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Abstract: Ruthenium, as an industrial by-product or from natural sources, represents an important
economical resource due to its specific applications. A complex problem is represented by ruthenium
separation during reprocessing operations, therefore, different materials and methods have been
proposed. The present study aims to develop a new material with good adsorbent properties able
to be used for ruthenium recovery by adsorption from aqueous solutions. Absorbent material
was obtained using chitosan (Ch) surface modification with dibenzo-30-crown-10 ether (DB30C10).
Chitosan represents a well-known biopolymer with applicability in different adsorptive processes due
to the presence of hydroxyl-, carboxyl-, and nitrogen-containing groups in the structure. Additionally,
crown ethers are macromolecules with a good complexation capacity for metallic ions. It is expected
that the adsorptive efficiency of newly prepared material will be superior to that of the individual
components. New synthesized material was characterized using scanning electron microscopy
coupled with energy dispersive X-ray (SEM–EDX), Fourier transform infrared spectroscopy (FT-IR),
Brunauer–Emmett–Teller surface area analysis (BET), and determination of point of zero charge (pZc).
Results obtained from the performed kinetic, thermodynamic, and equilibrium studies confirmed the
good adsorptive capacity of the prepared material, Ch-DB30C10, obtaining a maximum adsorption
capacity of 52 mg Ru(III) per gram. This adsorption capacity was obtained using a solution with an
initial concentration of 275 mg L−1, at pH 2, and 298 K. Ru(III) adsorption kinetics were studied by
modeling the obtained experimental data with pseudo-first order and pseudo-second order models.
Desorption studies established that the optimum eluent was represented by the 5M HNO3 solution.
Based on the performed studies, a mechanism for recovery of ruthenium by adsorption was proposed.

Keywords: ruthenium; chitosan; dibenzo-30-crown-10; adsorption; desorption; mechanism

1. Introduction

Extensive usage of nuclear fission in energy production leads to numerous fission
atoms with atomic masses between 70 and 160, as components of nuclear radioactive waste.
These waste products also contain different valuable elements from the platinum group,
such as palladium, rhodium, and ruthenium [1]. Due to its specific properties, ruthenium
can be used in different fields: electronic industry, medicine, jewelry, and catalysts, etc. [2–5].
Other sources of ruthenium can be represented by industrial solutions generated during
processing, which contain around 4% metal [6]. Such effluents containing ruthenium ions
cannot be discharged as they are harmful to the environment and human health [7].
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Different methods for recovering valuable metals from industrial waste is of great
interest nowadays. Such methods are: biological treatment [6,8,9], reduction of metallic
ions [10], solvent extraction [11–14], ionic exchange [15], electrochemical deposition [16,17],
coprecipitation [18], photo-reduction [11], microfiltration, chemisorption [19,20], etc. Liu
et al. [21] demonstrate that several studies were focused on heavy metal elimination by
using adsorption on chitosan materials. For example, Metwally et al. [21,22] used chitosan
benzoyl thiourea derivatives as adsorbent materials for Co(II) and Eu(III) radionuclide
removal from aqueous solutions. Prepared material showed a maximum adsorption
capacity of 29.47 mg Co(II) per g and 34.54 mg Eu(III) per g [22]. Cross-linked chitosan was
used as adsorbent material for uranium (IV) recovery from aqueous solutions by Wang
et al. [21,23]. Santana et al. [21,24] prepared chitosan films using casting techniques and
used them further for vanadium recovery obtaining a maximum adsorption capacity of
251.4 mg per g.

Ruthenium recovery by adsorption has a large application due to its efficiency and
due to the possibility of processing solutions with relatively low concentrations [25–28].
In all adsorptive processes, a key factor is represented by the adsorbent material used,
being required to develop a proper material. Until now, ruthenium removal by using a
chitosan-based adsorbent has been rarely investigated. Liu et al. used xanthate-modified
cross-linked chitosan as adsorbent for Ru(III) ions removal [21]. The aim of present study
was to produce and characterize a new adsorbent material obtained by functionalization of
chitosan (Ch) with dibenzo-30-crown-10 ether (DB30C10). The main reasons for the present
study are: Ch represents a bio-polymer with high availability, is eco-friendly, and has active
groups (nitrogen-containing groups, hydroxyl and carbonyl groups) able to coordinate
metallic ions; crown ethers are a macrocyclic compound able to coordinate metallic cations
inside the etheric ring. Due to the presence of the oxygen atoms in the crown ether structure,
it is possible that several metallic ions are coordinated.

Based on kinetic, thermodynamic, and equilibrium studies, a mechanism for ruthe-
nium recovery by adsorption on Ch-DB30C10 was proposed. Further desorption studies
were performed in order to determine the maximum number of adsorption/desorption cy-
cles.

