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Abstract: Non-alcoholic fatty liver disease (NAFLD) represents the most common form of chronic
liver disease worldwide. Due to its association with obesity and diabetes and the fall in hepatitis C
virus morbidity, cirrhosis in NAFLD is becoming the most frequent indication to liver transplantation,
but the pathogenetic mechanisms are still not completely understood. The so-called gut-liver axis has
gained enormous interest when data showed that its alteration can lead to NAFLD development and
might favor the occurrence of non-alcoholic steatohepatitis (NASH). Moreover, several therapeutic
approaches targeting the gut-pancreas-liver axis, e.g., incretins, showed promising results in NASH
treatment. In this review, we describe the role of incretin hormones in NAFLD/NASH pathogenesis
and treatment and how metagenomic/metabolomic alterations in the gut microbiota can lead to NASH
in the presence of gut barrier modifications favoring the passage of bacteria or bacterial products in
the portal circulation, i.e., bacterial translocation.

Keywords: non-alcoholic fatty liver disease; non-alcoholic steatohepatitis; type-2 diabetes;
gut-pancreas-liver axis; incretins; lipid metabolism; glucose metabolism

1. Introduction

The incidence of non-alcoholic fatty liver disease (NAFLD) is rapidly growing and it is estimated
that in the general population about 25% of the individuals have hepatic steatosis [1]. The real
prevalence of the disease is unknown, but it increases up to 57% in those with body mass index
(BMI) of 30kg/m2 or greater (obesity), to 70% in diabetic subjects, and 90% in morbidly obese patients
undergoing metabolic surgery [2,3].

The mechanisms that lead to hepatic triglyceride (TG) accumulation and the development of NASH
are complex and still incompletely understood. It has been postulated that the initial accumulation
of hepatic TG is a compensatory effect for hepatic lipid overflow without major metabolic effect
(first hit). However, lipotoxicity and other factors are triggering hepatic inflammation and tissue
fibrosis that can lead to non-alcoholic steatohepatitis (NASH, second hit) [4]. Several hypotheses
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have been postulated as regard to the second hit, including the involvement of an alteration in the
gut-liver axis [5]. The intestine is a multifunctional organ connected with many body organs but
its role in metabolism control was only revealed in recent years. The intestinal cells secrete several
hormones—among these glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide
(GIP), oxyntomodulin and possibly glucagon—that are involved with pancreatic hormones insulin
and glucagon and are important for the maintenance of glucose and lipid homeostasis [6]. Moreover,
the gut microbiota can influence whole body and liver metabolic and inflammatory status through
the metabolism of nutrients and the release of anti- and pro-inflammatory compounds. The intestinal
barrier might become compromised allowing bacterial translocation from the intestine to other organs
(the liver in primis). The aim of this review is to discuss some of the mechanisms involved in the
gut-pancreas-liver axis important for the development of NAFLD and its progression to NASH and
other comorbidities like type-2 diabetes (T2D).

2. Physiological Effects of Incretin Hormones

It is now recognized that the intestine is an endocrine organ able to secrete hormones that
regulate whole-body metabolism in response to food ingestion and also to regulate appetite and gastric
emptying. Among these hormones, the most studied are the incretin hormones like GLP-1 and GIP
that are secreted mainly by the intestine in response to a meal [7] (Figure 1).

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 2 of 41 

 

inflammation and tissue fibrosis that can lead to non-alcoholic steatohepatitis (NASH, second hit) [4]. 
Several hypotheses have been postulated as regard to the second hit, including the involvement of 
an alteration in the gut-liver axis [5]. The intestine is a multifunctional organ connected with many 
body organs but its role in metabolism control was only revealed in recent years. The intestinal cells 
secrete several hormones—among these glucagon-like peptide-1 (GLP-1), glucose-dependent 
insulinotropic peptide (GIP), oxyntomodulin and possibly glucagon—that are involved with 
pancreatic hormones insulin and glucagon and are important for the maintenance of glucose and 
lipid homeostasis [6]. Moreover, the gut microbiota can influence whole body and liver metabolic 
and inflammatory status through the metabolism of nutrients and the release of anti- and pro-
inflammatory compounds. The intestinal barrier might become compromised allowing bacterial 
translocation from the intestine to other organs (the liver in primis). The aim of this review is to 
discuss some of the mechanisms involved in the gut-pancreas-liver axis important for the 
development of NAFLD and its progression to NASH and other comorbidities like type-2 diabetes 
(T2D). 

2. Physiological Effects of Incretin Hormones 

It is now recognized that the intestine is an endocrine organ able to secrete hormones that 
regulate whole-body metabolism in response to food ingestion and also to regulate appetite and 
gastric emptying. Among these hormones, the most studied are the incretin hormones like GLP-1 
and GIP that are secreted mainly by the intestine in response to a meal [7] (Figure 1). 

 
Figure 1. Secretion and physiological effects of incretin hormones GIP and GLP-1 in different organs 
and tissues. The intestinal epithelium is composed of several cell types, including enteroendocrine 
cells such as K-cells and L-cells, responsible for the secretion of GIP and GLP-1, respectively. The 
secretion of these hormones is triggered upon nutrient stimulation of G protein-coupled receptors 
(GPCRs) present in the cell membrane. Some of the nutrients responsible for GIP and GLP-1 secretion 
are glucose (and other carbohydrates), lipids, some amino acids and proteins. Bile acids can also 
stimulate incretin secretion. After secretion, GIP and GLP-1 exert their functions in the pancreas and 
extra-pancreatic tissues, such as the liver, adipose tissue, muscle, bone, and the central nervous 
system. Abbreviations: AA, Amino acids; CASR, Calcium-sensing receptor; FFAR, Free fatty acid 
receptor; GIP, Glucose-dependent insulinotropic peptide; GLP-1, Glucagon-like peptide-1; GLP-2, 
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Figure 1. Secretion and physiological effects of incretin hormones GIP and GLP-1 in different organs and
tissues. The intestinal epithelium is composed of several cell types, including enteroendocrine cells such
as K-cells and L-cells, responsible for the secretion of GIP and GLP-1, respectively. The secretion of these
hormones is triggered upon nutrient stimulation of G protein-coupled receptors (GPCRs) present in the
cell membrane. Some of the nutrients responsible for GIP and GLP-1 secretion are glucose (and other
carbohydrates), lipids, some amino acids and proteins. Bile acids can also stimulate incretin secretion.
After secretion, GIP and GLP-1 exert their functions in the pancreas and extra-pancreatic tissues, such as
the liver, adipose tissue, muscle, bone, and the central nervous system. Abbreviations: AA, Amino acids;
CASR, Calcium-sensing receptor; FFAR, Free fatty acid receptor; GIP, Glucose-dependent insulinotropic
peptide; GLP-1, Glucagon-like peptide-1; GLP-2, Glucagon-like peptide-2; GLUT, Glucose transporter;
LCFA, Long-chain fatty acids; PYY, Peptide YY; SCFA, Short-chain fatty acids; SGLT, Sodium-dependent
glucose cotransporter; TGR5, Takeda G protein-coupled receptor 5; VLDL, Very-low-density lipoprotein.
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After secretion, gut hormones are rapidly degraded by dipeptidyl peptidase-4 (DPP-4),
resulting in an in vivo half-life of approximately two minutes. DPP-4 is a 110 kilodaltons (kDa)
membrane-associated peptidase that is expressed on the apical surface of epithelial and acinar
cells, endothelial cells, fibroblasts, and lymphocytes [8–10] and also exists as a soluble circulating
form in plasma [11]. For this reason, synthetic forms of GLP-1 resistant to the action of DPP-4
(exenatide, liraglutide, lixisenatide, albiglutide, dulaglutide, semaglutide) or inhibitors of DPP-4
activity (e.g., gliptins) have been developed and commercialized in order to raise the plasma levels
of GLP-1.

2.1. Incretin Secretion and Physiological Effects

The secretion of the incretin hormones GLP-1 and GIP occurs in the intestine in response to a meal [7]
(Figure 1). Nutrients in a meal, such as glucose, fatty acids and triglycerides, amino acids and proteins
stimulate incretin hormone secretion in the intestine [12]. Some studies showed that pancreatic alpha
cells may also secrete GLP-1 [13]. The major effect of incretins is the potentiation of glucose-stimulated
insulin secretion by pancreatic β-cells [14–17]. Despite similar effects on insulin secretion, GLP-1 and
GIP have opposite effects on glucagon secretion by pancreatic α cells. While GLP-1 suppresses
glucagon secretion at euglycemia, but not during hypoglycemia [18], GIP stimulates glucagon secretion
at euglycemia, but not during hyperglycemia [19], being one of the reasons behind the apathy for
GIP-based therapies for T2D. The early studies by Nauck and Holst have shown that the actions of
GLP-1 and GIP on insulin secretion are nearly equal and additive in healthy humans [20,21], which is
not observed in the set of T2D where the endocrine pancreas ceases responsiveness to GIP but remains
responsive to GLP-1, explaining the reduced/absent incretin effect of GIP in T2D [22,23].

GLP-1 also has other pleiotropic effects (Figure 1), including delay in gastric emptying and glucose
absorption [24,25], stimulation of brain areas involved in the regulation of glucose homeostasis and
food reward [26], suppression of glucagon secretion [25], beneficial effects on cardiovascular risk
factors, a natriuretic effect on the kidney and others [16,27]. Of importance, GLP-1 has been shown to
have a central effect to promote satiety, to reduce appetite and food intake [28], and GLP-1 receptor
agonists (GLP-1RA) have been shown to promote weight loss and decrease liver fat [28,29] (Figure 1).
GIP is also an incretin hormone but its power to stimulate insulin secretion was considered minor
compared to GLP-1 [20]. A recent study showed that GIP’s effects on glucose excursions and insulin
secretion in response to a four-hour oral glucose tolerance tests (75 g) combined with an ad libitum
meal test were more relevant than GLP-1′s effects (i.e., higher postprandial plasma glucose excursions
and lower insulin secretion) and that the two hormones contribute additively to postprandial glucose
regulation in healthy individuals [30]. Secretion of these two hormones is altered by obesity, age,
diabetes, weight loss and exercise [31–33]. However, the pleiotropic effects of GLP-1 and GIP seem to
be directed to different organs (Figure 1), such as the adipose tissue, muscle, central nervous system,
bone and the liver.

