_J96022 JN204904

MS2 MS2 phage coat domain binding to RNA at the MS2 binding site sequence [44] BBa_J96023 JN204905

MS2BS MS2 phage coat binding site sequence [44] BBa_J96024 JN204906

LambdaN Lambda N peptide sequence binding to RNA at the boxB binding site [45] BBa_J96025 JN204907

BoxB Lambda N peptide binding site sequence [45] BBa_J96026 JN204908

TEVSite TEV tobacco etch virus protease cleavage site [46] BBa_J96027 JN204909

Biobrick Library for Custom Eukaryotic Plasmids
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Flow cytometry
Flow-assisted cell sorting (FACS) analysis was performed with

FACSCanto (BD) and cell separation with FACSARIA II (BD).

Results

Library
To create a distribution for the construction of custom plasmids,

we have put together a set of 9 existing and 43 new biobricks and

plasmid backbones. We believe that these should be useful for the

creation of custom-made plasmids for use in eukaryotic cell lines

(see Table 1). Importantly, a set of multiple cloning site (MCS)

biobricks, covering all three different frames has been built,

essential for the combination of the biobrick assembly strategy

with classical cloning strategies (Fig. 2).

To facilitate flexible construction of custom-made plasmids, all

biobricks are in the same format, containing the same prefix and

suffix, as described in the Methods section. Biobricks may be

divided into: (i) Non-coding (not intended for containing coding

sequences; lengths are often not in multiples of three, or have a

stop codons in the sequence). (ii) Head domains (that contain a

Kozak sequence and are used to start the translation of the protein

of interest). (iii) Internal domains (the coding regions for the

desired domains (e.g. reporter proteins). (iv) Tail domains

(containing the stop codon used to stop the translation of the

protein of interest). (v) Translation units (containing the Kozak

sequence, an internal domain and a stop codon). Table 2 indicates

whether a given biobrick maintains the codon frame, whether it

contains a Kozak sequence or a stop codon, and shows the

restriction sites present in each biobrick or plasmid backbone. In

this table we explicitly present those elements that may not be used

for biofusion assembly (highlighted in bold).

Whereas the biobrick assembly workflow will work for all parts

in the collection, for classical cloning it is up to the user to check

which biobricks will be used to assemble a plasmid. For example,

the user must check whether a given restriction enzyme site is

present only once (e.g. in the MCS site region) or whether it is not

unique and is also found in another biobrick or plasmid backbone.

Constructing simple assemblies
The biobrick assembly principle is inherently iterative, allowing

longer and longer poly-biobrick constructs to be built in a stepwise

fashion (Fig. 1). This is particularly useful for making related

constructs with variable copies of a motif, such as a transcription

factor binding sites. To illustrate this, we show how the binding

sites of the bacterial MS2 phage coat protein, which can be used to

repress mRNA translation in synthetic biology applications [18],

can be conveniently concatenated with biobrick assembly (Fig. 1D).

One of the simplest expression plasmids that one might

construct using the distribution is a plasmid such as that presented

in Figure 3A; a simple EGFP expression plasmid, used to label

cells, as may be observed in Figure 3B. A user will typically want to

create a translation unit and insert it under a promoter with a

polyadenylation sequence in the end. The translation unit will

Group Nickname Description Registry GenBank

d1PEST Mouse ornithine decarboxylase PEST sequence 1 hr half-life [47] BBa_96046 JN204910

d2PEST Mouse ornithine decarboxylase PEST sequence 2 hr half-life [47] BBa_96047 JN204911

Asterisks (*) indicate previously existing Biobricks. ‘‘Registry’’ refers to the Registry reference, whereas ‘‘GenBank’’ refers to the GenBank accession number.
doi:10.1371/journal.pone.0023685.t001

Table 1. Cont.

Figure 2. Multiple Cloning Site (MCS) biobricks. The uniqueness of each cloning site is dependent on whether the remaining biobricks and
backbones used for the custom plasmid also contain the restriction site. Blunt end restriction enzymes are represented in italic. These biobricks link
classical cloning to the biobrick system.
doi:10.1371/journal.pone.0023685.g002
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Table 2. Characteristics of the collection plasmids.

