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Eukaryotic cells are mechanically supported by a polymer net-
work called the cytoskeleton, which consumes chemical energy
to dynamically remodel its structure. Recent experiments in vivo
have revealed that this remodeling occasionally happens through
anomalously large displacements, reminiscent of earthquakes or
avalanches. These cytoskeletal avalanches might indicate that the
cytoskeleton’s structural response to a changing cellular environ-
ment is highly sensitive, and they are therefore of significant
biological interest. However, the physics underlying “cytoquakes”
is poorly understood. Here, we use agent-based simulations of
cytoskeletal self-organization to study fluctuations in the net-
work’s mechanical energy. We robustly observe non-Gaussian
statistics and asymmetrically large rates of energy release com-
pared to accumulation in a minimal cytoskeletal model. The large
events of energy release are found to correlate with large, col-
lective displacements of the cytoskeletal filaments. We also find
that the changes in the localization of tension and the projec-
tions of the network motion onto the vibrational normal modes
are asymmetrically distributed for energy release and accumula-
tion. These results imply an avalanche-like process of slow energy
storage punctuated by fast, large events of energy release involv-
ing a collective network rearrangement. We further show that
mechanical instability precedes cytoquake occurrence through a
machine-learning model that dynamically forecasts cytoquakes
using the vibrational spectrum as input. Our results provide a con-
nection between the cytoquake phenomenon and the network’s
mechanical energy and can help guide future investigations of the
cytoskeleton’s structural susceptibility.

cytoskeleton | avalanche | active matter | cell mechanics

The actin-based cytoskeleton is an active biopolymer net-
work that plays a central role in cell biology, providing the

cell with a means to control its shape and produce mechan-
ical forces during processes such as migration and cytokine-
sis (1–5). These cellular-level forces arise from the collective
nonequilibrium activity of molecular motors interacting with
the actin filament scaffold, enabling dynamic, driven-dissipative
cytoskeletal remodeling (6–8). Recent experimental efforts have
uncovered a remarkable phenomenon exhibited by cytoskele-
tal networks in vivo: These networks undergo large, sudden
structural rearrangements significantly more frequently than
predicted by a Gaussian distribution (9, 10). Heavy-tailed dis-
tributions of event sizes are well known in seismology, where
the Gutenberg–Richter law describes the power-law relation-
ship between the energy released by an earthquake and such an
earthquake’s frequency (11, 12). Due to this analogy, the term
“cytoquake,” which we adopt here, has been coined by exper-
imenters to describe large cytoskeletal remodeling events. In
previous work, we have reported the first in silico observations
of this phenomenon, appearing as heavy tails in the distributions
of mechanical energy released by cytoskeletal networks (13).
These findings suggest that avalanche-like processes may play a
fundamental role in cytoskeletal dynamics.

The physics underlying cytoquakes is not well understood,
as current explanations based on experimental data are mostly
speculative and rely on qualitative comparisons to systems
amenable to computational study, which similarly exhibit nonex-
ponential relaxation, such as jammed granular packings and spin
glasses (9, 10, 14, 15). In particular, it is not known whether large
cytoskeletal displacements actually arise from an avalanche-like
process of slow energy storage and fast, large events of energy
release. Alternative explanations of heavy-tailed distributions of
cytoskeletal displacements that do not involve avalanche-like
dynamics have also been considered. For instance, heterogeneity
in the spatial distribution of molecular motors has been pro-
posed as a possible mechanism for non-Gaussian distributions
of tracer particle displacements (7, 16). Here, we describe a
detailed numerical study focused on the mechanical energy of
cytoskeletal networks exhibiting large displacements. We find
that the statistics of energy accumulation and release support the
hypothesis of avalanche-like dynamics occurring in cytoskeletal
networks and, thus, that avalanche-like dynamics do at least con-
tribute to the observed heavy-tailed distributions of cytoskeletal
displacements.

In addition, in previous studies, little emphasis has been given
to the possible biological roles played by cytoquakes. We pro-
pose one such role, that these large mechanical fluctuations are
concomitant with a large susceptibility to mechanical forces or
chemical perturbations, allowing the cytoskeleton to be highly
sensitive to physiological cues arriving via various cell-signaling
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pathways (17). Dynamic instability is already an acknowledged
feature of certain cytoskeletal components, such as microtubules
and filopodia (18). A similar design principle may also apply
to larger cytoskeletal structures to allow fast remodeling. For
instance, avalanche-like dynamics may serve a useful purpose
in the lamellipodia of migrating cells, which probe local chem-
ical gradients and must quickly collapse protrusions in unsuc-
cessful search directions, as well as adaptively remodel their
structure in response to changing mechanical loads (2, 19).
However, to investigate such possible biological roles, we first
need a more detailed account of the underlying causes of the
observed large structural rearrangements, which is the subject of
this paper.

Here, we perform detailed simulations of a minimal cytoskele-
tal model system using the software package MEDYAN
(Mechanochemical Dynamics of Active Networks) (20). Our
main qualitative result is that there is a significant asymme-
try between how cytoskeletal networks accumulate and release
mechanical energy. While both accumulation and release statis-
tics are heavy-tailed, the magnitudes of energy release are more
broadly distributed than those of energy accumulation. Several
measures of network dynamics are also found to be distributed
asymmetrically for energy release and accumulation, includ-
ing the network displacement, the localization of tension, and
the projection of the network motion onto the vibrational nor-
mal modes. These results support an avalanche-like picture of
slow energy accumulation punctuated by fast, broadly distributed
events of energy release that involve a collective structural rear-
rangement of the network. The asymmetric energy fluctuations
are found to be robust against changes in chemical concentra-
tions and system size, suggesting that avalanches are intrinsic to
cytoskeletal network dynamics. We further establish a connec-
tion between cytoquakes and mechanical stability, both through
the observed spatial delocalization of tension during cytoquakes
and the machine-learning-assisted ability to dynamically forecast
cytoquakes using the Hessian eigenspectrum of the mechani-
cal energy function. This implies that mechanical instability, as
encoded in the Hessian eigenspectrum, precedes incipient cyto-
quakes, which then act to homogenize tension in the network. At
the end of the paper, we pose several open questions based on
these results, which can help to guide future investigations into
cytoquakes and their possible physiological functions.

