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HIV antibody (Ab) functions capable of preventing mucosal cell-free or cell-to-cell HIV trans-
mission are critical for the development of effective prophylactic and therapeutic vaccines.
In addition to CD4+T cells, other potential HIV-target cell types including antigen-presenting
cells (APCs) (dendritic cells, macrophages) residing at mucosal sites are infected. More-
over, the interactions between APCs and HIV lead to HIV cell-to-cell transmission. Recently
discovered broadly neutralizing antibodies (NAbs) are able to neutralize a broad spectrum
of HIV strains, inhibit cell-to-cell transfer, and efficiently protect from infection in the experi-
mentally challenged macaque model. However, the 31% protection observed in the RV144
vaccine trial in the absence of detectable NAbs in blood samples pointed to the possible role
of additional Ab inhibitory functions. Increasing evidence suggests that IgG Fcγ receptor
(FcγR)-mediated inhibition of Abs present at the mucosal site may play a role in protec-
tion against HIV mucosal transmission. Moreover, mucosal IgA Abs may be determinant
in protection against HIV sexual transmission. Therefore, defining Ab inhibitory functions
that could lead to protection is critical for further HIV vaccine design. Here, we review dif-
ferent inhibitory properties of HIV-specific Abs and discuss their potential role in protection
against HIV sexual transmission.

Keywords: HIV, mucosal HIV vaccine, cell-to-cell transfer, neutralizing antibodies, non-neutralizing inhibitory
antibodies, FcγR, antigen-presenting cells, ADCC

INTRODUCTION
Sexual transmission is currently the major route of HIV infection
worldwide. In more than 80% of newly diagnosed cases of HIV-1
infection, the patients become infected during sexual intercourse
(1). This route of infection can be prevented by IgG neutralizing
antibodies (NAbs) and secretory IgA (2, 3). Recently discovered
potent and broadly NAbs (bNAbs) are able to neutralize a broad
spectrum of cell-free and cell-associated HIV strains (4–13). These
antibodies (Abs) have also been shown to efficiently protect non-
human primates (NHP) and humanized mice from experimental
challenge (14–20). However, bNAbs display very specific charac-
teristics and are extremely difficult to induce since only 10–30% of
patients develop such Abs (21–25) and attempts to induce them by
vaccination have failed. bNAbs are characterized by uncommonly
long complementarity-determining loops and extensive somatic
hypermutation, suggesting the need for a long maturation process,
which makes their induction by vaccination extremely difficult.

Interestingly, the limited 31% protection observed in the RV144
vaccine trial in the absence of detectable NAbs in plasma/serum
specimens pointed to a possible role of additional Ab inhibitory
functions in this protection (26, 27) and defining these addi-
tional functions is therefore critical. Increasing evidence suggests
that IgG Fcγ receptor (FcγR)-mediated inhibition of Abs, lead-
ing to phagocytosis or antibody-dependent cellular cytotoxicity
(ADCC), plays a role in protection. These FcγRs are expressed on
various antigen-presenting cells (APCs) and natural killer (NK)
cells present at the mucosal site, suggesting that Fc-mediated
inhibitory functions may contribute to the blockage of mucosal
transmission. These cells may play a decisive role during sexual
transmission since they have been proposed to be the first HIV

targets at the mucosal site (28–30). Evidence from in vivo studies
showed that HIV-specific Abs displaying Fc-mediated inhibition
in the absence of neutralizing activity is able to decrease the viral
load after experimental vaginal challenge in the macaque model
(31, 32). Besides, various Ab inhibitory functions at the mucosal
site such as aggregation, complement inhibition, inhibition of HIV
transfer, and inhibition by induction of antiviral cytokines and
chemokines may also contribute to HIV protection. In addition
to the induction of NAbs, new vaccination strategies based on
such Ab activities, should be considered. In the present review,
HIV inhibition by Abs based on these various potential inhibitory
functions will be discussed, as well as its possible contribution to
the development of new vaccination strategies.