2.2. Incretin Effects on Liver Enzymes, Steatosis, Inflammation and Fibrosis

The long-term effects of GLP-1RA go beyond the improvement in glucose metabolism and weight
loss [34–39] and it is now established their beneficial effects of hepatic metabolism and histology. Only a
limited number of studies have evaluated in humans the impact of GLP-1RA or DPP-4 inhibitors on
liver function and hepatic steatosis (Tables 1 and 2). In general, a reduction in hepatic TG content has
been observed with GLP-1RA. All GLP-1RA have shown an improvement in liver enzymes that was
more evident in subjects with elevated alanine aminotransferase (ALT) at baseline.
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Table 1. Drugs with known effect on parameters of NAFLD/NASH (divided by the clinical trial phase).

Drug Name Mechanism of
Action Admini-Stration Stage of

Development
Effect on
Steatosis

Effect on
Fibrosis

Effect on
LFTs

Effect on
Glucose

Metabolism

Effect on
Insulin

Resistance
References

HM15211 GLP-
1/GIP/glucagon SC Phase I Yes * Yes * Yes * NA NA [40–42]

NGM313
MK3655

Activator of
FGFR1c/KL

SC (once
monthly) Phase I Yes NA NA Yes Yes [43,44]

RO5093151 11β-HSD1
inhibitor PO Phase I/II Yes NA Yes Yes Yes [45,46]

MK-0533 PPAR
γ/SPPARM PO Phase II NA NA NA Yes Yes [47]

Pemafibrate PPAR
α/SPPARM PO Phase II NA NA Yes NA Yes [48]

Saroglitazar PPAR α/γ PO Phase IIa Yes Yes Yes Yes Yes [49–51]

Lanifibranor PPAR α/γ/δ PO Phase IIa Yes Yes Yes Yes Yes [52,53]

Tropifexor FXR agonist PO Phase IIb Yes Yes Yes NA NA [54,55]

Cilofexor FXR agonist PO Phase II Yes No Yes NA NA [56,57]

NGM282 FGF19 analogue SC Phase II Yes Yes Yes No No [58–63]

Cotadutide
(MEDI0382) GLP-1/glucagon SC Phase II Yes NA Yes Yes Yes [64,65]

ZP2929/BI
456906 GLP-1/glucagon SC Phase II Yes * Yes * NA Yes * Yes [66,67]

Licogliflozin Dual SGLT1/2
inhibitor PO Phase IIa Yes NA Yes Yes Related to

weight loss [68,69]

BIO89-100 PEG-FGF21
analogue SC Phase Ib/IIa Yes NA Yes Yes Yes [70]

PF-06835919 Ketohexokinase
(KHK) Inhibitor PO Phase II Yes NA Yes NA Yes [71]

TVB-2640
Fatty acid

synthase (FAS)
inhibitor

PO Phase II Yes NA Yes No No [72]

GS-0976
(Firsocostat)

Acetyl-CoA
carboxylase

(ACC) inhibitor
PO Phase II Yes Yes Yes No No [73]

Resmetirom
(MGL-3196)

Hepatic thyroid
hormone

receptor-β
agonist

PO Phase II/III Yes Yes Yes NA NA [74]

MSDC-0602K
Mitochondrial

pyruvate carrier
(MPC)

PO Phase IIb Yes NA Yes Yes Yes [75,76]

Lobeglitazone PPAR γ PO Phase III Yes No NA NA Yes [77]

INT-131
besylate

PPAR
γ/SPPARM PO Phase III Yes No NA Yes Yes [78]

Elafibranor PPAR α/δ PO Phase III Yes Yes Yes Yes Yes [79,80]

Obeticholic
acid FXR agonist PO Phase III Yes, mild Yes Yes No NA [81–83]

Tirzepatide
(LY3298176) GLP-1/GIP SC Phase III Yes Yes Yes Yes Yes [84–86]

NNC0090-
2746/RG7697 GLP-1/GIP SC Phase III Yes Yes Yes Yes Yes [87]

Pegbelfermin Long-acting
FGF21 analogue SC Phase III Yes Yes Yes No No [88,89]

Aramchol
Stearoyl-coenzyme-
A-desaturase-1

(SCD1) inhibitor
PO Phase III/IV Yes Yes Yes Yes No [90,91]

Pioglitazone PPAR γ PO Phase IV Marked Yes Yes Yes Yes [92–95]

Fenofibrate PPAR α PO Phase IV Minimal No Yes No No [96–98]

Bezafibrate PPAR α PO Phase IV NA NA Yes No No [99–101]

Liraglutide GLP-1RA SC Phase IV Yes Yes Yes Yes Related to
weight loss [102–104]

Semaglutide GLP-1RA SC/PO Phase IV Yes Yes Yes Yes Related to
weight loss [105]

Dulaglutide GLP-1RA SC Phase IV Yes Yes Yes Yes Related to
weight loss [106,107]

Exenatide GLP-1RA SC Phase IV Yes Yes Yes Yes Related to
weight loss [24,108–112]

Lixisenatide GLP-1RA SC Phase IV NA NA Yes Yes Related to
weight loss [113]
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Table 1. Cont.

Drug Name Mechanism of
Action Admini-Stration Stage of

Development
Effect on
Steatosis

Effect on
Fibrosis

Effect on
LFTs

Effect on
Glucose

Metabolism

Effect on
Insulin

Resistance
References

Sitagliptin DPP-4 inhibitor PO Phase IV No No No Yes No [114–117]

Empagliflozin SGLT2 inhibitor PO Phase IV Yes Yes Yes Yes Related to
weight loss [118–120]

Canagliflozin SGLT2 inhibitor PO Phase IV Yes NA Yes Yes Related to
weight loss [121–126]

Dapagliflozin SGLT2 inhibitor PO Phase IV Yes NA Yes Yes Related to
weight loss [111,127–130]

Ertugliflozin SGLT2 inhibitor PO Phase IV NA NA Yes Yes Related to
weight loss [131]

Ipragliflozin SGLT2 inhibitor PO Approved by
PMDA Yes Tendency

to decrease Yes Yes Related to
weight loss [117,132–138]

Tofogliflozin SGLT2 inhibitor PO Approved by
PMDA Yes NA Yes Yes Related to

weight loss [139]

Luseogliflozin SGLT2 inhibitor PO Approved by
PMDA Yes NA Yes Yes Related to

weight loss [140,141]

Glargine Insulin SC Phase IV Yes NA No Yes - [112,142,143]

Only drugs approved or under investigation in clinical trials were reported. Abbreviations: ACC, Acetyl-CoA
carboxylase α; DPP-4, Dipeptidyl peptidase 4; FAS, Fatty acid synthase; FGF, Fibroblast growth factor; FGFR1c/KLB:
fibroblast growth factor receptor 1c/βKlotho complex; FXR, Farnesoid X receptor; GIP, Glucose-dependent
insulinotropic peptide; GLP-1, Glucagon-like peptide-1; GLP-1RA, Glucagon-like peptide-1 receptor agonists; HSD1,
Hydroxysteroid dehydrogenase; KHK, Ketohexokinase; MPC, Mitochondrial pyruvate carrier; NA, Not available;
PEG, PEGylated molecule attached to polyethylene glycol (PEG); PMDA, Pharmaceuticals and Medical
Devices Agency; PO, Oral administration; PPAR, Peroxisome proliferator-activated receptor; SC, Subcutaneous
administration; SCD1, Stearoyl-CoA desaturase 1; SGLT, Sodium-dependent glucose cotransporter; SPPARM,
Selective PPARγ modulator. * Any changes in histological parameters were published only for preclinical studies
(especially for the studies in phase 1).

Table 2. Liver-related outcome effects of treatment with GLP-1RA or DPP-4 inhibitors in humans.

References Subjects Weeks of
Treatment Treatment Agent Histology

(Yes/No) Fibrosis Steatosis Visceral
Fat ALT BMI HbA1c

Buse et al.
(2007) [144] T2D (n = 283) 30 + 2 years

follow up Exenatide No - - -
↓

(if elevated
at baseline)

↓ ↓

Klonoff et al.
(2008) [110] T2D (n = 217) 30 + 3 years

follow up Exenatide No - - -
↓

(if elevated
at baseline)

↓ ↓

Jendle et al.
(2009) [145] T2D (n = 131) 26 Liraglutide +

Metformin No - ↓

(CT)
↓

(CT) ↓ ↓ ↓

Kenny et al.
(2010) [146]

T2D and
biopsy-proven
NAFLD (n = 8)

28 Exenatide Yes ↓ ↓ - ↓ ↓ ↓

Sathyanarayana
et al. (2011)

[147]
T2D (n = 21) 52 Exenatide +

Pioglitazone No - ↓

(MRS) - ↓ ↓ ↓

Yilmaz et al.
(2012) [148]

T2D+ NASH (n
= 15) 52 Sitagliptin Yes = = - ↓ ↓ =

Ohki et al.
(2012) [149]

T2D and NAFLD
(n = 26) NA Liraglutide No ↓

(APRI) - - ↓ ↓ ↓

Ohki et al.
(2012) [149]

T2D and NAFLD
(n = 36) NA Sitagliptin No =

(APRI) - - ↓ = ↓

Cuthberson et
al. (2012) [150]

Obese, T2D and
NAFLD (n = 25,

19/6)
26 Exenatide or

Liraglutide No - ↓

(MRS)
↓

(MRI) ↓ ↓ ↓

Fan et al. (2013)
[151]

T2D and NAFLD
(n = 117) 12 Exenatide or

Metformin No - - - ↓ ↓ =

Suzuki et al.
(2013) [152] T2D (n = 46) 26 Liraglutide +

Pioglitazone No - ↓

(CT)
↓

(CT) - ↓ =

Bergenstal et al.
(2013) [153] T2D (n = 534) 52 Exenatide No - - - ↓ ↓ ↓

Blaslov et al.
(2014) [154] T2D (n = 125) 26

Exenatide alone or
add-on metformin

or/and sulphonylurea
No - ↓

(FLI) - ↓ ↓ ↓

Shao et al.
(2014) [109]

Obese, NAFLD
with elevated
liver enzymes

and T2D (n = 60)

12 Exenatide + Insulin No - ↓

(US) - ↓ ↓ ↓
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Table 2. Cont.