Results
Energy Fluctuations Are Asymmetric, Heavy-Tailed, and Self-Affine.
We study a subsystem of the full cytoskeleton called an acto-
myosin network. This consists of semiflexible actin filaments
and associated proteins, including active molecular motors (e.g.,
minifilaments of nonmuscle myosin IIA [NMIIA]) and pas-
sive cross-linkers (e.g., α-actinin). An actomyosin network as
represented in simulation is visualized in Fig. 1. The actin fil-
aments hydrolyze adenosine triphosphate (ATP) molecules in
a directed polymerization process, which reaches a steady state
called “treadmilling” (21). The myosin minifilaments (∼200 nm
in length) transiently bind to pairs of actin filaments and also
hydrolyze ATP as fuel to walk along the filaments, generating
motion and mechanical stresses. These active process drive the
network away from equilibrium. The cross-linkers (∼35 nm)
bind more stably to nearby filaments, serving to transmit the
force produced by motors and to both store and, through unbind-
ing, dissipate the resulting energy, heating the environment
(22–28). Dissipation of stored mechanical energy also occurs
as filaments relax out of strained configurations, in a manner
that depends on mutual constraints that filaments exert on each
other through bound cross-linkers and motors. Additionally,
the rates of motor walking and unbinding, as well as of cross-
linker unbinding, depend exponentially on the forces sustained
by these molecules, giving rise to nonlinear coupling between

Fig. 1. A snapshot from a MEDYAN trajectory of an actomyosin network
in a 1 µm3 box for the condition C3,3 (Materials and Methods). Actin fila-
ments are shown in red, α-actinin is shown in green, and myosin motors
are shown in blue. Beads representing the joined points (i.e., hinges) of thin
cylinders (at most 54 nm long) are visualized as red spheres. The cyan fila-
ments represent motion of the network corresponding to a soft, delocalized
vibrational mode determined from Hessian analysis, as described in Normal
Mode Decomposition Probes Network’s Mechanical State. In Inset, we zoom
in on part of the network and exclude associated proteins to show greater
detail of this vibrational motion.

the mechanical state of the network and its chemical propensi-
ties (29, 30). These processes by which the ability of the network
to mechanically relax depends on its current state set the stage
for avalanche-like dynamics.

Using MEDYAN, we performed simulations of small
cytoskeletal networks consisting of 50 actin filaments in 1-µm3

hard-walled cubic boxes with varying concentrations of α-actinin
cross-linkers ([α]) and of NMIIA myosin-motor minifilaments
([M ]) (13, 20, 31–33). We omit here other associated proteins,
such as the branching agent Arp2/3, finding that our minimal sys-
tem is sufficient to produce heavy-tailed distributions of event
sizes, although it has recently been discovered that branching
acts to enhance avalanche-like processes (34). MEDYAN sim-
ulations combine stochastic chemical dynamics with a mechan-
ical representation of filaments and associated proteins (see SI
Appendix, Description of MEDYAN Simulation Platform for a
detailed outline of the MEDYAN model). Simulations proceed
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iteratively in a cycle of four steps: 1) stochastic chemical simula-
tion for a time δt (here, 0.05 s), 2) computation of the resulting
new forces, 3) equilibration via minimization of the mechanical
energy, and 4) updating of force-sensitive reaction rates, such
as slip-bonds of cross-linkers, catch-bonds of motors, and motor
stalling. Recent extensions to the MEDYAN platform allow cal-
culation of the change in the system’s Gibbs free energy during
each of these steps (13, 35), originally applied to study the ther-
modynamic efficiency of myosin motors in converting chemical
free energy to mechanical energy under various conditions of
cross-linker and motor concentration. We employ this method-
ology here and focus on the statistics of the system’s mechanical
energy U as it self-organizes.

We first characterize the observed occurrence of avalanche-
like dynamics in these simulations. The simulations begin with
short seed filaments that quickly polymerize (tens of seconds)
to their steady-state lengths. Following this, the slower pro-
cess (hundreds of seconds) of primarily myosin-driven self-
organization occurs, which for most conditions, results in geo-
metric contraction to a percolated network (Movie S1) (26, 36).
The mechanical energy U (t) fluctuates near a quasi-steady state
(QSS) value, which we analyze as a stochastic process. In Fig.
2A, we display the trajectory of U (t) for condition C3,3 (with
α-actinin concentration [α] = 2.82 µM and motor concentra-
tion [M ] = 0.04 µM; see Materials and Methods for a description
of the experimental conditions). We tracked the net changes
of the mechanical energy ∆U (t) =U (t + δt)−U (t) resulting
from each complete cycle of simulation steps (1)–(4). The total
energy U is a sum over the molecular components in the net-
work, i.e., filaments, motors, and cross-linkers, as well as the
excluded volume repulsion between nearby filaments. We show
this decomposition of the energy into these components in SI
Appendix, Fig. S1. For the purpose of analyzing the observed
asymmetric heavy tails in the distribution of ∆U , we treated the
negative increments ∆U− (energy release) and positive incre-
ments ∆U+ (energy accumulation) as samples from separate
distributions with semi-infinite domains. The complementary
cumulative distribution functions (CCDFs, or “tail distribution,”
the probability P(X ≥ x ) of observing a value of the ran-
dom variable X above a threshold x , as a function of x ) of
the observed samples collected from all five runs at QSS are
illustrated in Fig. 2B. Both distributions display striking heavy
tails relative to a fitted half-normal distribution. The CCDFs
are better fit by stretched exponential (Weibull) functions
of the form (37)

P(X ≥ x ) = e−(x/λ)k . [1]

We justify this choice of distribution by constructing Weibull
plots, as discussed in SI Appendix, Weibull Plots. We find k =
0.60± 0.06 for |∆U−| and k = 0.83± 0.07 for ∆U+ with uncer-
tainty taken over the five runs, indicating shallower tails for
energy release compared to energy accumulation. We also
measured parameter η that indicates non-Gaussianity:

η=
〈x4〉

3 〈x2〉2
− 1, [2]

where 〈xm〉 is the mth moment about zero; for a half-normal
distribution η= 0, and η > 0 quantifies heavy-tailedness. We
find η= 11.37± 5.37 for |∆U−| and η= 1.96± 0.58 for ∆U+.
This, along with the shallower tails of the fitted stretched
exponential functions, indicates greater deviation from Gaus-
sianity for energy release compared to energy accumulation.
These results support the picture that, typically, energy accumu-
lates comparatively slowly and is released via large occasional
events.