HIV-1 TRANSMISSION THROUGH MUCOSAL TISSUES
Very little is known about how HIV infects and disseminates
through mucosal tissues. The selection of transmitted/founder
(T/F) virus occurs at the mucosal portal of HIV entry (33–
38). Mucosal sites contain a variety of immune cells targeted by
HIV, i.e., APCs comprising various types of dendritic cells (DCs),
macrophages, NK cells, and CD4 T lymphocytes (28–30, 39–43)
(Figure 1). However, the exact mechanism by which viral particles
migrate through the epithelial barrier remains unclear. Various
modes of infection have been proposed, which include transfer
through epithelial cells and intestinal epithelium, transport of
HIV via DCs present at mucosal surfaces, and direct infection
of resident CD4 T cells (41, 44–48) (Figure 1). Apart from direct
infection of immune cells by cell-free virus, cell-to-cell transmis-
sion has been suggested to play a major role in HIV propagation
and dissemination in vivo. Spread of HIV infection by cell-to-cell
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FIGURE 1 | Different HIV-1 antibody activities in mucosal tissues.
Infectious HIV-1 particles can cross a multi-cellular layer of stratified
squamous epithelial cells in genital mucosal tissues. Both cell-free and
cell-associated HIV-1 virions infect host cells. Langerhans cells transport the
virus into the sub-epithelium and mucosal lesions may provide an accessible
pathway for HIV-1. In the sub-epithelium, in addition to target CD4+ T cells,
other potential HIV-target cell types including myeloid dendritic cells (DCs)
and macrophages are infected either by cell-free virions or by cell-associated
virions. Mucosal HIV-specific IgA (IgA, in green) can bind and neutralize
cell-free virus at mucosal surfaces. Adaptive immune responses such as
HIV-1-specific IgG neutralizing antibodies (NAbs, in red) are important for

preventing HIV-1 cell-free infection. Only NAbs are able to inhibit HIV infection
of CD4 T lymphocytes while both NAbs and FcγR-mediated inhibitory Abs (in
blue) help to inhibit the spread of infection via cell-to-cell transmission route.
Prevention of HIV-1 infection and killing of virus-producing cells by
Ab-dependent mechanisms, especially antibody-dependent cellular
cytotoxicity (ADCC) via binding of Fc receptors presented on the surface of
innate immune cells such as natural killer (NK) cells, monocytes, DCs, or
macrophages, takes place by inhibiting viral replication and diminishing viral
reservoirs in vivo. Moreover, inhibitory NAbs directed to cellular target
epitopes, such as CCR5 or other HIV-receptor/co-receptor structures, could
provide additional targets for the rational design of novel vaccine candidates.

transmission has been found to be 100- to 1000-fold more effi-
cient than infection by cell-free virions (49–54). At the mucosal
level, in addition to CD4 T cells many cells are targeted by direct
cell-free or cell-associated HIV-1 and the inhibition of these multi-
ple routes of infection involve numerous immunological defenses
(55), such as secretory IgA aggregation, Fc-mediated inhibition,
neutralization of CD4 T cell infection, lysis of infected cells by
NK cells, phagocytosis after antigen presentation, and inhibition
following cytokine and chemokine production (Figure 1). For
example, HIV-1 trapped by DCs can be inhibited by Fc-mediated
inhibitory Abs, whereas inhibition of HIV-1 transfer from DCs
to T cells will involve potent HIV NAbs (56). Therefore, in addi-
tion to neutralization of HIV-1-infected CD4 T cells by specific
bNAbs, numerous additional inhibitory pathways, depending on

the amount and type of HIV-1 and on the type of cells in the
mucosa, may participate in HIV-1 inhibition and could decrease
the concentration of NAbs necessary for protection.

MUCOSAL B-CELL RESPONSES
A major defensive mechanism from the mucosal immune system
involves local production and secretion of IgG and dimeric or mul-
timeric IgA from B-cells (57–60). The initial immune stimulation
occurs mainly in mucosa-associated lymphoid tissues, particularly
Peyer’s patches of the distal ileum and other parts of gut-associated
lymphoid tissues (61, 62). From these inductive sites the activated
B-cells reach peripheral blood by migrating through lymph and
draining lymph nodes and subsequently extravagate at secretory
effector sites on a competitive basis depending on complementary
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FIGURE 2 | Model representation of HIV-1 envelope glycoprotein
structure and epitopes of broadly neutralizing antibodies. The surface
receptor binding subunit gp120 and the fusion-mediating transmembrane
subunit gp41 make up the functional HIV-1 envelope glycoproteins. The
targets of broadly neutralizing antibodies (bNAbs) can be divided into several

groups: (1) IgG anti-CD4-binding site, (2) IgG anti-V1V2 site, (3) IgG
anti-N -linked glycan V3 site, and (4) IgG anti-gp41 membrane proximal
external region (MPER). The IgG anti-distinct conformational epitope present
on the envelope trimer, remains to be determined (adapted from Dr. Béatrice
Labrosse).