Name Restriction Sites Kozak Stop Backbone Size(bp) 3n Well

Backbones pSB1A3 - - - 2157* - 1A

pSB1AK3 ClaI, HindIII, SmaI, XhoI - - - 3189* - 1B

pSB1AC3 SacI, XhoI - - - 3055* - 1C

pSB1AT3 BamHI, ClaI, HindIII, SalI, SphI, XhoI - - - 3446* - 1D

Construction Kozak YES N AK 12 YES 1E

Stop N YES AK 11 N 1F

CMV SacI N YES AK 654 YES 1G

SV40pA SphI N YES AK 228 YES 1H

MCS1a ApaI, XhoI, BamHI, HindIII N N AK 32 N 2A

MCS1b ApaI, XhoI, BamHI, HindIII N N AT 33 YES 2B

MCS1c ApaI, XhoI, BamHI, HindIII N N AT 34 N 2C

MCS2a BglII, SacI, KpnI, AgeI N N AT 30 YES 2D

MCS2b BglII, SacI, KpnI, AgeI N N AT 31 N 2E

MCS2c BglII, SacI, KpnI, AgeI N N AT 32 N 2F

MCS3a BsrGI, StuI, SalI, SphI, ClaI N N AC 39 YES 2G

MCS3b BsrGI, StuI, SalI, SphI, ClaI N N AC 40 N 2H

MCS3c BsrGI, StuI, SalI, SphI, ClaI N YES AC 41 N 3A

Selection FNeomycin SphI YES YES AK 801 YES 4A

FPuromycin StuI YES YES AC 606 YES 4B

FHSTK ApaI, SmaI, SphI YES YES AC 1137 YES 4C

Reporters tdTomato N N AK 1425 YES 5A

EGFP BsrGI N N AC 714 YES 5B

mCerulean BsrGI, ClaI N N AC 714 YES 5C

EBFP2 N N AC 714 YES 5D

mCherry N N A 705 YES 5E

RLuciferase BsrGI, SphI N N AK 930 YES 5F

Tags Flag N N AC 24 YES 6A

HA N N AC 27 YES 6B

His N N AC 18 YES 6C

StrepII N N AC 24 YES 6D

Localization SP YES N AC 69 YES 7A

TMD N N AC 147 YES 7B

Myrist YES N AC 48 YES 7C

NLS N N A 21 YES 7D

Recombination Loxp N N AC 36 YES 8A

Lox66 N N AC 36 YES 8B

Lox71 N N AC 36 YES 8C

Cistron IRES ApaI, HindIII, KpnI N YES AC 504 YES 9A

P2A SmaI N N AC 42 YES 9B

T2A N N AC 54 YES 9C

PS3 BsrGI N YES AC 50 N 9D

PS4 N YES AC 48 YES 9E

Others Linker N N AC 72 YES 10A

Spacer1 N YES A 72 YES 10B

Spacer2 N N AK 70 N 10C

MS2 BglII, SacI, SalI N N AK 387 YES 10D

MS2BS SalI N N AC 39 YES 10E

LambdaN N N AC 66 YES 10F

BoxB ApaI N N AC 21 YES 10G

TEVSite N N AC 21 YES 10H

Biobrick Library for Custom Eukaryotic Plasmids
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typically be composed of a head domain (in this case the Kozak

sequence alone) followed by one or more internal domains (in this

example the EGFP reporter coding sequence) and finished with a

tail domain (here the simple stop codon biobrick).

Constructing a MCS plasmid for classical cloning
Although many commercially-available plasmids contain MCSs

to allow fusing proteins of interest to fluorescent proteins, many

combinations of colours, N-C orientations, stable cell-line selection

genes or half-life modifications are simply not available. To

illustrate this we have created a more complex plasmid, containing

two cistrons, that is not commercially-available. In the first cistron,

we assembled the blue fluorescent protein cerulean [19] before a

complex MCS (assembled using MCS1 and MCS2). We

subsequently cloned an actin-binding protein, rat sEspin [17],

using the BamHI and AgeI restriction sites (Figure 3C). By

fluorescent microscopy, we observed Cerulean-sEspin localization

in actin bundle stress fiber-like structures [17] (Fig. 3D). In the

second cistron we included the neomycin resistance gene for

positive selection. The example shown is just one of many

customized cloning vectors that can be generated with this

platform, and requires just three biobrick cloning iterations (first

round: CMV-Kozak, Cerulean-MCS1a, MCS2a-IRES, Neomy-

cin-pA; second round: CMV-Kozak-Cerulean-MCS1a, MCS2a-

IRES-Neomycin-pA; third round: CMV-Kozak-Cerulean-

MCS1a-MCS2a-IRES-Neomycin-pA). The use of MCSs links

the biobrick format to classical cloning strategies, which should

increase their appeal to researchers who simply wish to ‘cut and

paste’ their DNA cassettes with standard restriction enzymes.