We next analyze the temporal correlations of U (t) at QSS.
A self-affine stochastic time series G(t), for which G(t) and

A

B

C D

Fig. 2. Statistics of ∆U. (A) Trajectory of the network’s mechanical energy
U(t) for condition C3,3 (Materials and Methods). (A, Inset) A blow-up of
the trajectory to show instances of rare events of energy release (∆U<
−100 kBT ; blue) and accumulation (∆U> 100 kBT ; green). (B) CCDFs of
|∆U−| (blue) and ∆U+ (green) collected from five runs when the system is
at QSS after 1,000 s. Dotted lines in lighter colors represent fits to the data
of a half-normal CCDF, and dashed lines represent fits of stretched expo-
nentials. (C) The normalized power spectral density of U(t) for a single run
at QSS from which the spectral exponent β= 1.72 is determined by fitting
a power law, shown offset in red. (D) The semivariogram obeys the scaling
relationship γ∼ τ2Ha over the scaling range.

|ζ|HaG(t/ζ) have the same statistics for any scaling parameter ζ,
has a power spectral density S(f ) exhibiting a power-law depen-
dence on frequency f : S(f )∝ f −β , where the spectral exponent
β is the persistence strength, related to the color of the signal
(38, 39). We find β= 1.72± 0.02 for U (t), as shown in Fig. 2C.
With this value of β, U (t) is classified as a pinkish-brown signal,
implying that it is nonstationary and has temporally anticorre-
lated increments ∆U . Self-affine time series further obey the
theoretical relationship β= 2Ha + 1 when 1≤β≤ 3, where Ha

is the Hausdorff exponent determined from the scaling of the
semivariogram

γ(τ) =
1

2
(G(t + τ)−G(t))2∼ τ2Ha , [3]

and where the overbar represents temporal averaging (40, 41).
We find that this relationship is satisfied by U (t), as shown in
Fig. 2D, yielding Ha = 0.36± 0.01 and confirming that U (t) is
self-affine. Such non-Markovian and self-affine time series and
spatial patterns commonly arise in various complex geophysical
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processes (e.g., the temporal variation of riverbed elevation), fur-
ther supporting the analogy between the cytoskeleton and earth
systems (42, 43).

Distinguishing Features of Cytoquakes. We find that cytoquakes,
defined throughout as simulation cycles for which ∆U <
−100 kBT , are correlated with several changes in the state of the
network. This cutoff at −100 kBT is chosen to lie in the tail of
the distribution of ∆U (Fig. 2), but its specific value does not sig-
nificantly affect our conclusions. A discussion of the conversion
of the numerical ∆U data into discrete categories can be found
in SI Appendix, Binning. In Fig. 3, we show that rare large events
of energy accumulation correspond to a greater than usual num-
ber of myosin-motor steps, whereas rare large events of energy
release correspond to greater than usual total displacement
of the actin filaments and a slightly greater number of linker
unbinding events. The displacement between filaments from t to
t + δt is calculated by triangulating the area between the two fila-
ment configurations and dividing the area by the filament length,
as described in SI Appendix, Filament Displacements. The total fil-
ament displacement at time t is computed as the sum of displace-
ments over all filaments during the time interval (t , t + δt). This
quantity is found to be largest during cytoquake events. Further-
more, these large total displacements do not come from highly
localized motions. Instead, they depend on many filaments each

displacing an unusually large amount, as shown in Fig. 4, where
the filaments are ranked according to their displacement during
a cycle. For cytoquake events, the typical displacement at almost
every rank is greater than the corresponding displacement at that
rank for other cycle types. This agrees with the notion of cyto-
quakes as a large and collective structural rearrangement of the
network.

We also observed cytoquakes to induce a spatial homoge-
nization of the tension sustained by the network during large
events of energy release, as quantified by changes in the Shan-
non entropy of the spatial tension distribution H (t) (Fig. 3D).
The tension distribution Pijk is constructed by discretizing the
simulation volume of 1 µm3 into a grid of 103 voxels indexed
by i , j , k and computing the proportion of the total network
tension belonging to the mechanical elements (filament cylin-
ders, cross-linkers, and motors) inside each voxel. Additional
details for the calculation of H (t) can be found in Materials and
Methods. The combination of large, collective rearrangement
and a spatial homogenization of tension supports the inter-
pretation of cytoquakes as an avalanche-like event of energy
release.

Asymmetric Statistics Are Robust across Concentrations and System
Size. We next discuss how these results generalize to differ-
ent concentrations of associated proteins and different system

A B

DC

Fig. 3. (A) Differences in the total filament displacement between simulation cycles for which ∆U<−100 kBT , cycles for which ∆U∈ (−100 kBT , 0 kBT),
cycles for which ∆U∈ (0 kBT , 100 kBT), and, finally, cycles for which ∆U> 100 kBT . To compare these distributions, we first performed a Kruskal–Wallis
test on the group, which indicated statistically significant between-group differences. A post hoc two-sided Wilcoxon rank-sum test was then performed
on pairs of distributions using a Bonferroni correction factor of 6 on the significance level to account for multiple comparisons. The corrected P value of
the Wilcoxon rank sum test between pairs of cycle types is reported as follows: -not significant (P≥ 0.05); ∗significant at level 1 (P< 0.05); ∗∗significant at
level 2 (P< 0.01); ∗∗∗significant at level 3 (P< 0.001) (44). The red bar of the box plots represent the median, and the scatter-plot data represent detected
outliers. (B) Differences in the number of motor walking events between the different cycle types as just described. (C) Differences in the number of α-
actinin unbinding events between the different cycle types. (D) Differences in the changes in Shannon entropy ∆H of the spatial tension distribution of
network tension between the different cycle types.
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Fig. 4. Rank-size distribution of the displacements experienced by each of
the 50 filaments during simulation cycles when ∆U is in different ranges,
in units of kBT . For each cycle, the filaments are ranked according to
their displacement, and these ranks are plotted against the correspond-
ing displacement. The average and SD of these rank-displacement curves
are taken over each cycle in a given category. The curves for the categories
∆U∈ (−100 kBT , 0 kBT) and ∆U∈ (0 kBT , 100 kBT) are nearly coincident.
This data are collected from one run of condition C3,3 at QSS.

sizes. Five concentrations of α-actinin (ranging from 0.17 to 5.48
µM) and five concentrations of myosin minifilaments (ranging
from 0.003 to 0.08 µM) were tested with a constant G-actin
monomer concentration of 13.3 µM, in the regime of physi-
ological concentrations (45). At the lowest concentrations of
cross-linkers and motors, the network did not contract, repre-
senting a very different actomyosin phase, to which we omit
comparisons. For all of the conditions producing contracting
networks, we found that asymmetric heavy-tailed distributions
of ∆U persist, with large values of the non-Gaussian param-
eter for |∆U−| (η∼ 5− 20) and ∆U+ (η∼ 2− 5), although
η for negative increments was observed to decrease with the
motor concentration (SI Appendix, Fig. S2). We conclude that
the avalanche-like energy fluctuations discussed above are not
highly sensitive to associated protein concentrations. These fluc-
tuations may depend on the parameters of the force-sensitive
reaction rates (which are taken here to correspond to experi-
mental values), but we leave this interesting question for future
work.