adhesion molecules and chemokine–receptor pairs (61, 63). In
addition, B-cells with “innate-like” functions including B-1 cells
are enriched in mucosal tissues and marginal zone B-cells (64).
These B-cells produce natural Abs that recognize conserved fea-
tures of bacterial carbohydrates and phospholipids, that generate
a first line of protection through the early production of low-
affinity IgM in response to bacteria (62, 64–66). Mucosal DCs
support B-cell activation and several factors in mucosal tissues,
including both T cell-dependent and T cell-independent factors
have been show to favor B-cell immunoglobulin class-switching
to IgA-secreting plasma cells (59, 67). However, the exact local
production sites and local redistribution at the mucosal site have
not been well documented. During acute HIV infection phase,
naïve B-cells are immediately decreased and reciprocal memory B-
cell increased at mucosal sites and blood although little is known
on the phenotypic features and functions of B-cell populations
and early B-cell subversions occurring at mucosal sites (68). As
most HIV-1 transmission occurs via mucosal sites, eliciting effec-
tive mucosal B-cell responses with long-lasting protective NAbs at
mucosal sites is therefore critical to provide the first line of pro-
tection at mucosal surfaces for preventing early HIV-1 invasion by
HIV-1 vaccine (69–71).

MECHANISMS OF INHIBITORY ACTIVITY OF NEUTRALIZING
ANTIBODIES
Most HIV-1 vaccination strategies aim to induce human HIV-
specific Abs able to inhibit the infection of target cells at the onset

of viral transmission (2, 11, 72). Humoral responses against HIV
have been extensively studied and NAbs able to efficiently neutral-
ize in vitro a broad range of circulating HIV-1 strains have been
described (10, 12, 20). These include the well-characterized NAb
b12, 2G12, 447-52D, 2F5, 4E10, as well as novel bNAbs such as
VRC01 and 10–1074 or belonging to PGT family that neutralize
a large spectrum of HIV-1 isolates of various clades (4–7, 12, 73–
75) (Figure 2). These Abs efficiently inhibit cell-free HIV primary
isolates or pseudoviruses in vitro in conventional neutralization
assays with peripheral blood mononuclear cells (PBMCs) or HIV-
permissive cell lines (TZM-bl). Both assays assess the capacity of
Abs to inhibit HIV-1 infection of either CD4+ primary cells or
TZM-bl cell lines that express the CD4 receptor and co-receptor
CCR5. Abs possessing a neutralizing activity will recognize func-
tionally important structures and conserved epitopes of the HIV
viral envelope gp120 and gp41, and will impede virus attachment
as well as fusion and entry processes that lead to a decrease in
HIV replication (9–12) (Figure 2). The neutralization process is
due to the capacity of Abs to directly inhibit HIV-1 replication
in the absence of additional factors, such as Fc receptors (FcRs)
or complement. Yet, due to the complex glycosylation profile of
HIV and conformational changes of the viral envelope during
fusion (Figure 2), most NAbs require long HCDR3s to allow
the recognition of poorly accessible conserved Env epitopes (76).
Moreover, NAbs isolated from infected patients result from a long
maturation and somatic hypermutation processes (9–12). These
unusual Ab characteristics will unfortunately be extremely difficult
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to generate by vaccination. Several of these HIV-1 bNAbs have
been reverted experimentally to their unmutated ancestral state,
and were found to bind weakly or undetectably to native HIV-1
Env (77, 78), which means that Ab responses induced by vacci-
nation will have to occur following intricate pathways of B-cell
maturation.

Recent studies showed that high levels of IgG Abs specific for the
first and second variable regions (V1V2) of gp120 were inversely
associated with a reduced risk of HIV-1 infection in the RV144
clinical vaccine trial (27, 79–81). Moreover, Yates et al. recently
found that vaccine-induced HIV-1-specific IgG3 responses cor-
related with decreased risk of infection in RV144 clinical trial
compared to the VAX003 vaccine regimen (82). Since partial pro-
tection observed in the RV144 phase III Thailand trial was medi-
ated by the induction of non-neutralizing antibodies (NNAbs) and
a moderate T cell response (27, 83), it seems that other immune
mechanisms in addition to classical NAbs responses are required
to achieve protection against HIV infection.