References Subjects Weeks of
Treatment Treatment Agent Histology

(Yes/No) Fibrosis Steatosis Visceral
Fat ALT BMI HbA1c

Watanabe et al.
(2015) [115]

T2D and NAFLD
(n = 7) 12 Sitagliptin No - ↓

(MRS)
=

(MRI) = = ↓

Tang et al.
(2015) [142] T2D (n = 35) 12 Liraglutide or Insulin

glargine No - =
(MRS) - = ↓ ↓

Eguchi et al.*
(2015) [155]

Diabetic
NAFLD/NASH

(n = 19)
24 + 24 Lifestyle +

Liraglutide No ↓

(FIB-4)
↓

(CT)
↓

(CT) ↓ ↓ ↓

Eguchi et al.*
(2015) [155]

T2D+
NAFLD/NASH

(n = 10)
24 + 24 + 96

Lifestyle +
Liraglutide +

Follow-up
Liraglutide

Yes ↓ ↓ - ↓ ↓ ↓

Smits et al.
(2016) [156]

Overweight T2D
(n = 52) 12 Liraglutide or

Sitagliptin No
=

(APRI/FIB-
4/NFS)

=
(MRS) - ↓ = ↓

Cui et al. (2016)
[114]

Prediabetic
NAFLD (n = 50) 24 Sitagliptin No =

(MRE)
=

(MRI) - = = =

Armstrong et
al. (2016) [103]

Biopsy-proven
NASH (n = 23) 48 Liraglutide Yes ↓ ↓ - ↓ ↓ ↓

Joy et al. (2017)
[116]

Biopsy-proven
NASH (n = 12) 26 Sitagliptin Yes =

(NAS)
=

(MRI)
=

(MRI) = = ↓

Petit et al.
(2017) [157] T2D (n = 68) 26 Liraglutide No - ↓

(MRS) - ↓ ↓ ↓

Feng et al.
(2017) [158]

T2D and NAFLD
(n = 87) 24

Liraglutide,
Metformin or

Gliclazide
No - ↓

(US) - ↓ ↓ ↓

Khoo et al.
(2017) [159]

Obese NAFLD (n
= 24) 26 Liraglutide versus

Lifestyle No - ↓

(MRI) - ↓ ↓ -

Seko et al.
(2017) [107]

T2D and
biopsy-proven

NAFLD (n = 15)
12 Dulaglutide Yes ↓ ↓ - ↓ ↓ ↓

Cusi et al.
(2018) [106] T2D (n = 971) 26 Dulaglutide No - - - ↓ - ↓

Yan et al. (2019)
[143]

T2D and NAFLD
(n = 18) 26 Liraglutide +

Metformin No - ↓

(MRI)
↓

(MRI) - ↓ ↓

Gastaldelli et
al. (2019) [111] T2D (n = 228) 28/52 Exenatide +

Dapagliflozin No - - - ↓ - ↓

Abbreviations: ALT, alanine aminotransferase; APRI, AST to platelet ratio index; BMI, body mass index; CT,
computed tomography; FIB-4, fibrosis-4 index; HbA1c, glycosylated hemoglobin; MRE, magnetic resonance
elastography; MRI, magnetic resonance imaging; MRS, magnetic resonance spectroscopy; NAFLD, non-alcoholic
fatty liver disease; NAS, NAFLD Activity Score; NASH, Non-alcoholic steatohepatitis; NFS, NAFLD fibrosis score;
T2D, type-2 diabetes; US, ultrasound. ↓ represent a decrease; = represent no change. * 24weeks lifestyle intervention,
followed by 24 weeks with liraglutide. 10 subjects continued liraglutide until 96 weeks and were followed up with
biopsy. All analyses are reported versus baseline GLP-1RA/DPP-4 inhibitor.

The effect of GLP-1RA on hepatic steatosis was observed in several mice models (including
leptin-deficient ob/ob mice, leptin receptor-deficient db/db mice, and high-fat diet (HFD) fed mice that
showed a decrease after exenatide treatment [160–162] or liraglutide [163].

Liraglutide treatment reduced ALT in a dose-dependent matter (although the difference was
significant only at the maximum dose, i.e., at 1.8 mg) [34,164]. Post-hoc analyses on the effects of
other GLP-1RA on liver enzymes showed a reduction in liver enzymes with lixisenatide [113] and
exenatide [110,144,153]. Among the long-acting GLP-1RA, both dulaglutide [106,107] and semaglutide
treatments were associated with improvement in ALT more evident in subjects with elevated ALT
before treatment and in a dose-dependent way. Liraglutide promoted weight loss and beneficially
altered the fat distribution by decreasing waist circumference, waist/hip ratio, and the amount of
subcutaneous and visceral fat content and liver steatosis [145,150,152,155]. An ancillary study of the
LEAD-2 (Liraglutide Effect and Action in Diabetes) trial analyzed the changes in liver, visceral and
subcutaneous fat by computed tomography as liver-to-spleen attenuation ratio in 131 subjects treated
with various doses of liraglutide+metformin versus placebo or glimepiride [145]. Liraglutide decreased
liver fat only in the 1.8mg/day+metformin group while changes in 0.6 and 1.2 mg/day liraglutide,
placebo+metformin or glimepiride+metformin were not significantly different from baseline [145].
The LEAN (Liraglutide Efficacy and Action in Non-Alcoholic Steatohepatitis) trial is the largest trial
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so far that evaluates the efficacy of a GLP-1RA (i.e., liraglutide) in biopsy-proven NASH patients.
Fifty-two patients were randomly assigned 1:1 to subcutaneous injections of liraglutide (1.8 mg daily)
or placebo for 48 weeks [103]. Liraglutide induced resolution of NASH in 39% of patients versus 9%
of placebo.

Treatment with exenatide reduced liver steatosis [109,146,150] and when added to pioglitazone,
an oral hypoglycemic and insulin sensitizing drug approved for the treatment of T2D that acts on
nuclear peroxisome proliferator activated receptor-gamma (PPAR-γ) [147], potentiated the known
action of pioglitazone in reducing hepatic fat [92]. Similar effects were observed in the Duration-8 trial
where exenatide alone or in combination with SGLT2 inhibitor dapagliflozin significantly reduced the
liver fat scores [111].

Studies in animal models indicate that GLP-1RA treatment might be beneficial also for liver
fibrosis. However, conclusive data on the effects of GLP-1RA on hepatic fibrosis and parameters
of liver disease in humans are lacking (Table 2). In the LEAN trial fewer patients in the liraglutide
group (2/23) showed progression in fibrosis compared to the placebo group (8/22), and a greater
proportion of liraglutide-treated patients improved steatosis and hepatocyte ballooning, while no
differences were seen in lobular inflammation and overall NAFLD activity score [103]. Trevaskis et al.
showed that liraglutide treatment reduced immunostaining for type I collagen, the most abundant
type in hepatic fibrosis [165]. In a retrospective study, liraglutide and pioglitazone, but not sitagliptin,
decreased liver fibrosis index APRI (calculated as the aspartate aminotransferase (AST) to platelet
count ratio), and the improvement was associated with weight loss and a marked reduction in AST
and ALT levels [149]. An open-labeled, prospective study examined the effect of exenatide in eight
T2D patients with biopsy-proven NAFLD [146]. After 28 weeks, liver histology assessed using the
NAFLD Activity Score improved in three of eight subjects and fibrosis was reduced in four of eight
subjects [146]. However, the lack of a control group and the small number of subjects is a major
limitation in this study. In the study by Eguchi, 10 patients that received over two-year treatment with
liraglutide showed improved histology while only 1 subject worsened his condition [155].

The number of patients enrolled in studies with GLP-1RA was often limited, without a control
group. However, the meta-analysis performed by Dong et al. that included six studies (three with
liraglutide and three with exenatide, but only three with liver biopsy including the LEAN study)
showed that treatment with GLP-1RA reduced, compared to placebo, the degree of NASH activity
(in terms of steatosis, lobular inflammation and hepatocytes ballooning) and the stage of fibrosis [166].

2.3. Effect of GLP-1 and GLP-1RA on Hepatic Glucose and Lipid Metabolism

The liver has a crucial role in maintaining glucose homeostasis, which is tightly orchestrated by
the action of pancreatic insulin and glucagon. Gut hormones, particularly incretins, are also involved
in this regulation (Figure 2) not only through the potentiation of insulin secretion. Several studies have
shown an improvement in hepatic glucose and lipid metabolism after GLP-1 injection [167,168] or
GLP-1RA treatment [24,102,169–171] either in humans and animal studies.

The positive effect of GLP-1RA on diabetic hyperglycemia and hepatic metabolism appears to
be due in part to weight loss through their effects on appetite and food consumption and in part to
reduced glucotoxicity in T2D. However, infusion of native GLP-1 showed acute effects on glucose
metabolism by reducing hepatic glucose production [167,168].

GLP-1 receptor was found in nerves that innervate hepatocytes [172], but their presence on human
liver or hepatocytes is debated as found by some [169,170] but not others [173,174]. A recent study that
used incretins (GLP-1 and Exendin-4) radiolabeled with technetium-99m showed that the tracer was
highly taken up both by the liver and the pancreas and that the uptake was reduced in both organs
after diet-induced obesity (DIO), similarly to alloxan diabetes controls [175].