We performed a finite-size scaling study by holding the con-
centrations of condition C3,3 fixed (with α-actinin concentration
[α] = 2.82 µM and motor concentration [M ] = 0.04 µM) and
varying the system volume V. Larger systems reach QSS at later
times, and our simulations of larger systems did not reach QSS
in the allotted computational time. As a result, we collected sam-
ples of ∆U for these systems on the approach to QSS, from 300
to 800 s, once the networks had all nearly fully percolated (i.e.,
nearly all filaments belonged to a single component connected
by cross-linkers), trusting that the relevant scaling behavior could
still be observed. Stretched exponential functions approximately
fit the distributions of ∆U+ and |∆U−| for all system sizes (see
Fig. 5A for the fits of |∆U−|). Larger systems displayed steeper
tails, as indicated by the observed power-law decay of η for
|∆U−| and ∆U+ (Fig. 5B), although, interestingly, η for |∆U−|
was larger than that for ∆U+ by a constant factor of roughly 3
for all systems sizes. The steeper tails were also evidenced by
the slow growth of the Kohlrausch exponents k with V (Fig.
5C). Thus, the distributions of energy release and accumulation
across the entire network become narrower and more Gaussian
for large systems. This, in contrast to driven-dissipative systems

that exhibit self-organized criticality (SOC), suggests the exis-
tence of some intrinsic and finite scale for avalanche-like releases
of energy in cytoskeletal networks. By summing over many local
energy fluctuations of this finite scale, the distribution of the fluc-
tuations in the total energy U becomes increasingly Gaussian for
large systems, owing to the central limit theorem. This intrinsic
scale may be partly determined by the nonconservative trans-
fer (dissipation) of mechanical energy as it spreads through the
network during avalanches (24, 46).

Local vs. Global Metrics. Existing experimental studies of cyto-
quakes define them as large local displacements of the cytoskele-
ton probed using transmembrane-attached microbeads or flex-
ible micropost arrays, rather than as large changes in the
cytoskeleton’s total energy U , as done here (9, 10). To roughly
compare our results to experiments, we made the corresponding
local measurements of the displacements of individual filaments.
Rather than summing over all filaments, we tracked each fila-
ment individually and measured the set {ηf }

Nf

f=1 (where Nf = 50

is the number of filaments) of the non-Gaussian parameter ηf
corresponding to each filament f ’s distribution of displacements
from 300 to 800 s. The calculation of filament displacements
is described in SI Appendix, Filament Displacements. We find
that the resulting distributions are heavy-tailed with values of
the non-Gaussian parameter for most filaments in the range
η∼ 1− 5 (Fig. 6). This finding is in semiquantitative agree-
ment with in vivo measurements on micropost arrays, whose
displacements have distributions characterized by η∼ 0− 7 (10).
In addition, we find the distribution of ηf itself to be heavy-
tailed, also in agreement with the micropost experiments. We
next estimated the instantaneous filament speed as the fila-
ment displacement divided by δt . We find the typical actin
filament displacement speeds (∼ 10 nm/s) to be consistent in
order of magnitude with separate in vitro experiments on dis-
ordered, contractile networks, which estimate this speed as ∼
10− 50 nm/s (47). These corroborations with existing mea-
surements suggest that our simulations of a minimal cytoskele-
tal model system can approximately reproduce experimentally
observed cytoskeletal dynamics. We finally mention in connec-
tion to experiments that it has recently been argued that more
detailed understanding of mechanical dissipation by cytoskeletal
networks should help to precisely control traction-based mea-
surements of cellular force production (28). The discovery of
avalanche-like dynamics in cytoskeletal networks reported in
this and previous studies may help to resolve this experimental
difficulty.

The local measurements {ηf }
Nf

f=1, obtained by tracking each
filament individually, can be compared to global measure-
ments, obtained by summing over every filament to obtain the
total displacement. The distribution of total displacements is
closer to Gaussian, characterized by η≈ 0 for most volumes
tested (Fig. 6). As with the increasing Gaussianity of ∆U
for large systems, this can be attributed to the central limit
theorem since many filaments were summed over to deter-
mine the total displacement. We conclude that in large sys-
tems, metrics can be heavy-tailed when measured locally, but
Gaussian when measured globally. This distinction between
local and global measurements may be important in inter-
preting future studies of anomalous statistics in cytoskeletal
self-organization.

Normal Mode Decomposition Probes Network’s Mechanical State.
Having described the statistics of the increments ∆U , we next
aimed to connect the occurrence of cytoquakes, defined as large
values of |∆U−|, to the cytoskeletal network’s mechanical sta-
bility. To this end, we implemented a method to compute the
Hessian matrix H of the mechanical energy function U . The
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Fig. 5. (A) CCDFs of |∆U−| normalized by the system volume V collected for five runs for increasing system sizes plotted against the fitted stretched
exponential functions. (B) The non-Gaussian parameters η for |∆U−| and ∆U+ are plotted with uncertainty taken over the different runs. (C) The Kohlrausch
exponents k for |∆U−| and ∆U+.

eigen-decomposition of H is Λ= {λk}3Nk=1, where 3N is the
number of mechanical degrees of freedom in the system, which
comprises N “beads” that are used to discretize the actin fila-
ments. Λ is related to the mechanical stability of the cytoskeletal
network: The eigenvectors vk are the normal vibrational modes
of the network, and the eigenvalues λk indicate the stiffness
(|λk |) and stability (sgn(λk )) of the corresponding mode. Exam-
ple vibrational modes are illustrated in Movies S2–S5. We drew
inspiration for studying Λ in the current context from several
sources: In single-molecule molecular dynamics studies, the sad-
dle points of U (i.e., points in the landscape with some imaginary
frequencies) are associated with transition states (48, 49); stud-
ies of polymer networks show that internal stresses produce
nonfloppy vibrational modes, even below the isostatic threshold
(50); in simulations of glass-forming liquids, the instantaneous
normal-mode spectrum allows inference about proximity to the
glass transition and determination of incipient plastic defor-
mation regions (51–53); in deep-learning models for predicting
earthquake aftershock distributions, it was found that certain
metrics also related to stability (e.g., the von Mises criterion) are
informative model inputs (54, 55).