Recombinase-Mediated DNA Insertion
The collection presented here may be used to obtain stable

cloning systems, for chromosomal integration in eukaryotic cells,

such as Recombinase-Mediated DNA Insertion (RMDI) [20]. We

implemented RMDI by establishing a stable cell line expressing

tdTomato, and containing an heteromeric lox site in its coding

sequence (lox66 [21]; see scheme in Figure 4A). Through Cre-

mediated recombination we inserted DNA from a donor plasmid,

containing EGFP preceded by a compatible heteromeric site

(lox71). Thus, red expression was converted to green expression.

Figure 3. Examples of biobrick assemblies. (A) Structure of a classical plasmid for EGFP expression using 5 biobricks. (B) Structure of bicistronic
custom plasmid. 8 biobricks are linked together to make a construct for C-terminal fusions to the blue fluorescent protein, cerulean, using classical
restriction enzyme multiple cloning sites (MCS). For illustration, the actin-bundling binding protein sEspin is cloned into the MCS, resulting in a fusion
with cerulean. (C) Fluorescence microscopy image of the EGFP construct in panel A, after transient transfection into HEK293 cells. (D) A fluorescence
microscopy image of the Cerulean-sEspin fusion construct in panel B, allows the visualisation of stress fiber-like structures in a HEK293T cell. Scale
bars are indicated below each image.
doi:10.1371/journal.pone.0023685.g003

Name Restriction Sites Kozak Stop Backbone Size(bp) 3n Well

d1PEST N YES AT 129 YES 11A

d2PEST N YES AT 129 YES 11B

Characteristics of the collection plasmids. In bold we present all plasmids that, when fused, do not allow for a continuous coding sequence (either because they contain
a stop signal or because the length in bp is not a multiple of 3: ‘‘3n’’). A (ampicillin), C (chloramphenicol), K (kanamycin) and T (tetracycline) indicate the resistances
provided by each backbone. The position of samples in the distribution is indicated by ‘‘Well’’. Asterisks (*) indicate that the presented size refers to the plasmid size
instead of the biobrick size.
doi:10.1371/journal.pone.0023685.t002

Table 2. Cont.
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Since the EGFP plasmid did not contain a promoter, cells

should express EGFP alone only if inserted at the correct RMDI

site. Expression from random insertions next to genomic

promoters (expected to be rare events) would be associated with

both green and red expression. However, in the early stages after

transfection, even correctly recombined cells would be expected to

have some residual red expression, until the levels of tdTomato

were degraded or diluted by cell division.

Indeed, after three days we observed a cell population

expressing both EGFP and tdTomato by flow cytometry (0.23%

for RMDI when using both the EGFP plasmid and Cre versus

0.08% for random insertion in the control with the EGFP plasmid

without Cre; Fig. 4B and C). Thus, there appeared to be some

Cre-induced increase in GFP fluorescence, but it was not clear

whether the effects were site-specific or due to background

fluorescence. Therefore, to investigate whether the tdTomato

levels would subsequently fall, indicating correct RMDI, we sorted

the EGFP-positive population in Figure 4C, grew them to

confluency and re-analysed the final population. We thus obtained

a population of cells where RMDI had indeed occurred, with high

levels of EGFP and low levels of tdTomato, similar to non-

fluorescent controls (20% green-only cells; Fig. 4D).

When considering only the EGFP-positive population (Q2+Q4)

we note a marked shift in the Q4 population (8% of Q2+Q4

before sorting to 83% of Q2+Q4 after sorting and regrowth). This

suggests that the insertion of the EGFP plasmid occurred at the

intended lox site, thereby disrupting tdTomato, but that extra time

was required for tdTomato levels to fall, via dilution and

degradation, during regrowth of the sorted cells.

The 17% of Q2+Q4 found in Q2 is an EGFP-tdTomato

double-positive population (4% of the total cell population;

Fig. 4D), likely arising from cells containing multiple chromosomal

copies of the initial tdTomato construct: here recombination

occurred in one or more instances, but not in every copy. Random

integrations of GFP near promoter regions are likely to be rare but

may also contribute to this population.