MECHANISMS OF Fc RECEPTOR-MEDIATED PROTECTION
The FcR-dependent mechanism of inhibition has been observed in
various HIV-target cells that express these receptors, for instance
DCs, Langerhans cells, and macrophages (56, 84–90). HIV inhi-
bition involving interactions with FcR receptors was confirmed
with the cell line TZM-bl that expresses various FcγRs (91, 92)
mainly FcγRI and FcγRII (84, 85, 91). Fc-mediated inhibition
increased by 10- to 1000-fold the inhibitory activity of NAbs in
FcR-bearing macrophages (84), and neutralization titers of NAbs
4E10 and 2F5 were increased as much as 5000-fold in the case
of TZM-bl cells expressing FcγRI (91, 92). Some HIV-1-specific
Abs lacking neutralizing activities have also been shown to display
Fc-mediated inhibitory activities (93). Such Abs, which inhibit
HIV-1 replication only via FcγR receptors are referred to as non-
neutralizing inhibitory Abs (NNIAbs) (85). In the case of APCs
bearing FcγR, the formation of immune complexes between Abs
and HIV leads to phagocytosis of the virus and its degrada-
tion by specific lysosomes (88, 94–96). Moreover, the fixation
of Abs on the FcR of effector cells can also induce antiviral
cytokines and chemokines, further impeding viral replication (97,
98). The mechanism of inhibition of NNIAbs implies that, con-
trary to NAbs, they do not need to recognize functional Env
spikes. NNIAbs capture the virus via the Fab domains and bind
to FcR-bearing cells via their Fc domains, increasing therefore
the number of potential epitopes susceptible to be targeted by
immunogens.

Recently, it has been shown that V1V2-specific IgG3 subclass
Abs are associated with broad antiviral responses and were cor-
related with a decreased risk of infection in the RV144 vaccine
trial (82). Chung et al. also found that in this trial, NNAbs were
induced that presented highly coordinated Fc-mediated effector
responses by the selective induction of highly functional IgG3
(99). These studies indicate that functional activity and Ab sub-
class may contribute to the potential antiviral activity of Abs that
extends beyond virus neutralization and illustrate the potential
role of FcγR-mediated innate and adaptive immune functions in
additional HIV-1 protective mechanisms.

ANTIBODY-DEPENDENT CELLULAR CYTOTOXICITY
Antibody-dependent cellular cytotoxicity was reported in HIV-
infected patients in 1987, when it was shown that HIV envelope
gp120 bound to CD4 T cells was sensitive to lysis by PBMCs from
HIV-infected patients (100). This ADCC mechanism also involves
FcRs (93, 101), mainly FcRIII (CD16). Cross linking of Abs that
recognize an infected target cell via its Fab domain and the FcR on
the effector cell via its Fc domain leads to lysis of the infected target
cell subsequent to effector cell degranulation (101–105). Various
immune cells such as NK cells, monocytes, macrophages, or neu-
trophils can induce ADCC (106). It has been suggested that ADCC
participated in the 31% reduced risk of HIV infection in the RV144
trial (26). Recent studies showed that ADCC also occurred in elite
controllers (107, 108). Even though a correlation between in vitro
ADCC and protection was not demonstrated, there is evidence
that ADCC might account, at least partially, for protection against
SHIV/SIV challenge in the in vivo macaque model (109). Hence,
inducing Abs with ADCC function might enhance protection and
should be considered as a goal in future vaccine approaches.

ANTIBODY-DEPENDENT CELL-MEDIATED VIRUS INHIBITION
ACTIVITY
Antibody-dependent cell-mediated virus inhibition (ADCVI)
results from an interaction between an infected target cell and an
effector cell expressing one or several FcγRs via an HIV-specific
Ab. ADCVI encompasses multiple effector functions related to
lytic (e.g., ADCC) and non-cytolytic (e.g., production of β-
chemokines) mechanisms leading to a decreased HIV-1 infection
and replication (31, 93, 95, 110).