In addition to the glucose-lowering actions, GLP-1RA based therapies have been reported to
improve both fasting and postprandial lipid profiles in patients with T2D, in particular triglyceride
concentrations [104,147,153,176,177]. Native GLP-1 did not change free fatty acid (FFA) concentrations
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or glycerol rate of appearance [168]. On the other hand, peripheral lipolysis is often found reduced
after GLP-1RA treatment [102,178] possibly because of weight loss. However, it is now evident that
GLP-1RA improves the antilipolytic effect of insulin by reducing adipocyte insulin resistance and the
overflow of FFA to the liver [24,102].
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Figure 2. Mechanistic effects of GLP-1 and GLP-1 receptor agonists in hepatic lipid metabolism.
GLP-1 and GLP-1 receptor agonists act via G protein-coupled receptors (GPCRs) in hepatocytes to target
several signaling pathways, resulting in increased β-oxidation in mitochondria, decreased hepatic
mRNA expression of several lipogenic genes (SREBP1, FAS, ACC and SCD1), reduced de
novo lipogenesis (DNL) and reduced steatosis. Abbreviations: ACC, Acetyl-CoA carboxylase
α; ACOX, Peroxisomal acyl-coenzyme A oxidase; Akt, Serine/threonine protein kinase B/Akt;
AMPK, 5′ AMP-activated protein kinase; ApoB, Apolipoprotein B 100; cAMP, Cyclic adenosine
monophosphate; CPT1, Carnitine palmitoyltransferase 1; DNL, de novo lipogenesis; FAS, Fatty acid
synthase; FFA, Free fatty acids; FGF21, Fibroblast growth factor 21; GLP-1, Glucagon-like
peptide-1; GLP-1RA, Glucagon-like peptide-1 receptor agonists; GPCR, G-protein-coupled receptors;
GSK-3, Glycogen synthase kinase 3; MTP, Microsomal triglyceride transfer protein; mTOR,
mammalian target of rapamycin; PI3K, Phosphoinositide 3-kinase; PKA, Protein kinase A; PPAR,
Peroxisome proliferator-activated receptor; SCD1, Stearoyl-CoA desaturase 1; Sirt1, Sirtuin 1; SREBP,
Sterol regulatory element-binding protein; TCA, Tricarboxylic acid cycle; TG, Triglyceride; UPR,
Unfolded protein response; VLDL, Very-low-density lipoprotein.

The mechanism(s) through which gut hormones regulate hepatic lipid metabolism are still unclear.
In Figure 2 we have summarized some of the proposed mechanisms for GLP-1 and GLP-1RA.
In vitro studies have demonstrated a direct effect of GLP-1 and GLP-1RA on hepatocyte fatty
acid metabolism [102,170,179]. It has been proposed that GLP-1RA ameliorate hepatic steatosis
by increasing fatty acid oxidation, enhancing very-low-density lipoprotein (VLDL) secretion and
inhibiting lipogenesis [170,180]. Treatment of Huh7 and HepG2 hepatoma cells with exenatide
decreased intracellular lipid accumulation [181,182] by enhancing fatty acid oxidation and
reducing lipogenesis [160,161,179,183]. In hepatocytes from rats that developed NASH after HFD,
exenatide activated genes involved in hepatic fatty acid β-oxidation and insulin sensitivity such as
PPAR-γ expression, protein kinase A activity, serine/threonine protein kinase B/Akt and AMP-activated
protein kinase (AMPK) phosphorylation, and PPAR-α activity, that were altered by HFD treatment [170]
(Figure 2). GLP-1-treated hepatocytes manifested a significant increase in cAMP production and a
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reduction in mRNA expression of stearoyl-CoA desaturase 1 and genes associated with fatty acid
synthesis, such as acetyl-CoA carboxylase and fatty acid synthase [160,184]. The converse was true for
genes associated with fatty acid oxidation [160].

GLP-1RA treatment has been associated with alterations in lipid and lipoprotein metabolism
in patients with T2D. Administration of a single subcutaneous injection of exenatide (10µg) prior to
a meal was shown to reduce postprandial TG, apolipoproteins B-48 and CIII, remnant lipoprotein
(RLP)-cholesterol and RLP-TG in comparison to saline injection [185]. Other studies reported similar
results with liraglutide once-daily for three weeks [186] and 16 weeks [104]. Whyte et al. showed
that a four-week treatment with lixisenatide reduced chylomicron (CM)-TG pool-size and [13C] oleate
concentrations, and increased CM-TG clearance without affecting CM-TG production rate. These data
lead the authors to conclude that the decreased CM-TG concentration may result from increased
clearance rather than decreased production of lipoproteins [187]. Additionally, a four-week treatment
with DPP-4 inhibitor vildagliptin was also found to induce reductions in the postprandial TG and
apolipoprotein B-48 containing TG-rich lipoprotein particle metabolism after a fat meal [177].

2.4. Impact of DPP-4 and Its Inhibition on NAFLD

The dipeptidyl peptidase-4 (DPP-4), also known as CD26, is a ubiquitously expressed protease
that degrades several substrates, such as incretin hormones and thereby is a therapeutic target in
diabetes treatment. DPP-4 is highly expressed in liver and DPP-4 mRNA expression is increased in the
liver of patients with NAFLD, compared to healthy subjects [188]. Moreover, serum DPP-4 activity and
hepatic staining of DPP-4 are correlated with NASH grade but do not correlate with the fasting blood
glucose concentration or glycosylated hemoglobin (HbA1c) [189,190]. These observations suggest that
hepatic DPP-4 expression in NAFLD might be directly associated with hepatic lipogenesis and liver
injury but not with alteration in glucose metabolism.

Few data are available with DPP-4 inhibitors and NAFLD/NASH (Table 2). Studies in mice
reported a reduction in liver TG and histologic grade of hepatic steatosis with sitagliptin [183] but if this
is a direct or indirect effect is uncertain. DPP-4 deficient rats have three-fold higher basal GLP-1 levels
and significantly reduced serum and hepatic TG level compared with controls [179]. Patients with
NASH have increased serum DPP-4 activity compared to controls and also increased hepatic staining
of DPP-4 that correlated with hepatic steatosis and histopathological grade of NASH but were not
correlated to each other [190]. In a small cohort of T2D patients with NASH, one-year treatment with
the DPP-4 inhibitor sitagliptin decreased hepatocyte ballooning and improved NASH score [148].
The improvement in hepatic histology was correlated to the reduction in BMI and serum AST and
ALT levels. However, the reduction in steatosis score was of borderline statistical significance and no
change was observed in either liver fibrosis or lobular inflammation [115,148] (Table 2). The available
data suggest that treatment with DPP-4 inhibitors may have a mild beneficial effect on NAFLD,
probably mediated by the increase in GLP-1 concentrations after blocking DPP-4 activity.

It is important to note that DPP-4, also known as CD26, can also derive from the gut, due to
the microbiota DPP-4-like activity [191]. Recently, reduction of DPP-4 activity by vildagliptin was
linked with the prevention of gut permeability disruption in mice subjected to western diet [191].
Moreover, Olivares et al. suggested that this effect is in part due to the vildagliptin properties on
the microbiota-derived DPP-4. Even though DPP-4/CD26 is expressed at high levels in the intestine,
specifically in the jejunum and ileum, its role in promoting gut permeability is still unclear [192].

2.5. GLP-1 Co-Agonists in the Treatment of Lipid Disorders and NAFLD/NASH

Several drugs that combine GLP-1RA and other hormones—e.g., combined double co-agonism
of GLP-1 receptors and glucagon, an analogue of oxyntomodulin, combination GLP-1/GIP or triple
co-agonism of the of GLP-1/GIP/glucagon receptors—are in the pipeline for the treatment of T2D and
obesity, and have been studied in the context of NAFLD/NASH [193–195] (Tables 1 and 3). GIP targets
the white adipose tissue (Figure 1) improving its buffering capacity by promoting postprandial
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triglyceride storage and fatty acids re-esterification [196]. Glucagon has also effects on lipid metabolism
stimulates lipolysis and hepatic fatty acid oxidation [197] but its effects should be always be considered
relative to the insulin levels since insulin exerts opposite effects on lipid metabolism [198].

Table 3. Current GLP-1, GIP, and glucagon receptor co-agonists in development for treatment of
T2D/obesity.

Co-agonism Drug Company Stage of
Development References

GLP-1/glucagon Cotadutide (MEDI0382) Medimmune Phase II [64,65]
HM12525A; JNJ-64565111 Hanmi Pharmaceuticals Phase II [67]

MK-8521 Merck Phase II [67]
SAR425899 Sanofi Phase II [199]

ZP2929; BI 456906 Zealand Pharma Phase II [66,67]
JNJ-54728518 Janssen Pharmaceuticals Phase I [200]

NN9277; NNC 9204-1177 Novo Nordisk Phase I -
MOD-6030 Prolor/OPKO Biologics Phase I [201]
VPD-107 Spitfire Pharma Pre-clinical -

GLP-1/GIP Tirzepatide (LY3298176) Eli Lilly Phase III [84–86]
NNC0090-2746; NN970 9;

MAR709; RG7697 Novo Nordisk/Marcadia Phase III-stopped [87]

CPD86 Eli Lilly Pre-clinical -
ZP-I-98 Zealand Pharma Pre-clinical -

ZP-DI-70 Zealand Pharma Pre-clinical -

GLP-1/GIP/glucagon HM15211 Hanmi Pharmaceuticals Phase I [40–42]
NN9423; NNC 92041706;

Tri-agonist 1706 Novo Nordisk Phase I [67]

Abbreviations: GIP, Glucose-dependent insulinotropic peptide; GLP-1, Glucagon-like peptide-1; GLP-1RA,
Glucagon-like peptide-1 receptor agonists; NA, Not available; LFT, Liver function tests; DPP-4, Dipeptidyl
peptidase-4; PO, Oral administration; SC, Subcutaneous administration.