We also observed tdTomato-positive EGFP-negative (32%) and

tdTomato-EGFP double-negative (45%) populations. These are

likely arising from cells that were unmodified and yet were carried-

through the EGFP cell sorting step (false positives) or from cells

that downregulated the CMV promoter [22].

Discussion

In this work, we have created a distribution of DNA fragments

compatible with the Standard Registry of Biological Parts [8]. This

distribution is intended for the specific use of creating custom-

made plasmids, with a focus on use in eukaryotic cell lines,

particularly because many previous parts have focused on

prokaryotic components. We have therefore constructed biobricks

for elements that are routinely used in plasmids for transfection in

eukaryotic cell lines. Using these elements, we provide three

examples of applications of this system: the assembly of sequence

motif concatemers; the assembly of vectors for transient and stable

Figure 4. Recombinase-mediated DNA insertion with biobricks. (A) Schematic view of Cre-mediated recombination between lox66 and
lox71, resulting in the insertion of EGFP and creating a mutated lox site (loxM) and a loxP site. This prevents the original tdTomato from being
expressed while allowing EGFP expression. (B, C and D) Flow cytometry analysis of a stable cell line expressing tdTomato, with various recombinase or
cell sorting treatments. (B) The untreated cell line (2Cre) contains mainly red-positive cells (72%). (C) Upon recombinase treatment (+Cre), the
amount of green cells increases in quadrants 2 and 4 (Q2, Q4). (D) By sorting the green cells (Q2 and Q4 in the previous panel), using flow cytometry
(+Sort), and growing to confluency, the resulting cells are enriched for the newly-generated green cells (20%; Q4).
doi:10.1371/journal.pone.0023685.g004
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transfection; and a Cre-based Recombinase-Mediated DNA

Insertion.

Although the present work makes use of existing concepts, such

as the standardization of DNA parts [23] and classical cloning for

expression in eukaryotic cell lines [1], the construction of the

required elements into one collection and the combination of both

cloning concepts makes this method a distinct new resource for

preparing eukaryotic contructs. To provide this tool to users, we

propose that the collection presented here be available as a stand-

alone biobrick distribution exchanged in a peer-to-peer fashion, in

addition to its availability through the Registry of Standard

Biological Parts (http://partsregistry.org/).

A researcher may request access to the Registry to obtain a large

collection of biobricks which are a valuable resource, especially to

synthetic biologists. However, the size of the Registry database

may be detrimental in some instances, especially for sporadic

users. One example of this is the impossibility - at the moment - to

search the registry database for biobricks in a specific format. In

fact, special care must be taken when using biobricks from the

registry since it is not always clear whether two internal protein

domain biobricks may be fused in frame, because of the different

biobrick formats [10,16]. This is in part due to the definition of the

registry database of biobricks as being ‘compatible’ with a given

format when meaning they may be assembled together even if the

coding frame is not maintained, whereas other users may consider

‘compatibility’ as an indication that the fusion conserves the codon

frame.

In contrast, RFC 23 compatibility in the small collection

presented here – in the sense of codon reading frame conservation

– is ensured except where otherwise explicitly stated. Another

advantage of having an independent small distribution for a

specific function is the possibility to exchange it in 96-well plates

and to be sure that one is using sequence-verified components. For

example, when sequence-verifying the registry, certain discrepan-

cies have been found [24]. The bacteria containing the plasmids

can be grown and shipped in wells filled with agar medium,

allowing direct sharing between peers, without need for advanced

robotics or pipetting systems.

We believe that other similar biobrick libraries should be

created to be self-contained. That is, all parts in such libraries

should be compatible and sufficient to be used for a specific

function. For instance one could envisage kinase-phosphatase or

signalling cascade libraries; transcription factor libraries; metabolic

enzyme libraries. Such a library-based form of distribution may be

one of several solutions for the growing size of the Registry that

may rapidly reach a limit in the cost-efficiency of its own

distribution (the registry is .13 000 parts and growing [25]).

Ultimately, we hope to stimulate debate in this growing open

standard for biological engineering.

Supporting Information

Supporting Information S1 FASTA DNA sequences of the
Biobrick Collection. Prefix and Suffix are presented in capitals.

(DOC)
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