ROLE OF IgA-MEDIATED INHIBITION
In patients infected with HIV-1, a specific IgA response develops
in parallel to the IgG response. Noteworthy, anti-gp41 (but not
anti-gp120) IgA Abs were frequently elicited in both plasma and
mucosal fluids within the first weeks after transmission. However,
shortly after induction, these initial mucosal anti-gp41 Env IgA Abs
rapidly declined (111). Later on, during the chronic phase, virus-
specific IgA are low in both mucosa and systemic compartments
(112). Interestingly, HIV-specific IgA are detected in the genital
tract or the seminal fluid in seronegative (in the absence of sero-
logical HIV-specific IgG) partners of HIV-positive subjects“highly
exposed persistently seronegative” (HEPS) (113–115). Mazzoli
et al. first showed that IgA was detected in urine and vaginal sam-
ples from HIV-exposed seronegative individuals in the absence of
IgG detection (113). In addition, virus-specific IgAs were detected
in the salivary secretions of children from seropositive mothers.
The presence of IgA in seronegative subjects that are in regular
contact with HIV suggests its potential role in protection.

In vitro, IgA recapitulates for some Abs the neutralizing activ-
ity of IgG. In the case of the epitope recognized by NAb b12, the
neutralizing activity of IgA was equivalent to that of the IgG (116).
Furthermore, IgA displayed an additional inhibitory function
involving its Fc region distinct to that of IgG. The presence of IgA
at mucosal sites may involve a local activation of different immune
mechanisms, such as a secretory component of IgA-mediated pro-
tection of mucus-bound IgA in vivo (117, 118), the aggregation of
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secretory IgA (119), or mechanisms that involve ADCC effectors
cells expressing FcαR (such as neutrophils). Recent results from
the RV144 vaccine trial demonstrated that the levels of vaccine-
induced IgA in serum were associated with a lack of protection
against HIV acquisition (27) and that IgA competed with IgG
for ADCC activity (120). Anti-HIV IgA therefore interferes with
a protective IgG function, impeding its protective potential. On
contrary, it was recently shown that the anti-HIV IgA1 isotype
protected macaques better than the corresponding IgA2 or IgG Ab
types (3). These findings suggest that, depending on their local-
ization and/or structure, vaccine-induced or pre-existing IgA may
have either a deleterious effect by competing with potential IgG
protective Abs or a significant protective effect by limiting HIV
transmission at the mucosal site (3). This dual IgA activity illus-
trates the complexity of Ab functions, that depend on the cellular
and cytokine environment.

MECHANISMS OF INHIBITION OF HIV CELL-TO-CELL
TRANSMISSION
Numerous studies suggest that direct cell-to-cell transmission
occurring early at the mucosal site after sexual transmission makes
a major contribution to rapid HIV-1 dissemination throughout
the body. This mode of transmission has important consequences
for designing treatments or vaccine strategies as inhibition of this
type of HIV spread is even more complex than cell-free infection.
Inhibitory activity of cell-to-cell spread may depend on donor
and target cells such as APC-to-T cell or T cell-to-T cell, on viral
strains, multiplicity of viral infection, etc. Consequently, results
may diverge and may be controversial (121, 122).

Efficient HIV transmission occurs mainly via the formation
of virological synapses (123–126). APC-to-T cell and T cell-to-T
cell transfer experiments have been used to analyze the inhibitory
activity of specific anti-HIV Abs in HIV transmission. By dis-
secting the early steps of HIV-1 spread from DCs to autologous
primary CD4 T lymphocytes, it was shown that NAbs were able
to efficiently inhibit HIV-1 transmission to CD4 T lymphocytes
(56). Similar inhibitory activities by Abs have also been observed
by others (127–131), suggesting that HIV-1 transfer from DCs to
T lymphocytes can be affected by Ab inhibition. Furthermore, Fc-
mediated inhibitory activity of Abs on the infection of APCs may
decrease HIV-1 transmission to surrounding T cells. This is par-
ticularly relevant for DCs and macrophages as these cells highly
express FcRs (56) [reviewed in Ref. (122)]. Abs can bind FcRs and
therefore inhibit HIV-1 transmission via FcR-mediated inhibitory
activity. Some NNIAbs such as 246-D have been found to reduce
significantly the percentage of infected DCs in vitro (56). For these
Abs, a strong association was found between FcγR-specific binding
capacity, inhibition of HIV-1 replication, and DC maturation. This
indicates that the binding of these Abs to DCs induces the matura-
tion of these cells, resulting in lower levels of R5 virus replication
(56). However, other authors observed a drastic decrease of Ab
inhibitory activity in HIV transfer conditions (51, 54, 132–134).
Of note, these later studies mainly involved cell lines in in vitro
transfer protocols and the characteristics of the cell-to-cell contact
appeared to be determinant for HIV inhibition (54). Close inter-
actions between donor/target cells and immunological synapse
formation differ according to the type of cells. DC/lymphocyte