We briefly digress from the results on cytoquakes to describe
some interesting observed trends of metrics defined on Λ. We
distinguish between unstable, stable, soft, and stiff modes: For
unstable modes, λk < 0, for stable modes, λk ≥ 0, for soft modes
0≤λk <λT , and for stiff modes, λk ≥λT , where we define
the threshold λT = 40 pN·nm to discriminate between the twin
peaks in the density of states (Fig. 7B). The set {λk}3Nk=1 is visu-
alized with these modes labeled in Fig. 7A for a QSS time point
of condition C3,3. A very small number of unstable modes persist
after each minimization cycle, later iterations stopping once the

maximum force on any bead in the network is below a threshold
FT (here 1 pN). Thus, the minimized configurations are, in fact,
saddle points of U ; this is expected, as it is known from the the-
ory of minimizing loss functions that the ratio of saddle points to
true local minima increases exponentially with the dimensional-
ity of the domain (56). We expect that in the space of all possible
network topologies (i.e., patterns of cross-linkers and motors
binding to filaments), the energy landscape will be rugged, lead-
ing to the well-appreciated glassy dynamics of nonequilibrium
cross-linked networks (57, 58). For a fixed topology, however,
which is the result of the chemical reactions occurring during step
(1) of the iterative simulation cycle, the energy landscape should
be smooth (i.e., not rugged) with respect to the beads’ positions,
with a single nearby local minimum being sought during mechan-
ical minimization in step (3). The residual unstable modes are
therefore thought to be an unimportant artifact of thresholded
stopping in the conjugate-gradient minimization routine, and not
representative of some physical feature of cytoskeletal networks.
The observed quantitative dependence of the number of residual
unstable modes on FT supports this conclusion and is illustrated
in SI Appendix, Fig. S11.

We quantify the number of degrees of freedom involved in a
given normalized eigenvector vk using the inverse participation
ratio (51):

rk =

(
N∑
i=1

3∑
µ=1

(vk ,iµ)4
)
−1. [4]

If the eigenmode involves only one degree of freedom, then one
component of vk will be one and the rest will be zero, and rk = 1.
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Fig. 6. Plots for different simulation volumes V of the distributions of
non-Gaussian parameter ηf of the distributions of individual filament dis-
placements. The box and whisker plots summarize the distribution of ηf for
all filaments in the system, with the median shown as a red bar, the box
extending from the first to the third quartiles, and the whiskers extend-
ing across the range of η, omitting outliers. The black diamonds indicate
the value of η obtained when instead of tracking each filament’s displace-
ment individually, the total summed displacement of all filaments from time
point to time point is tracked. These global measurements of displacement
are more Gaussian (with η≈ 0) than the corresponding local measurements
obtained from tracking filaments individually.

On the other hand, if the eigenmode is evenly spread over all
3N degrees of freedom, then each component vk ,iµ = (3N )−1/2,
and rk = 3N . In Fig. 7B, we plot rk for the unstable, soft, and
stiff modes, along with the density of states, showing that the
soft modes involve many degrees of freedom, while the stiff and
unstable modes are comparatively localized.

We find that the mean value of rk over the stable modes 〈r〉
varies nonmonotonically with myosin-motor concentration [M ]
and α-actinin concentration [α] (Fig. 7C). To understand this
trend, we implemented a mapping from the cytoskeletal net-
work into a graph and measured its mean node connectivity, a
purely topological measure of network percolation. The graph
was constructed to capture the cross-linker binding topology of
cytoskeletal networks. Nodes in the graph correspond to actin
filaments, and weighted edges (which may be thresholded and
converted to binary edges in an unweighted graph) correspond
to the number of cross-linkers connecting the pair of filaments.
The mean node connectivity is defined as the average over all
pairs of nodes in the unweighted graph of the number of edges
necessary to remove in order to disconnect them, thus quanti-
fying the typical number of force chains between filaments or,
equivalently, the extent of network percolation (59, 60). Reveal-
ingly, the mean node connectivity correlates closely with 〈r〉 for
the stable modes across the various conditions Ci,j (Fig. 7 C
and D). We also find the number of connected components of
H and of the graph’s adjacency matrix to match for most time
points, supporting this connection between network topology
and stable mode delocalization. Intermediate concentrations of
myosin motors can enhance the network percolation, but as [M ]
continues to increase, the motors act to disconnect cross-linked
network structures, causing the mean node connectivity and 〈r〉
to decrease (61). In SI Appendix, Degree Distributions, we plot
the distributions of the weighted node degree and connectivity.
These plots indicate that the networks investigated here are not
critically connected, and, thus, network connectivity does not by
itself explain heavy-tailed energy fluctuations. However, it would

be interesting to investigate in future work how these two aspects
of actomyosin networks are interrelated. It may be the case that
heavy tails in the distribution of network connectivity can allow
for heavier tails in the distribution of ∆U .

We observed that as a network contracts and becomes per-
colated during the process of myosin-driven self-organization,
the stable modes steadily delocalize (〈r〉 increases) and stiffen
(the geometric mean 〈λ〉g increases), as shown in Fig. 7 E and
F. During this process, we also witnessed a qualitative change
in the level-spacing statistics of the very soft and delocalized
modes (λk < 10 pN·nm, rk > 100) from a Poisson to a Wigner–
Dyson distribution (SI Appendix, Fig. S3). This indicates that
in the percolated state, these vibrational modes interact and
exhibit level repulsion, similar to soft particles near the jam-
ming transition (10, 14, 62, 63). Future studies may reveal further
similarities between these systems and other marginally stable
solids (58, 64).