Once per week administration of a dual GLP-1/glucagon co-agonist attached to polyethylene
glycol (PEG), a process called PEGylation, improved glucose tolerance, reduced body weight and body
fat by decreasing food intake and increasing energy expenditure, while normalizing liver lipid content,
within a four-week treatment in DIO mice [202]. Day et al. further optimized the co-agonism to
equally align activity at each receptor, which maximized weight-loss and glucose-lowering effects [203].
Another study in DIO mice injected with a protease-resistant dual GLP-1/glucagon co-agonist showed
similar results in terms of weight loss, lipid-lowering activity, anti-hyperglycemic efficacy, increased fatty
acid oxidation and reduced hepatic steatosis [204]. In methionine/choline-deficient diet-fed mice,
two-week treatment with a dual GLP-1/glucagon co-agonist (G49) ameliorated NASH by reducing
inflammation, steatosis, oxidative stress, and apoptosis and increased mitochondrial biogenesis [205].
Interestingly, PEGylated dual GLP-1/glucagon co-agonism was also shown to restore leptin sensitivity
in DIO mice continuously exposed to HFD, and the combination with PEGylated leptin resulted in a
greater weight loss and improvement in lipid and glucose metabolism when compared with PEGylated
GLP-1/glucagon alone [206]. In HFD-induced NAFLD mice, treatment with a dual GLP-1/glucagon
co-agonist for 40 weeks prevented body weight gain, glucose intolerance and insulin resistance, while it
decreased circulating and hepatic lipid content. Histological assessment of these animals showed a
reduced fat accumulation, inflammation and fibrosis in co-agonist treated animals [207]. In comparison
with liraglutide alone, MEDI0382, a dual GLP-1/glucagon co-agonist achieved greater weight loss and
comparable glucose-lowering actions in DIO mice and non-human primates [208]. In patients with
T2D, the phase 2a study of once-daily subcutaneous injections of MEDI0382 (up to 200µg) for 41 days
significantly decreased glucose area under the curve after four hours of a mixed-meal tolerance test,
and body weight in comparison with placebo [64]. In another trial, SAR425899, a dual GLP-1/glucagon
co-agonist, significantly reduced fasting plasma glucose, HbA1c, and body weight in patients with
T2D as well as in healthy volunteers when compared to placebo [199].
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Another class of drugs are the dual GIP/GLP-1 co-agonists (Tables 1 and 3). Once-weekly
administration of tirzepatide (LY3298176), a dual GIP/GLP-1 co-agonist, for 26 weeks significantly
reduced HbA1c and body weight in a dose-dependent way, and at the highest dose (15 mg) reduced
total cholesterol and TG concentrations in comparison both with placebo and dulaglutide 1.5 mg
in patients with T2D [84]. More recently, Hartman et al. found that once-weekly administration of
tirzepatide for 26 weeks significantly reduced biomarkers of NASH and fibrosis (ALT, AST, keratin-18,
and procollagen-C3) and increased adiponectin compared with placebo at a higher tirzepatide dose
(15 mg) in patients with T2D [85].

The fatty-acylated dual GLP-1/GIP co-agonist NNC0090-2746, also known as NN9709, MAR709,
and RG7697, significantly improved glycemic control and reduced body weight and total cholesterol
compared with placebo after a 12-week phase 2 trial [87]. Similarly, treatment with RG7697 for 14 days
yielded a reduction in fasting and postprandial plasma glucose in a dose-dependent way in patients
with T2D in comparison with placebo, as well as a decrease in postprandial insulin, suggesting an
improvement in insulin sensitivity [209].

A triple agonist of GLP-1, GIP and glucagon receptors (Tables 1 and 3) was found to have better
results in terms of reduction of body weight, improvement in glycemic control and reversion of hepatic
steatosis in rodents in comparison with existing dual co-agonists and best-in-class mono-agonists [210].
The authors showed that the metabolic efficacy of the triple agonist results from the synergistic action of
glucagon to increase energy expenditure, GLP-1 to reduce food intake and improve glucose homeostasis,
and GIP to potentiate incretin role and protect against the glucagon diabetogenic effect [210]. In body
fat mass matched male and female mice, treatment with GLP-1/GIP/glucagon triple agonism inhibited
food intake, improved dyslipidemia, and decreased body weight and body fat mass in both groups,
and reversed diet-induced steatohepatitis to a larger extent in female mice compared to male mice [211].
Therefore, development of therapies based on dual and triple co-agonists of GLP-1, GIP and glucagon
receptors might be of interest (Table 3), not only for T2D or obesity but also for NAFLD/NASH; however,
more studies are needed.

3. Gut Microbiota Dysbiosis and the Gut-Liver Axis in NAFLD

The intestine is anatomically wired to the liver and brain through blood circulation and systemic
innervation. In this perspective, intestinal dysfunction has been investigated as a determinant of
hepatic impairment. A large body of evidence collected in recent years supports the novel concept that
the gut-liver axis wires physiological mechanisms of inter-organ control affected in many metabolic
diseases. The gut is colonized by a wide range of microorganisms, including bacteria that co-evolved
with the host in a symbiotic relationship – the gut microbiota. The gut microbiota includes a
diverse range of symbiotic bacteria and other microorganisms that colonize the human intestine [212].
These bacteria produce a large array of metabolites that serve as important signaling factors and
energy substrates, such as bile acids (BA), choline, neurotransmitters, and short-chain fatty acids
(SCFA) [213]. The crosstalk between these metabolites and the host modulates the immune system,
regulates metabolic phenotypes, and influences risk factors for disease and response to therapy
(Figure 3). The gut microbiota composition differs along the intestinal tract depending on physiological
conditions, such as gastrointestinal content flow rates, availability of substrates for microorganisms,
lumen pH, oxygen availability and immunological features [214]. For example, a large number
of species and diversity are lowered in the small intestine compared to the colon, since the small
intestine is characterized by adverse conditions for bacterial growth, such as low pH, antimicrobials
response and short transit time; in this tract, the most abundant species are Lactobacillaceae and
Enterobacteriaceae [215]. At the phylum level, gut microbiota composition is dominated by Firmicutes
and Bacteroidetes, followed by Proteobacteria and Verrucomicrobia [216].
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Figure 3. The gut-pancreas-liver axis in the context of non-alcoholic fatty liver disease (NAFLD).
The intestine and the liver are in constant communication through the portal vein and the biliary
tract. In the intestine, the maintenance of the intestinal endothelial cell barrier achieved through tight
junctions is crucial. In pathological conditions, an alteration in the diversity and composition of gut
microbiota could lead to the secretion of harmful bacterial products, which consequently damages
the intestinal epithelium by disrupting tight junctions. Another mechanism that has been indicated
to explain increased intestinal permeability is zonulin, a protein secreted within intestinal cells upon
a trigger (e.g., gluten), which is thought to be responsible for tight junction disassembling. In such
conditions, harmful bacteria/bacterial products cross the intestinal wall and reach the liver via portal
circulation, where they activate toll-like receptors (TLRs) on hepatocyte cell surface, promoting steatosis,
inflammation, apoptosis, and insulin resistance. The intestine is also responsible for the secretion
of the incretin hormones GLP-1 and GIP upon nutrient stimulation, which go through the liver,
reach circulation, and target the pancreas to regulate insulin and glucagon secretion. On the other hand,
the liver secretes primary bile acids into the intestine to aid digestion, which are converted into secondary
bile acids by gut microbiota, and the majority are reabsorbed back to the liver. A rearrangement in the
gut-pancreas-liver axis has been hypothesized to play a role in the pathogenesis and development of
NAFLD. Abbreviations: CD36, Cluster of differentiation 36; DNL, de novo lipogenesis; FFA, Free fatty
acids; GIP, Glucose-dependent insulinotropic peptide; GLP-1, Glucagon-like peptide-1; IL, Interleukin;
ROS, Reactive oxygen species; TAG, Triglycerides; TNF-α, Tumor necrosis factor α.

“Normal” gut flora maintains a symbiotic relationship with the host, which confers benefits
to both species in terms of immune system development and efficiency and energy metabolism
regulation [217]. However, when qualitative and quantitative modifications of the gut microbiota
occur, i.e., dysbiosis, the development of chronic diseases, including obesity, diabetes and NAFLD
is promoted [218]. The association between dysbiosis and these metabolic conditions was firstly
suggested by Turnbaugh et al. [219] where the authors showed that transferring gut microbiota from
obese to lean rodents induced in the recipient the same metabolic alterations observed in the donor.

From then, it has been shown that dysbiosis can influence the occurrence of progression of
NAFLD through several mechanisms. The gut microbiomes of patients with advanced liver disease
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and cirrhosis are characterized by an increase in potentially pathogenic bacteria, along with reduced
numbers of bacteria with beneficial properties [220–225]. Mouzaki et al. found that patients with
NASH have a lower fecal percentage of Bacteroidetes compared to both patients with simple hepatic
steatosis and healthy controls [224]. Zhu et al. have found in pediatric patients that Proteobacteria,
Enterobacteriaceae, and Escherichia were the only phylum, family and genus types exhibiting a significant
difference between obese and NASH microbiomes. They also found that Proteobacteria produced
significant ethanol levels that could be responsible for the higher degree of liver injury [225].

In NAFLD models, lack of inflammasomes has been demonstrated to select a pathogenetic
microbiota which was associated with a more severe degree of liver injury [226]. In addition, it has been
recently shown that a Western lifestyle diet associated with lack of NLRP3-inflammasome, increased fat
storage in adipose tissue and liver leading to a more severe liver injury. This effect was associated
with the expansion of Gram-negative Proteobacteria and Verrucomicrobia [227], the main pathobionts
responsible of liver injury in a model of HFD and fibrosis [228], and together with Verrucomicrobia are
known to be mucus-degrading bacteria, favoring bacterial translocation. In patients with hepatocellular
carcinoma (HCC), Bacteroides and Ruminococcaceae were increased, while Bifidobacterium was reduced,
and Akkermansia and Bifidobacterium were inversely correlated with calprotectin, a marker of intestinal
inflammation that was increased in HCC patients [229].