crosstalk involves ICAM-1 and LFA-1 adhesion molecules and
stabilize interactions (135–139) that are absent with TZM-bl cell
lines (140, 141). As a result, the strength of the established synapse
will influence the efficiency of HIV spread, and the subsequently
inhibitory potential of Abs (54, 56). APC/lymphocyte crosstalk can
also modulate the immune response (126, 139, 142–146). Close
contact between cells in particular tissues need therefore to be
taken into consideration when analyzing HIV transfer. However,
very little is currently known about the efficacy of HIV spread and
the potency of HIV-specific Abs in different tissue environments.

In addition, during chronic infection, HIV replication propa-
gates in lymphoid organs containing numerous CD4+ T lympho-
cytes (147, 148) and cell-to-cell transmission between T cells is
likely to be the most common mode of HIV-1 spread (124, 146,
149–152). HIV inhibitory activity of Abs on T cell-to-T cell trans-
mission has been extensively studied (51, 53, 54, 133, 153–158),
and variable inhibitory activities have been recorded depending
on the type of T cells and virus used. These discrepancies empha-
size the necessity to further investigate functional Ab activities in
the context of HIV spread in tissues and lymphoid organs.

ENHANCING ANTIBODIES
Enhancing Abs were first described as complement-mediated
enhancement by Robinson et al. (159, 160). Such Abs, unlike neu-
tralizing or inhibitory Abs, facilitate infection by HIV in vitro by
increasing HIV titers (e.g., an increase in the number of infected
cells) or by augmenting the production of infectious virus parti-
cles. Ab-dependent enhancement of HIV-1 binding and infection
of certain cell types has been demonstrated in different in vitro pro-
tocols (160–163). However, the mechanism leading to this increase
has not been clearly identified although it has been proposed that
Fc–Fcγ receptor interactions or conformational changes in Env
or complement receptors may play a role (164–166). The HIV-
1/IgG complex is able to bind to FcRs and it could therefore
be transcytosed by APCs (167). It has also been proposed that
virus coated with Abs and taken up via the FcR on DCs may lead
to enhancement by FcR-mediated transcytosis of the virus–IgG
complex (163). Recently, it was shown that the binding of HIV-
1-specific Abs to neonatal FcR expressed on epithelial cells could
enhance transcytosis of HIV-1 at low pH (168). Since neonatal
FcR was detected in areas of the genital tract that are potentially
exposed to HIV-1 during sexual intercourse, this new model of Ab-
dependent enhancement points to an additional mechanism by
which sexual transmission of HIV-1 may be facilitated (168). How-
ever, no facilitating role of Abs has yet been demonstrated in vivo
for HIV infection following vaccination or HIV disease progres-
sion (169). There was no evidence of an increased HIV infection
among vaccine recipients in the VaxGen and RV144 phase III vac-
cine trials (26, 170). It should be noted that a recent study showed
a correlation between the presence of a particular allele of FcγR
and an increased risk of infection in a sub-group of volunteers
with low risk practices (171). These results suggest a possible dele-
terious effect of specific HIV Abs in a subpopulation of patients
with a particular FcγR genotype. Therefore, supplemental studies
need to be conducted in future prophylactic vaccine trials in order
to circumvent any possible deleterious enhancing effects, since
vaccination obviously should avoid the induction of such Abs.
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MECHANISMS OF INHIBITION OF HIV SPREAD IN VIVO BY
ANTIBODIES
The protective role of HIV-specific Abs has been extensively stud-
ied in various experimental models of infection, including NHP
models (17, 19, 31, 172–178), and humanized mice models (14–
16). The potential role of FcγR-mediated innate and adaptive
immune functions in addition to neutralization has been repeat-
edly demonstrated in HIV protection (32, 95, 101, 110, 174, 179).
Neutralizing monoclonal IgG1 b12, devoid of Fc–FcγR functions
has decreased protective potential following vaginal challenge in
NHPs (110). NNIAbs were able to reduce the viral load in chal-
lenged macaques without conferring complete protection (31, 32).
These observations clearly indicate that, in addition to neutraliza-
tion, FcγRs are important for achieving protection in vivo. Such
effective protection observed in vivo suggests that HIV-specific Abs
inhibit infection by cell-free virus and cell-to-cell transmission
(Figure 1), both mechanisms contributing to HIV-1 replication
and dissemination in the body. Interestingly, the Ab threshold
necessary for sterilizing protection decreased in the animal model
with decreased virus challenge (174). This further suggests that
Abs may display increased potential during sexual transmission in
the mucosal environment in the presence of low virus input. In
this case, the balance in favor of HIV protection may be more eas-
ily achieved by vaccination, as suggested by the partial protection
in the RV144 trial observed in a low risk population.