Cytoquakes Are Preceded by Mechanical Instability and Deform along
Soft Modes. Can the eigen-decomposition of the Hessian matrix
be used to forecast cytoquake occurrence? Intuition suggests
that, by analogy with the connection between imaginary fre-
quencies (i.e., unstable modes) and molecular transition states,
the vibrational modes of the cytoskeletal network may con-
tain information that a large structural rearrangement is poised
to occur (48, 49). To test this idea, and without detailed a
priori knowledge about which features in Λ would be infor-
mative, we implemented a machine-learning model using the
eigen-decomposition as the input and outputting the predicted
probability of observing a large event of energy release (∆U <
−100 kBT ) occurring within the next 0.15 s. As detailed in SI
Appendix, Machine Learning Model, we found that, indeed, the
Hessian eigenspectrum Λ contains sufficient information to fore-
cast cytoquake occurrence with significant accuracy compared to
a random model. We first reduced the dimensionality of Λ(t)
using principal component analysis, finding that 30 dimensions
sufficed to explain > 95% of the variance across time points, and
then used the reduced input in a three-layer feed-forward neu-
ral network. We validated our model using receiver operating
characteristic curves, achieving an area under the curve (AUC)
of 0.70 when using data from five runs of condition C3,3. This
improvement in prediction performance over a random model
(which would have an AUC of 0.5) implies that mechanical insta-
bility, as encoded in the Hessian eigenspectrum, precedes the
occurrence of cytoquakes.

To further study the connection between cytoquakes and
mechanical stability, we measured the projections of the
network’s displacements onto the vibrational normal modes
{vk}3Nk=1. Network displacements d(t) were found by tracking the
movement of each of the N (t) beads during simulation cycles.
As a working approximation, beads that depolymerized during
a cycle were assigned a displacement of zero, and beads that
newly polymerized were not assigned elements in d(t). The 3N -
dimensional displacement vectors d were then normalized to
have unit length. We define

dk = d · vk , [5]

as the projections of d onto the eigenmodes vk , which obey∑
k d

2
k = 1 owing to the normalization of d and vk . Thus, the

quantity d2
k is the weight of the displacement d along the k th

eigenmode. With this, we define the effective stiffness

λP =
∑
k

d2
k λk , [6]

as the displacement-weighted average of the eigenvalues. In Fig.
8, we display a scatter plot of the pairs ∆U (t), λP (t) measured
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Fig. 7. Metrics defined on Hessian eigen-decomposition. (A) Ordered eigenspectrum {λk}3N
k=1 at a QSS time point for condition C3,3. (B) Scatter plot of

the pairs |λk|, rk (circles) plotted against the density of states (solid line), i.e., the proportion of eigenvalues between λ and λ+ dλ. (C) The mean value at
QSS of 〈r〉 for the stable modes for various conditions Ci,j . The conditions C1,j with low linker concentrations are not visualized, as these networks did not
percolate and obscure visualization for the remaining conditions. The mean is taken over the last 500 s and over different runs. (D) The mean value of the
mean node connectivity for various conditions. (E) Trajectories of 〈r〉 of the stable modes as the network self-organizes for the conditions C2,3, C3,3, C4,3, and
C5,3, where the color indicates the α-actinin concentration as in D, and with the mean and SD taken over the different runs. (F) Similar trajectories of the
geometric mean of the stable modes 〈λ〉g.

during QSS for a run of condition C3,3, along with a kernel den-
sity estimate of their joint probability density function (PDF). We
again distinguish between soft (0≤λk <λT ) and stiff (λk ≥λT )
eigenmodes, where λT = 40 pN·nm separates the twin peaks in
the density of states (Fig. 7B). The structure of the joint PDF is
markedly asymmetric about ∆U = 0 and shows that λP during
cytoquake events is almost always soft, whereas for all other sim-
ulation cycles, λP could be soft or stiff with similar probabilities.
Because soft modes inherently involve a large number of degrees
of freedom, as illustrated in Fig. 7B, we also consider

nk =
d2
k

rk
, [7]

as the weight of the displacement along eigenmode k per degree
of freedom involved in the eigenmode, where rk is the inverse
participation ratio defined in Eq. 4. We define nsoft and nstiff
as the mean of nk over the soft and stiff subsets. Values of
nsoft/nstiff for different simulation cycle types are displayed in Fig.
8, Inset, showing that nsoft >nstiff typically only during cytoquakes.
Based on this analysis, we conclude that during the large collec-
tive rearrangements corresponding to cytoquakes, cytoskeletal
networks exhibit enhanced displacement along the soft vibra-
tional modes. We qualify these results by observing that, since
cytoquakes involve particularly large network displacements, it
may be inappropriate to interpret them using the local harmonic
approximation to U implicit in Hessian analysis (53). In addition,
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Fig. 8. Scatter plot of the pairs ∆U, λP measured during QSS for a run of
condition C3,3. From these points, a Gaussian kernel density estimate of the
joint PDF (treating λP on a log-scale) is constructed and shown as a con-
tour plot. Red guidelines demarcate regions of interest. (Inset) Combination
violin and box-and-whisker plots showing the ratio nsoft/nstiff for different
categories of simulation cycles; c.f. Fig. 3. Inset is not blocking any of the
scatter-plot data.

changes in network topology from linker and motor (un)binding
cannot be captured using normal mode decomposition of instan-
taneous network configurations. The eigenspectrum Λ(t) still
informs on the stability of the energy-minimized configuration
before a cytoquake, but caution should be used in interpreting
the cytoquake motion from t to t + δt as decomposing cleanly
into noninteracting motions along the normal modes vk . We
leave a detailed analysis of the anharmonicity of cytoquake
deformations to future work.

Discussion
We have presented evidence supporting the following picture
of active cytoskeletal network self-organization: Cytoskeletal
networks explore a rugged mechanical energy landscape in a
stochastic process characterized by occasional, sudden jumps
out of metastable configurations (57, 58). These jumps entail
non-Gaussian dissipation of mechanical energy and are accom-
plished by an avalanche-like process of spreading destabiliza-
tion, resulting in a collective structural rearrangement and a
homogenization of tension. These collective motions have large
projections along the soft, delocalized vibrational modes, and,
furthermore, properties of these modes can be used to predict
when such relaxation events will occur. The key finding support-
ing the interpretation of cytoskeletal dynamics as avalanche-like
is the marked asymmetry about zero in the distribution of ∆U
(Figs. 2B and 5 B and C). In addition, several key quantities,
including filament displacements (Figs. 3A and 4), tension delo-
calization (Fig. 3D), and effective stiffness of the motion (Fig.
8), are distributed asymmetrically about ∆U = 0, supporting the
picture described above.