In addition to its role in modulating the progression of chronic liver disease, differences in
microbiota composition have been attempted to stratify NAFLD patients by degree of liver injury.
Boursier et al. found that NAFLD severity was associated with gut dysbiosis and a shift in the metabolic
function of the gut microbiota with Bacteroides independently associated with the occurrence of NASH,
and Ruminococcus with the presence of significant fibrosis [230]. Del Chierico et al. [231] showed that
either in obese or in NAFLD/NASH pediatric patients, microbiota diversity was reduced from controls
to obese, NAFLD and NASH patients, and the combination of specific microbiota and metabolite
modifications was able to discriminate control patients from those with NAFLD or NASH [231].
Similarly, Loomba et al. constructed a metagenomic-based model to distinguish advanced fibrosis in
adult patients with NASH based on increased Proteobacteria (mostly E. Coli) levels and a decrease in
Firmicutes [232]. Studies performed in cohorts of morbidly obese women confirmed the increased in
Gram- proteobacteria and linked, for the first time, steatosis occurrence with alterations in aromatic
and branched-chain amino acid metabolism [233].

Alterations of Lipid and Glucose Metabolism by Gut Bacteria

Bacterial biodiversity has been associated with a most favorable metabolic profile, but bacterial
products can, directly and indirectly, influence glucose and lipid metabolism. Changes in synthesis and
production of SCFA by colonic bacterial fermentation of polysaccharides (such as acetate, propionate,
and butyrate) are the most studied mechanisms relating the association between gut microbiota and
development/progression of NAFLD. A close correlation between SCFA and NAFLD development
have been demonstrated both in experimental models of NAFLD and obese patients that have increased
concentration of stool SCFA [219,234]. SCFA can bind specifically to GPCRs such as GPR41 and GPR43,
which are expressed in the adipose tissue, liver, and intestine and induce metabolic modifications
influencing de novo lipogenesis, cholesterol synthesis and glucose homeostasis [235]. Increased acetate
in the liver can cause TG accumulation as acetate is an important substrate for fatty acid synthesis,
while increased levels of propionate promote gluconeogenesis in the liver since propionate is a precursor
for gluconeogenesis [236].

Moreover, SCFA can stimulate the release of GLP-1 in vitro and in vivo dependently of the FFA
receptor 2 (Figure 1) [237]. Furthermore, SCFA can modulate food intake by regulating neuronal
activity and thus appetite regulation [219]. Although SCFA directly or via binding to G-protein-coupled
receptors (GPCR) appear to promote NAFLD, other effects of SCFA might be beneficial for NAFLD
mostly by modulating AMPK activity in the liver [236]. Furthermore, butyrate has been demonstrated
to influence colonic epithelium regeneration, thus providing an important mechanism in the regulation
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of gut integrity [238]. Propionate can also bind to GPCR-43 expressed on lymphocytes to maintain
appropriate immune defense. Butyrate activates PPAR-γ leading to beta-oxidation and oxygen
consumption, a phenomenon contributing to maintaining anaerobic condition in the gut lumen [239].

A second mechanism relates to the direct effect on lipid metabolism. One of the most known
effects is the capacity of intestinal bacteria to inhibit the synthesis of fasting-induced adipocyte factor
(also known as angiopoietin-related protein 4), a specific inhibitor of the lipoprotein lipase. Lack of
inhibition of lipoprotein lipase leads to a stronger release (spillover) of FFA from VLDL particles to the
liver, favoring the development of steatosis [240]. Finally, the host response to translocated microbial
products predicts outcomes also in patients with hepatitis B and C virus infections, indicating that
bacterial translocation contributes to the progression of chronic liver injury not only in the presence of
metabolic or alcoholic disease [241].

4. Bile Acid Signaling in NAFLD

One of the most intriguing aspects of the role of dysbiosis in the progression of chronic liver
injury is related to the interactions between gut microbiota and bile acids (BA). In hepatocytes,
BA are synthesized via cytochrome P450 (CYP)-mediated oxidation of cholesterol by two biosynthetic
pathways: the “classical” and “alternative” pathways. The “classical” pathway produces the primary
BA cholic acid and chenodeoxycholic acid through the enzymatic actions of cholesterol hydroxylase
enzymes CYP7A1, CYP8B1, and CYP27A1. The “alternative” pathway yields chenodeoxycholic acid
via the hydroxylation of the cholesterol sidechain by CYP27A1, followed by 7α-hydroxylation of
27-hydroxycholesterol and other oxysterols by CYP7B1. Following the conjugation of cholic acid
and chenodeoxycholic acid to either taurine or glycine to form taurocholic acid, glycocholic acid,
taurochenodeoxycholic acid (TCDCA) and glycochenodeoxycholic acid (GCDCA), primary BA are
secreted from the liver into the bile canaliculus via the canalicular bile salt export pump [242].

In the gut, gut bacteria metabolize BA, and glyco-conjugated and tauro-conjugated cholic and
chenodeoxycholic acids are deconjugated via bile salt hydrolases and 7α-dehydroxylated to form
secondary BA deoxycholic acid (DCA) and lithocholic acid (LCA) [243]. The ability of the gut microbiota
to metabolize intestinal BA into their unconjugated forms is central to metabolic homeostasis since
these unconjugated BA can activate BA signaling receptors such as farnesoid X receptor (FXR),
pregnane X receptor, constitutive androstane receptor, vitamin D receptor and Takeda G protein
receptor 5 (TGR5) [242].

Normal intestinal FXR activity maintains an efflux of BA back into the portal vein and a controlled
reuptake of BA into enterocytes. This limits intracellular BA levels and regulates the expression
of fibroblast growth factor (FGF)-15 in mice and its orthologue FGF19 in humans, which inhibit
BA synthesis in hepatocytes via the activation of hepatic FGF receptor 4 [243]. During intestinal
inflammation, the expression of FXR is downregulated leading to an increased influx of BA into
the enterocytes and reduced BA efflux back into the portal vein, with the net effect of higher BA
levels in the intestinal mucosa. Thus, intestinal FXR downregulation diminishes signaling via the
FGF19–FGF receptor 4 axis leading to (a) increased BA synthesis in the liver; (b) increased hepatic
influx of BA; (c) detoxification and BA biliary secretion blockage. These series of events induce
cholestasis followed by alterations in carbohydrate and lipid metabolisms, and induces inflammation,
leading to the upregulation and activation of factor nuclear kappa B (NF-κB), which then binds
directly to the FXR promoter to inhibit its transcription [244]. An example of the complex interactions
between diet, dysbiosis and BA comes from the observation that coupling an HFD with a chemical
carcinogen to induce a shift to a Gram-positive microbiota was able to increase DCA levels, to induce a
senescence-associated secretory phenotype in hepatic stellate cells that activated the inflammasome
system, leading to increased HCC formation. This was confirmed with a non-selective antibiotic
cocktail that induced tumor reduction and by the use of the antibiotic vancomycin that selectively acts
on Gram-positive bacteria [245].
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The secondary BA DCA is known to promote DNA damage and hepatic carcinoma and
accumulates significantly on an animal product-based diet in humans [246]. Increased circulating DCA
levels have been found in patients with NASH [247]. Neonatal mice mimicking all the histological
spectrum of NAFLD that were treated with streptozocin to induce diabetes and HFD-fed showed
increased lipopolysaccharide (LPS) levels both in the liver and in feces, increased hepatic BA levels,
and down-regulation of the FXR/FGF15 axis. The progression of chronic liver injury was associated
with a relationship between dysbiosis and specific BA formation (DCA, LCA, TCDCA, GCDCA) with
an increase in specific bacteria genera (Clostridium, Bacteroides, E. Coli) and reduction in A. muciniphila
that significantly correlated with specific increases in secondary BA [248,249]. These BA (DCA, TCDCA,
GCDCA) are significantly increased in patients with NASH [247].

Targeting BA Receptors as a Therapeutic Option for NAFLD

FXR agonism has shown benefit in several preclinical models of NAFLD/NASH, inducing metabolic
effects that reduce steatosis and inflammation (Figure 3) [250]. On the other hand, a direct effect of FXR
agonism on hepatic fibrosis is controversial [251]. This has led to the design of clinical trials involving
the FXR agonist obeticholic acid (OCA) in human patients (Table 1). In the first trial, Mudaliar et al.
found improved insulin resistance and decreased liver fibrosis markers in diabetic patients with
NAFLD treated with OCA [82]. Then, the FLINT trial (FXR Ligand Obeticholic Acid in NASH
Treatment, NCT01265498) included NASH patients treated with OCA (25 mg/day) for 72 weeks [83].
Although patients treated with OCA showed a significant improvement in the NAFLD activity score
(i.e., the primary histological outcome) and a significant decrease in liver fibrosis, NASH resolution
occurred in only 22% of patients treated with OCA (without a statically significant effect compared to
placebo), and no effect was observed in patients with advanced fibrosis. Although OCA was generally
well tolerated, concerns were raised by the occurrence of side effects such as pruritus, which developed
in 23% of patients on OCA without leading to drug discontinuation, increased total serum cholesterol
and low-density lipoprotein (LDL)-cholesterol levels and a modest, but significant, reduction in
high-density lipoprotein (HDL)-cholesterol [83]. More recently, the interim analysis at month 18 of the
phase 3 trial REGENERATE showed that 23% and 18% of the subjects in the 25 mg and 10 mg group
respectively vs 12% in the placebo group met the primary endpoint, i.e., fibrosis improvement by at
least one stage with no worsening of NASH with a similar adverse event and safety profile compared
to the phase 2 trial [81]. However, these results were not sufficient to receive FAD accelerated approval
for the treatment of patients with liver fibrosis due to NASH [252].