NOVEL UNRAVELED MECHANISM OF ANTIBODY INHIBITION
Recently, another Ab inhibitory activity was reported that pro-
vides protection inside cells by triggering an intracellular immune
response in addition to extracellular activities (180). This activity
was named ADIN for antibody-dependent intracellular neutral-
ization (181). Working with a non-enveloped virus-like aden-
ovirus as model, it was shown that Abs that bind virus before
infection were carried into the cell while attached to the virus
particle. Upon escape from the endosomal compartment, these
Abs remain bound to the virus allowing it to be detected by the
cell. Ab-coated virions are detected by a cytosolic intracellular Ab
receptor called TRIM21, which binds to IgG with a higher affin-
ity than any other Ab receptor so far described in humans (180,
182, 183). In addition to its Ab-binding domain, TRIM21 pos-
sesses a RING domain with E3 ubiquitin ligase activity. Using this
ubiquitination activity, TRIM21 flags the virion for destruction
by a mechanism involving proteasomal degradation. This process
is very rapid and leads to removal of the virus before transcrip-
tion and translation of the viral genome, in effect clearing the
cell of infection (181). Moreover, it has been shown recently that
the TRIM21-mediated ability of antisera to block replication was
a consistent feature of the humoral immune response in immu-
nized mice. In the presence of immune sera and upon infection,
TRIM21 also activates a proinflammatory response, resulting in
secretion of tumor necrosis factor alpha (TNF-α) and interleukin-
6 (IL-6) (184). These results demonstrate that TRIM21 provides a
potent block to the spreading of infection and induces an antivi-
ral state (184). However, such Ab inhibitory activity may not be
relevant to HIV since HIV is an enveloped virus that is uncoated
following its entry in host cells. However, if Abs against the core
proteins are endocytosed during infection, they may impair later

intracellular HIV replication steps. Such an intracellular mech-
anism may explain some unexpected association between high
anti-p24 Ab concentration and decreased viral load (185, 186).

Even more intriguing, broader Ab activities have recently been
proposed. The group of Nancy Haigwoog showed an increase of
the specific B-cell response, following the passive transfer HIV Abs
in a NHP model (187). Using the FrCas mouse retroviral model,
Michaud et al. observed a protection linked to the induction of
long-term B and T response, due to passive transfer of NAbs (188).
This mechanism of stimulation of the adaptive response following
Abs transfer was also observed following NAb therapy in infected
macaques (17). Such prolonged protection by induction of adap-
tive immune response by Abs was already described in cancer field
(189). These studies attribute an “immunogenic” role to the Abs in
that they would be able to induce primary and memory responses
more efficiently than free viral particles or infected cells. In this
way, Abs could participate in the implementation of an adaptive
response, paving the way to new fields of applications.