An interesting possible interpretation of the heavy tails of
|∆U−| is that cytoskeletal networks are at a point of SOC (40, 41,
65–67). Technical definitions of what constitutes SOC behavior
are not universally agreed upon, but we may follow the definition
of ref. 41, which states that SOC systems must have event-size
distributions that tend to a power law in the limit of an infinite
system size and a temporal signal that integrates a pink noise

process, giving β= 3 for the signal. The observed distribution
of |∆U−| for this system size is fit by a stretched exponential
function and has β= 1.72. Further, the distributions of |∆U−|
become increasingly Gaussian for large system sizes (Fig. 5). We
thus conclude that cytoskeletal networks for these physiological
conditions display noncritical dynamics, at least as measured by
using the global energy release |∆U−|. The motor walking in
the system may not be sufficiently slow to yield SOC behavior,
which requires a sharp separation of time scales between slow
driving and fast dissipation, and the nonconservative transfer of
mechanical energy between network components may also play
a role (13, 24, 46, 67, 68). We note, however, that recent studies
have indicated that branched cytoskeletal networks polymeriz-
ing against a flexible membrane can produce shape fluctuations
of the membrane that exhibit true SOC, leaving open the ques-
tion of whether criticality is an inherent feature of cytoskeletal
dynamics (69, 70).

Instead of scale-free fluctuations, we conjecture that there
exists a finite and intrinsic scale for avalanche-like releases
of energy that, when summed over sufficiently large systems
to obtain the global measure |∆U |−, yields an approximately
Gaussian distribution (Fig. 5). An important next question is
then what sets this scale and how it may be measured. We expect
that the nonconservative transfer of mechanical energy through
the network is one factor that attenuates the avalanches. This
nonconservation of mechanical energy arises from damping by
the cytosol, accounted for in simulation through periodic mini-
mization of the energy following stochastic chemical activity (SI
Appendix, Description of MEDYAN Simulation Platform). In the
lattice-based Olami–Feder–Christensen model of earthquake
systems, nonconservation of energy was shown to introduce a
stretched exponential cutoff to the power-law distribution of
event sizes, supporting this idea (46, 71). A rough estimate of the
intrinsic energy scale of avalanches can be obtained from the SD
of the approximately Gaussian distributions of |∆U |− for large
systems. However, a detailed measurement of the spatiotem-
poral scale will require spatially resolving the measured energy
fluctuations, which was not done in this study. In addition, in this
study, the temporal extent of avalanches was assumed fixed at
the smallest resolved time interval δt = 0.05 s (see SI Appendix,
Dependence on δt and FT for a discussion of how varying δt
affects the distribution of |∆U−|). Characterizing in-depth the
spatiotemporal scales of avalanches is thus an important avenue
for future work.

In addition to the question of what characterizes the spa-
tiotemporal scale of cytoskeletal avalanches, several other open
questions can be posed, based on the results presented here.
First, we may ask about the role of force-sensitive reaction
rates, including cross-linker unbinding and motor walking and
unbinding, in modulating cytoquakes (see SI Appendix, Descrip-
tion of MEDYAN Simulation Platform for details of these reac-
tions). The nonlinear coupling introduced by this force sensitivity
between the local tensions in the network and the local relax-
ation propensities is expected to strongly accentuate avalanche-
like dynamics, but in this study, we held the force-sensitive
reaction-rate parameters fixed at their physiological values. It
would also be interesting to vary the mechanical and geomet-
rical properties of the network, such as the molecular elastic
constants and the typical length of the myosin motors. A phase
diagram over these parameters would help elucidate the con-
ditions leading to avalanches and how the cell might modulate
their occurrence, e.g., by localizing different myosin isoforms
to different regions of the cell. Second, we may ask whether
the harmonic approximation to the energy implicit in Hessian
analysis is sufficient to describe the energy landscape and how
it leads to avalanches. The information on cytoquake dynam-
ics obtained by projecting the network motion onto the Hes-
sian eigenmodes revealed an asymmetry between energy-release
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events and energy-accumulation events (Fig. 8), and a neural
network model detected correlations between the Hessian eigen-
spectrum and the time-varying likelihood for a cytoquake to
occur (SI Appendix, Machine Learning Model). However, as cyto-
quakes are, by definition, large deformations of the network,
we expect that the quadratic approximation will fail to accu-
rately describe the energy landscape around a cytoquake event.
Higher-order terms in the energy expansion or recently intro-
duced nonlinear metrics of the local energy landscape, such
as the “flatness parameter,” may be used in future computa-
tional investigations (53, 72). Third, we may ask about the role
of thermal noise in inducing cytoquake events. In this study,
thermal noise enters in the stochastic nonequilibrium chemical
dynamics, which are simulated by using a variant of the Gille-
spie algorithm over a reaction–diffusion compartment grid (13).
However, the mechanical minimization routine is deterministic
given the instantaneous chemical state of the network. Chemical
reactions including motor walking and filament polymerization
are expected to contribute the dominant structural fluctuations
in these far-from-equilibrium networks, but the neglected diffu-
sive motion of the filaments should also help the network escape
from metastable configurations and modulate the frequency and
scale of avalanches. Elucidating whether cytoquakes can be ther-
mally activated in this way remains another open direction for
future work.

Finally, perhaps the most interesting open question regard-
ing cytoquakes pertains to their possible physiological role in
cell biology. We proposed here that cytoquakes may be con-
comitant with a large structural susceptibility, by analogy with
well-studied systems like the Ising model that have large sus-
ceptibilities to applied fields near their critical point (17, 73).
In this argument, the cytoskeleton may undergo large struc-
tural changes in response to small changes in the relevant
mechanical or chemical signals, an amplification that would
serve to enhance cellular sensitivity during dynamic processes,
such as chemotaxis. This could also enhance mechanical adap-
tivity, an increasingly well-documented feature of cytoskeletal
networks (19, 74–76). This connection between large cytoskele-
tal fluctuations and large susceptibility remains speculative at
this stage, however, and would benefit from dedicated study.
Recent work has suggested that the branching agent Arp2/3,
which was not included in the minimal model studied here,
can enhance cytoquake sizes (34). One can ask if by tun-
ing the strength of this or other cytoquake-modulating factors,
the network is more or less responsive to external perturba-
tion. This perturbation could be introduced either mechani-
cally, for example, through a simulated or real-force microscopy
experiment, or chemically, through a variation of the chemical
boundary conditions (33). Such studies should clarify whether
large events in cytoskeletal dynamics serve a biologically useful
purpose.