The side effect on cholesterol levels might be important when considering that patients with
NAFLD/NASH have an increased risk of cardiovascular diseases and high cholesterol is a major risk
factor for atherosclerosis. Thus, further studies are needed to better define the clinical usefulness of FXR
agonism in NASH. Firstly, the site of FXR agonism can be of critical importance. Moreover, while mice
with whole-body FXR deficiency spontaneously develop liver tumors [253], De Girolamo et al. showed
that no tumor formation was observed in mice expressing FXR only at the intestine level [254].
The gut-restricted FXR agonist fexaramine robustly induces enteric FGF15, leading to alterations in BA
composition, without activating FXR target genes in the liver and reducing diet-induced weight gain,
body-wide inflammation, hepatic glucose production, while enhancing thermogenesis and browning
of white adipose tissue [255]. Conversely, some data also indicate that antagonism of intestinal FXR
signaling could improve metabolic parameters in murine models of NAFLD [256,257]. The underlying
mechanisms are still unclear but may be related to the existence of an “intestinal FXR/ceramide axis”
whereby ileal production of ceramides, mediated by BA modification by the microbiota, controls the
hepatic lipogenic pathway via sterol regulatory element-binding protein 1c (SRBEP1c).

Finally, concerns can be raised regarding the chronically increased levels of FGF19 resulting from
FXR agonism. FGF19 has the potential to regulate several pathways involved in NASH pathogenesis
since it can act on CYP7A1, the rate limiting enzyme in BA synthesis from cholesterol, in addition
to mimicking the effect of insulin on glycogen synthesis and gluconeogenesis [258]. However,
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the therapeutic potential of FGF19 has been hindered by its effect on potential occurrence of HCC,
since mice expressing an FGF19 transgene developed liver tumors while tumor FGF19 hepatic mRNA
expression was an independent prognostic factor for overall and disease-free survival [259,260]. It has
been found that the tumorigenic effect of FGF19 is mediated by the release of interleukin 6 (IL6) by
Kupffer cells that activate the signal transducer and activator of transcription (STAT3) pathway in
hepatocytes [261]. On the other hand, an engineered FGF19 analogue (NGM82) has shown efficacy
in animal models of NASH. Furthermore, NGM282 can block hepatocarcinogenesis associated with
human FGF19. In animal models of NASH, treatment with NGM282 resulted in the reduction of
ALT and AST, as well as improvement in all histological features associated with NASH—hepatic
steatosis, inflammation, ballooning degeneration, and fibrosis—thus leading to test NGM282 in clinical
trials [262–264] (Table 1). In the first clinical trial, NGM282 showed significant reductions in liver fat
content, as measured by magnetic resonance imaging proton density fat fraction, with an acceptable
safety profile in patients with NASH [59]. Following this, in a recent open-label study, NGM282
improved the histological features of NASH with significant reductions in NAS and fibrosis scores,
accompanied by improvements in noninvasive imaging and serum markers, although this effect was
observed after only 12 weeks of treatment [60].

5. Gut Permeability

The term intestinal permeability refers to the intestinal epithelium as a barrier that physiologically
controls the exchange of ions, water and macromolecules between the luminal content and the
underlying tissues, and that is protected from direct contact with bacteria, food allergens, toxins,
and excreted metabolic byproducts by a mucus layer. The apical surface of the epithelium is a
continuum of single cells whose paracellular space is sealed by a series of intercellular junctions,
of which tight junctions (TJ) (Figure 3). One type of TJ is involved in the high-capacity pore pathway
to transport ions and small molecules, and the other type is involved in the leak pathway, modulating
the flux of large macromolecules [265]. Proteins of the TJ such as claudins play a relevant role in the
high capacity pore pathway, whereas zonula occludens-1 (ZO-1 or Tjp1), occludin, and tricellulin
(also known as Marveld2) control the low-capacity leak pathway [265].

Zonulin, the only physiological modulator of tight junctions described to date, was discovered
as the precursor of haptoglobin-2 (pre-Hp2) [266] and is essential for the regulation of intestinal
permeability [267–269] (Figure 3). Zonulin is the only measurable blood protein that reflects intestinal
permeability, and increased zonulin levels are considered to be a marker of impaired intestinal
barrier [269]. The epithelial barrier dysfunction may be triggered by the presence of some microbial
communities and their derived metabolites [270,271], which can be assessed by circulating zonulin
as well as by circulating LPS. Additionally, intestinal permeability can also be assessed by orally
administered inert or metabolic active probes, which can be differentially transported through the
intestinal epithelium and detected in the blood or urine. For example, lactulose/mannitol ratio in
urine is informative on detecting the small intestine permeability, while increased levels of sucrose or
sucralose excretion are associated with large intestine permeability [272]. However, the development
of a unique gold standard and complete evaluation of this phenomenon are needed, since only 39% of
NAFLD patients and 49% of NASH patients have demonstrated intestinal permeability [273].

Increased intestinal permeability has been found in several conditions including exposure to
HFD, specific microbiota, gliadin, allergens or even hyperglycemia [227,269]. Thaiss et al. clearly
showed that hyperglycemia drives intestinal permeability by the glucose transporter GLUT2-dependent
transcriptional reprogramming of intestinal epithelial cells, resulting in changes in tight and adherence
junction integrity, and a systemic influx of microbial products into portal blood [274]. Moreover,
the inflammasome, a multiprotein complex that orchestrates host defense mechanisms against infectious
agents, appears to be also linked to intestinal permeability. HFD impinged intestinal permeability which
was more pronounced in the NLRP3-inflammasome deficient mice in a ZO-1 dependent manner [227].
This phenomenon was associated with changes in diet-induced anti-microbial peptides secretion
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and with an inflammasome-dependent downregulation of angiogenin-4, an intestinal protein with
important antibacterial functions [227]. The authors proposed that the combination of a Western
lifestyle diet with inflammasome alteration modified antimicrobial activity, which might lead to a
boosted abundance of mucus degrading bacteria, allowing passage of pathogens into the portal
circulation [227]. Another mechanism involved in the regulation of intestinal barrier function is the
COX-2/prostaglandin E2 (PGE2)/EP-2/p-ERK integrated signal pathways that modulate the expression
of intestinal ZO-1 and cell adhesion molecule E-cadherin [275]. Gao J et al. observed that the restore of
the COX-2/prostaglandin E2 (PGE2)/EP-2/p-ERK pathway using celecoxib in a thioacetamide rat model
improved intestinal permeability by blocking the inflammatory response, as shown by decreased levels
of LPS, tumor necrosis factor (TNF)-α and interleukin (IL)-6, thus reducing the progression of liver
injury to cirrhosis [275].

5.1. Gut Permeability and Bacterial Translocations

Bacterial translocation can be defined as the passage of bacteria, or bacterial products such as LPS,
into the portal circulation and happens when the complex regulation of the mechanisms of the gut
barrier is lost [276], which has been linked with the occurrence of NAFLD, NASH, hepatic fibrosis,
and HCC in several rodent models [227,228,277]. The association between increased gut permeability
and NAFLD has also been demonstrated in human studies, and bacterial translocation occurs in those
patients that develop NASH, at least in a pediatric study [278]. In NASH patients, serum LPS and
hepatocytes LPS localization was higher than controls, which was correlated with serum zonulin and
pNF-κB expression [279]. Recently it has been shown that disruption of the intestinal epithelial barrier
and gut vascular barrier are early events in NASH pathogenesis and that OCA is able to protect against
barrier disruption and thereby prevents the development of NASH, providing further evidence for its
use in the prevention or treatment of NASH [280].

Specifically, bacterial components can increase the expression of specific receptors, such as
Toll-Like Receptors (TLRs). TLRs can bind PAPMs (small molecular motifs conserved within a
class of microbes) and DAMPs (host biomolecules that can initiate and perpetuate a noninfectious
inflammatory response) leading to increased gene expression of pro-inflammatory mediators such
as TNFα, IL-1β, and interferons. In NASH, TLR4 (that recognizes LPS, a gram-negative bacteria
wall component), TLR5 (known to recognize bacterial flagellin from invading mobile bacteria),
TLR2 (that recognizes many bacterial, fungal, viral, and endogenous substances) and TLR9 (a specific
receptor for double-stranded bacterial DNA) have been shown to play a key pathogenetic role [281].
Increased levels of LPS activate TLR4 and have been observed in the serum of steatotic patients
and in diet-induced NAFLD/NASH models (HFD, fructose-rich diet, methionine/choline-deficient
diet, and choline-deficient L-amino acid-defined diet), where lack of TLR4 showed reduced liver
damage, in terms of steatosis or steatohepatitis [279,282]. Similar results indicating a pathogenetic
role of TLR have been obtained also for TLR9 using the choline-deficient L-amino acid-defined diet
model of NASH [283]. Furthermore, FAs also have been recognized as TLR4 ligands that can activate
pro-inflammatory signaling leading to TNFα secretion [284]. In a HFD plus fructose model of NASH,
liver injury development was associated with dysbiosis, bacterial translocation mediated by alterations
in intestinal permeability due to reduced tight junctions’ expression, and reduced gut antimicrobial
capacity. These results indicate that complex interactions between the diet, the innate immunity,
bacteria and intestinal function occurs in the development of NASH [226,227], and similar observations
were obtained in experimental models of HCC development [285–287].

TLRs signaling can also act via the activation of inflammasomes. Once activated, the inflammasomes
trigger an intracellular cascade which results in the secretion of pro-inflammatory and pro-fibrotic IL-1β
and IL-18. Either in patients with NASH or animal models, the expression of inflammasome components
was increased, indicating the potential role in the pathogenesis of liver injury [226,227,288–291].
The mechanisms behind the effects of the inflammasomes in NAFLD are complex and might
involve metabolic, inflammatory and pro-fibrogenic effect in the liver (either parenchymal and
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in non-parenchymal cells), adipose tissue, and immune system. In the last few years, the role of the
inflammasome in the modification of the gut microbiota have been highlighted. The inflammasome
can indeed strongly affect gut microbiota composition as deletion of inflammasome components
was associated with loss of epithelial integrity and gut inflammation associated with dysbiosis and
bacteremia [292].