PROMISE OF HIV ANTIBODIES IN AIDS VACCINES
Currently, one of the innovating vaccination strategies would
consist in developing a mucosal vaccine as an effective means
of prevention against HIV sexual transmission (72). The newly
identified potent bNAbs that suppress active infections and clear
infected cells in humanized mice and macaques suggest that these
bNAbs would effectively protect from infection (20). However,
in the development of a vaccine against HIV, the possibility of
inducing such NAbs have been compromised when it was discov-
ered that they possess unusual characteristics (heavy long chain
HCDR3, significant numbers of somatic mutations) that require
a long maturation and makes them difficult to induce. The matu-
ration of progenitor B-cells is unlikely to be reproduced by a short
stimulation with a single immunogen (8). Vaccination strategies
based on a succession of immunogens that would be able to mimic,
step by step, the process of maturation, and activation of B-cell
clones are currently being tested. However, this approach of vac-
cination has never been implemented previously and in view of
the complex mechanisms that are involved, it is unclear whether it
will be successful.

In view of the major, constraints linked to the in vivo induc-
tion of NAbs, vaccine approaches involving the optimization of
inhibitory Abs, induction of additional immune mechanisms, are
currently being examined. These are similar to approaches fol-
lowed in cancer research, and attempt to modify the Fc region of
Abs in order to increase their inhibitory activity. Moldt et al. gen-
erated by mutagenesis and by modifying the glycosylation of the
Fc region, a panel of mutants of the NAb b12, which retained the
neutralizing activity of the Fab region but had different affinity the
FcγRs (190, 191). These Fc modifications increased the affinity of
Abs for FcγRs as well as the associated in vivo inhibitory func-
tions (phagocytosis, ADCC, etc.). However, no improvement of
protection was observed in experimentally challenged macaques.

By inducing inhibitory Abs directly at the sites of infection
(anal mucosa, genital tracts, etc.), it might be possible to limit
viral replication earlier and in many target cells. New immunogens
are currently being formulated in order to redirect the humoral
response to mucosal sites (192). A phase 1 clinical trial has recently
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started (European collaborative project EuroNeut41) in order to
test this new concept (193). However, these protocols are based on
information gathered from the mouse model and local mucosal
immune activation could not be reproduced in humans. Unfortu-
nately, our current knowledge on how we could bring the immune
response to converge toward mucosa is extremely limited and the
mechanisms of action of anti-HIV Abs at mucosal sites are also
poorly understood.

In addition to their central role in vaccination, Abs are also
being investigated as possible therapeutic agents. Recent studies
demonstrate that combinations of cocktails of two or more mon-
oclonal Abs significantly reduced viremia in chronically infected
macaques, suggesting that such therapies might be effective in
humans (17, 19, 32). By combining diverse Abs properties to
potentiate the protective effects of anti-HIV-specific Ab-based
strategies, it might be possible to enhance what was achieved
with antiviral compounds by inducing complementary inhibitory
potentials gathered by Abs inhibitory functions. A combination
of conventional multi-hits antiretroviral therapy with NAbs ther-
apy might be successful and could generate revolutionary drug
combinations that may lead to an HIV cure.

SUMMARY AND CONCLUSION
The last decade has witnessed enormous advances in our knowl-
edge of HIV vaccine designs and trials. Although a large number of
broadly and potent NAbs have been recently discovered (Figure 2),
inducing such bNAbs by vaccination is likely to be very diffi-
cult (5, 7, 10). Data from in vivo studies and recent findings
following clinical assays have demonstrated the importance of
Fc-mediated Ab-dependant mechanisms in achieving protection
against HIV. Therefore, new vaccination strategies including the
induction of such type of activities, in addition to NAbs, should
be developed. As HIV transmission at mucosal sites involves spe-
cific HIV targets, vaccination should induce an immune response
that protects all the different potential mucosal target cells (i.e.,
using Abs that display different inhibitory activities). Moreover,
vaccination should induce Abs and B-cell responses directly at
mucosal level in order to rapidly interfere with the early events of
HIV infection. Almost nothing is known about the local immune
induction at mucosal sites, known to be involved in induction
of tolerance. Strategies to develop local immune responses should
therefore be encouraged as well as specific adjuvants and immuno-
gens active at the mucosal site leading to a strong and long-lasting
response. Furthermore, the protective role of HIV-specific Abs
against cell-to-cell transmission should be evaluated by analyz-
ing the transfer of transmitted/founder HIV. It is hoped that
improved understanding of HIV transmission via cell-free or
cell-associated models and of different functionalities of HIV-
specific Abs may lead to a new generation of immunogens and
immunotherapeutics for the development of protective and safe
vaccine approaches.
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