Materials and Methods
Simulation Setup and Conditions. To computationally study cytoskeletal
networks at high spatiotemporal resolution, we used the simulation plat-
form MEDYAN (13, 20, 31–33). We provide an in-depth discussion of
how MEDYAN works in SI Appendix, Description of MEDYAN Simula-
tion Platform. MEDYAN simulations combine stochastic chemical dynamics
with a mechanical representation of filaments and associated proteins.
Simulations move forward in time by iterating through a cycle of four
steps: 1) a short bust of stochastic chemical simulation using a variant
of the Gillespie algorithm for a time δt, 2) computation of the new
forces resulting from the reactions in step (1), 3) equilibration of the
network via minimization of the mechanical energy, and 4) updating of
force-sensitive reaction rates. This protocol reflects an assumed separa-
tion of time scales between the slow chemical dynamics and the fast
mechanical response, such that the mechanical subsystem is assumed to
always remain near equilibrium and to adiabatically follow the chemical
changes in the network. As argued in ref. 20, supported using exper-

imental evidence from refs. 22, 77, and 78, this time-scale separation
holds for typical cytoskeletal networks that experience localized force
deformations with fast relaxation times compared to the typical waiting
time between myosin-motor walking steps and filament-growth-induced
deformations.

We performed MEDYAN simulations of small cytoskeletal networks con-
sisting of 50 actin filaments in 1-µm3 cubic boxes with varying concen-
trations of α-actinin cross-linkers ([α]) and of NMIIA minifilaments ([M]).
The boundaries of the box exert an exponentially repulsive force against
the filaments with a short screening length of 2.7 nm. Five concentra-
tions of α-actinin (ranging from 0.17 to 5.48 µM) and five concentrations
of myosin miniflaments (ranging from 0.003 to 0.08 µM) were used with
a constant G-actin monomer concentration of 13.3 µM, in the regime of
physiological concentrations (45). This led to a steady-state filament-length
distribution with mean 0.48 µm and SD 0.26 µm. We label these conditions
Ci,j , where i = 1, . . . , 5 represents the rank of the cross-linker concentration
and j = 1, . . . , 5 represents the rank of the myosin-motor concentration. Five
runs of each condition Ci,j were simulated, each for 2,000 s. The length of
the simulation cycle δt was chosen as 0.05 s for the results presented in this
paper, although we explore dependence on this parameter in SI Appendix,
Dependence on δt and FT .

Entropy of Spatial Tension Distribution. The simulation volume of 1 µm3 is
discretized into 103 cubic voxels, each 0.1 µm in linear dimension. Let i, j, k =

1, . . . , 10 index these voxels, which are an analysis tool and not related to
the reaction–diffusion compartments used in MEDYAN. After each simu-
lation cycle, the mechanical components of the cytoskeletal network (i.e.,
the filament cylinders, the myosin motors, and the passive cross-linkers)
are each under some compressive or tensile force Tn, where n indexes the
mechanical component. There are other mechanical potentials involving
these components, but we focus here only on the tensions Tn. Each mechan-
ical component has a center of mass rn, and we define the indicator function
χijk(rn), which is equal to one if rn is inside voxel i, j, k and zero otherwise.
The total tension magnitude inside voxel i, j, k is

|T|ijk =
∑

n

|Tn|χijk(rn). [8]

The discrete nonnegative scalar field |T|ijk is converted to a distribution Pijk

by normalization:

Pijk =
|T|ijk∑
ijk|T|ijk

. [9]

Finally, we introduce the discrete Shannon entropy of this distribution at
time t as

H(t) =−
∑

ijk

Pijk(t) ln Pijk(t). [10]

The units of H are nats, and large values indicate a uniform spatial distribu-
tion of tension magnitudes throughout the network. Reported trends using
this metric are found to be essentially independent of the discretization
length.

Constructing the Hessian Matrix. In MEDYAN, semiflexible filaments are rep-
resented as a connected sequence of thin cylinders whose joined endpoints
(i.e., hinges) are called beads. The set of potentials defining the mechanical
energy of the filaments and associated proteins is outlined in SI Appendix,
Description of MEDYAN Simulation Platform. The mechanical energy U is a
function of these beads’ positions, and elements of the Hessian matrix are
defined as

Hiµ,jν =
∂2U

∂xiµ∂xjν
=−

∂Fiµ

∂xjν
=−

∂Fjν

∂xiµ
, [11]

where xiµ is the µth Cartesian component of the position of the ith bead.
We have µ= x, y, z and i = 1, . . . , N, where N is the number of beads in the
network, so H is a square symmetric 3N-dimensional matrix. The number of
beads N(t) will change as filaments (de)polymerize; in these simulations, at
QSS, a single filament of length 0.5 µm comprises ∼10 cylinders (11 beads),

10 of 12 | PNAS
https://doi.org/10.1073/pnas.2110239118

Floyd et al.
Understanding cytoskeletal avalanches using mechanical stability analysis

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2110239118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2110239118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2110239118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2110239118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2110239118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2110239118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2110239118/-/DCSupplemental
https://doi.org/10.1073/pnas.2110239118


BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

each ∼50 nm in length. After each mechanical minimization, H(t) is con-
structed by numerically computing the derivatives on the right of Eq. 11. The
derivative

∂Fiµ
∂xjν

is found by using a second-order central difference approxi-

mation by moving the jth bead in the ±ν directions by a small amount and
determining the changes in the force component Fiµ (79). Due to issues of
numerical accuracy, we do not assume the symmetry of the matrix H, but
instead directly compute each component Hiµ,jν and then symmetrize the
result: 1

2 (Hᵀ +H)→H.

Data Availability. Trajectories from numerical simulations have been
deposited in the Digital Repository at the University of Maryland (DRUM)
(80).
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79. B.R. Brooks, D. Janežič, M. Karplus, Harmonic analysis of large systems. I.
Methodology. J. Comput. Chem. 16, 1522–1542 (1995).

80. C. Floyd, H. Levine, C. Jarzynski, G. A. Papoian, “Data for: Understanding cytoskeletal
avalanches using mechanical stability analysis.” DRUM. https://doi.org/10.13016/s8yq-
dary. Deposited 19 August 2021.

12 of 12 | PNAS
https://doi.org/10.1073/pnas.2110239118

Floyd et al.
Understanding cytoskeletal avalanches using mechanical stability analysis

https://doi.org/10.13016/s8yq-dary
https://doi.org/10.13016/s8yq-dary
https://doi.org/10.1073/pnas.2110239118