In comparison with healthy controls, patients with NASH are more likely to present an
increased intestinal permeability. Luther et al. [273] also showed that an initial stage of hepatic
damage and inflammation is associated with an alteration in intestinal permeability. Moreover,
intestinal permeability and the prevalence of small intestinal bacterial overgrowth are correlated with
the severity of liver steatosis [293]. The same pattern is seen in obese subjects with steatosis who
present an increase in intestinal permeability in comparison with obese patients [294]. Patients with
NAFLD ranging from simple NAFLD to NASH showed higher intestinal permeability as assessed by
a lactulose/mannitol test, alcohol, and endotoxin levels in plasma in comparison with controls [295].
It has been also shown that individuals with celiac disease, characterized by increased gut permeability,
are at increased risk of NAFLD compared to the general population [296,297].

5.2. Gut-Derived Inflammatory Mediators Triggering NAFLD/NASH

The increase in gut permeability allows a constant flow of pro-inflammatory mediators to the
liver, which firstly target the liver resident macrophages, the Kupffer cells. Several compounds bind to
TLRs expressed in Kupffer cells and also in hepatic stellate cells, namely methylamine, volatile organic
compounds and pathogen-associated molecular patterns, which include LPS, lipoteichoic acid,
peptidoglycan, flagellin and unmethylated CpG DNA, and activate inflammatory signaling pathways
like the NF-kB [298]. Kupffer cell activation results in a subclinical hepatic inflammatory state that
may lead to the development of NAFLD/NASH. Of relevance among TLRs, TLR4 identifies LPS
from gram-negative bacteria and TLR9 recognizes bacteria-derived GpG-containing DNA. Hence,
TLR4 knockout mice show protection towards the manifestation of liver injury. Even though Kupffer
cells contain the highest expression of TLR4, stellate cells TLR4 signaling appear to be critical in
transforming growth factor β secretion and fibrosis development in a myeloid differentiation primary
response 88 (MyD88) dependent manner [299]. Kupffer cells are not only sensitive to inflammatory
signals but also to metabolic challenges such as dyslipidemia, which affects Kupffer cell activation in
models of liver steatosis and steatohepatitis [300,301]. Another molecule that has been implicated in
liver fibrosis resolution is DPP-4/CD26, whose increased circulating activity is inversely correlated
with a drastic reduction in Kupffer cell population upon liver injury [302]. Latest studies strongly
suggest that Western diet-fed mice under inflamed gut conditions driven by dextran sulfate sodium 1%
exacerbate hepatic steatosis, inflammation and fibrosis progression with increased IL-1, IL-6, TNF-α,
monocyte chemoattractant protein (MCP)-1 and profibrogenic factors, such as transforming growth
factor (TGF)-β, α2-Actin, tissue inhibitor of metalloproteinase (TIMP)-1 and plasminogen activator
inhibitor (PAI)-1 [303].

6. Targeting the Gut Permeability to Improve NAFLD/NASH

Two types of strategies can be used to improve gut permeability to target NAFLD/NASH
pathogenesis and progression. The first one is to address gut microbiota in a way that gut inflammation
is rescued, and permeability is restored. The second strategy is to target gut inflammation/permeability
itself but there are still a few therapeutic strategies nowadays.

For the first strategy, a pharmacological approach to simultaneously impact on the microbiota
and the gut permeability and ultimately target the liver can be applied. Biguanides/metformin,
the first-line therapeutics for T2D, modifies microbiota leading to an increase in A. muciniphila, as well
as several SCFA-producing microbiota, favoring an improvement on mucin-producing goblet cells,
pro-inflammatory IL-6, and glucose tolerance [304]. A direct effect of metformin on the ileal epithelial
barrier was also observed and the authors associated this improvement to increased activation of
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AMPK [305]. In another study, metformin improved tight junction integrity and permeability by
increasing occludin-1 levels and increasing A. muciniphila levels [306]. Thus, metformin not only
directly improved NAFLD but also affected the epithelial intestinal barrier.

Similarly, DPP-4 inhibitors are also able to modify gut microbiota by increasing Firmicutes and
Tenericutes phyla and decreasing Bacteroidetes in DIO rodents [307]. Nonetheless, vildagliptin reduces
Firmicutes to Bacteroidetes ratio, increases Lactobacilli spp. and increases propionate production [308].
Moreover, Olivares et al. suggested that this vildagliptin effect is in part due to its properties on
the microbiota-derived DPP-4 [191]. Regarding GLP-1RA, scarce literature is available. However,
liraglutide appears to enhance SCFA-producing bacteria including Bacteroides, Lachnospiraceae and
probiotic bacteria, Bifidobacterium, and the authors attribute the change in local inflammation to this
gut microbiota structural modifications [309]. Whether individuals that are more responsive to GLP-1
secretion have a gut microbiota more shielded towards NAFLD and dysmetabolism is unveiled.
The SGLT2 inhibitor dapagliflozin also showed some improvement in NAFLD, affecting microbiota
by promoting a reduction of the Firmicutes/Bacteroidetes ratio in diabetic mice [310]. As previously
described, disruption of the intestinal epithelial barrier and gut vascular barrier represents early
events in NASH pathogenesis and are mediated by the occurrence of dysbiosis. OCA repairs these
impairments through its FXR-dependent effect [280]. It has been already demonstrated that intestinal
FXR modifies the gut microbiota and activates the TGR5/GLP-1 axis and this lead to improvement
of hepatic glucose and insulin sensitivity and increase adipose tissue browning [311]. These studies
reinforce the hypothesis of a direct link between intestinal nuclear receptors and gut microbiota in
modifying the gut-liver axis function in the host metabolic control.

More recently, a few papers have evaluated the role of A. Muciniphila [312–314]. In humans,
studies have provided evidence for a negative correlation between A. Muciniphila abundance and
overweight, obesity, untreated T2D or hypertension. In mice, it has been shown that administration
of A. Muciniphila prevents the development of obesity and associated complications. However,
the sensitivity of A. Muciniphila to oxygen limited the development of translational approaches for
human medicine. However, it was found that both pasteurization of A. Muciniphila and a specific
protein isolated from its outer membrane (Amuc_1100) recapitulates the beneficial effect of the entire
bacterium facilitating the possibility of its use in clinical trial in humans. In a proof-of-concept
study, administration of live or pasteurized A. Muciniphila improved insulin sensitivity and reduced
insulinemia and plasma total cholesterol without affecting body weight, fat mass and hip circumference.

Moreover, the beneficial effects of probiotics in the modulation of gut microbiota to achieve
metabolic improvements in the host are minimal [315]. In a preliminary report, human-to-human fecal
microbial transplantation has demonstrated a beneficial influence of the microbiota from a lean donor
in obese recipients, resulting in improved insulin sensitivity [316].

However, no further data are available on direct manipulation of gut microbiota. Several signs of
progress have been made on knowledge of NASH pathogenesis, but several aspects still need to be
clarified and they are mostly related to the gut-liver axis mechanisms. This is the reason why there is
nowadays a lack of effective therapies directly targeting the gut-microbiota-liver axis for the treatment
of NASH and its progression to hepatic cirrhosis and end-stage liver disease.

7. Conclusions

Currently, available data reviewed herein suggest a role for GLP-1RA in ameliorating hepatic
insulin resistance and improving NAFLD with beneficial effects on hepatic lipid metabolism. Given their
beneficial effects on liver enzymes, weight loss and hepatic metabolism, GLP-1RA (currently approved
for the treatment of diabetic hyperglycemia and obesity) may prove to be an effective treatment for
NAFLD/NASH in nondiabetic subjects, as well as individuals with diabetes. Because DPP-4 inhibitors
do not increase (only prolong) the elevation of circulating GLP-1 levels nor induce major weight
loss, it is unclear whether they will have a significant beneficial effect on the prevention/treatment
of NASH/NAFLD, as opposed to the GLP-1RA which are administered in pharmacologic amounts.
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Further studies are required to assess their efficacy, mechanism of action, and safety of GLP-1RA
and DPP-4 inhibitors in patients with NAFLD/NASH. Other drugs with known beneficial effects
on NASH (pioglitazone) or with significant effects in phase 2 (GLP-1RA) or 3 (FXR agonists) trial
indicate the key role of gut-liver axis alterations in promoting the progression of NAFLD to NASH.
Although alterations in gut microbiota have been associated with obesity and NAFLD there is no
evidence indicating that in humans a long-term change in gut bacterial composition can be achieved
and improves NAFLD/NASH. A better knowledge of the mechanisms leading to increased intestinal
permeability and small metabolites produced during dysbiosis will provide novel therapeutic targets
to prevent the development and progression of NAFLD to NASH.
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Abbreviations

ALT Alanine aminotransferase
AMPK AMP-activated protein kinase
APRI AST to platelet ratio index
AST Aspartate aminotransferase
BA Bile acids
BMI Body mass index
CM Chylomicron
CYP Cytochrome P450
DCA Deoxycholic acid
DIO Diet-induced obesity
DPP-4 Dipeptidyl peptidase 4
FXR Farnesoid X receptor
FGF Fibroblast growth factor
FFA Free fatty acid
GCDCA Glycolchenodeoxycholic acid
GIP Glucose-dependent insulinotropic peptide
GLP-1 Glucagon-like peptide-1
GLP-1RA GLP-1 receptor agonists
GPCR G-protein-coupled receptors
HbA1c Glycosylated hemoglobin
HCC Hepatocellular carcinoma
HFD High-fat diet
IL Interleukin
LCA Lithocholic acid
LPS Lipopolysaccharide
NAFLD Non-alcoholic fatty liver disease
NASH Non-alcoholic steatohepatitis
OCA Obeticholic acid
PPAR Peroxisome proliferator-activated receptor
RLP Remnant lipoprotein
SCFA Short-chain fatty acids
STAT3 Signal transducer and activator of transcription 3
T2D Type-2 diabetes
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TCDCA Taurochenodeoxycholic acid
TG Triglycerides
T2D Type-2 diabetes
TLR Toll-Like Receptors
TNF Tumor necrosis factor
VLDL Very low-density lipoprotein particles
ZO-1 Zonula occludens-1
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