2. Materials and Methods
2.1. Material Synthesis and Characterization

For preparation of new adsorbent material, 0.1 g of extractant (DB30C10 with purity
of 98%, Merck, Darmstadt, Germany) were weighed, mixed with 25 mL of nitrobenzene
(purity 99%, Carl Roth, Karlsruhe, Germany), and shaken until complete dissolution. Ex-
tractant solution was placed in contact with 1 g of Ch with a molecular weight between
100,000 and 300,000 (support, ACROS Organics, Geel, Belgium) using a ratio of extrac-
tant:support = 0.1 g:1 g. In order to achieve support functionalization, the extractant
solution was kept in contact with the support for a minimum of 24 h, filtered, and dried in
an oven (Pol-eko model SLW 53, SDT Poland) at 323 K for 24 h.

After preparation, the obtained material was characterized by scanning electron mi-
croscopy coupled with energy dispersive X-ray spectroscopy (SEM–EDX) using a scan-
ning electron microscope (FEI Quanta FEG 250, FEI, Hillsboro, Oregon, US) and Fourier-
transform infrared spectroscopy (FT-IR) using a Bruker Platinum ATR-QL spectrometer
(Bruker, Billerica, Massachusetts, US). The specific material surface was determined using
the Brunauer–Emmet–Teller method (BET) with a Nova 1200e Quantachrome device. The
point of zero charge (pZc) of the material was determined using the method of bringing
the studied system to equilibrium [29,30]. During present study, 0.1 g of Ch-DB30C10 were
used, mixed with 25 mL of KCl 0.1 N at 200 rotations per minute and 298 K, using a
thermostatic shaker (Julabo SW23, Julabo, Seelbach, Germany). The pH of the KCl solutions
was adjusted to the interval 2–12 by using NaOH solutions with concentrations between
0.05 and 2 N, or HNO3 solutions with concentrations between 0.05 and 2 N. After filtration,
supernatant pH was measured using a Mettler Toledo SevenCompact S210 pH meter.
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2.2. Adsorption Studies

During adsorption studies the influence of pH, contact time, temperature, and ruthe-
nium initial concentration on adsorption capacity of Ch-DB30C10 was studied.

2.2.1. pH Influence

pH influence is correlated with the ruthenium oxidation state in the solution and with
the functional groups of the extractant. In present paper, the pH influence for the Ru(III)
(ruthenium (III) chloride, Fluka Analytical) adsorption on new prepared adsorbent material
was studied. During the study, the pH was varied from 0.5 to 10 for an initial concentration
of Ru(III) of 10 mg L−1, by using 0.1 g of adsorbent material, 120 min of contact time, and
298 K.

2.2.2. Influence of Contact Time and Temperature

In order to establish the influence of contact time and temperature on material adsorp-
tion capacity, 0.1 g of prepared adsorbent were weighed and mixed with a 25 mL solution
containing 10 mg L−1 Ru(III). Each sample was mixed for different times (15, 30, 60, 120,
180, and 240 min), at different temperatures (298, 308, and 318 K), and 200 rpm using a
thermostatic bath.

2.2.3. Initial Concentration Influence

To establish how the Ru(III) initial concentration affects the maximum adsorption
capacity of Ch-DB30C10, Ru(III) solutions with different concentrations (10, 25, 50, 75, 100,
150, 175, 200, 225, 250 and 275 mg L−1) were prepared by using a stock solution with a
concentration of 1000 mg L−1. In all these cases, the adsorptive process was conducted
at pH between 2 and 4 and a temperature of 298 K for 120 min. Ruthenium residual
concentration was measured using the ICPOS technique (5100 VDV Agilent Technology,
with a double-pass chamber and OneNeb nebulizer). For concentration calculation, the
first two most intense spectral lines were used, all concentrations were determined based
on 3 replicates, and 5 s integration times.

In order to determine the maximum adsorption capacity of newly prepared adsorbent
material, q (mg g−1), the following equation was used:

q =
(C0 −Cf)V

m
(1)

where:
C0—initial concentration of Pd (II) from solution, (mg L−1);
Cf—residual concentration of Pd (II) from solution, (mg L−1);
V—volume solution, (L);
m—adsorbent mass, (g).

2.3. Desorption Studies

The desorption study was conducted in a similar way to the adsorption one. After
adsorption of 200 mg L−1 Ru(III) on Ch-DB30C10 at pH 2, 298 K, and 200 rpm for 120 min,
adsorbent material was dried. Then, 1 g of dried material was placed in contact with 25 mL
of different eluents (HNO3, HCl, H2SO4) with different concentrations (0.5, 1, and 5 M) for
60 min at 298 K and 200 rpm.

3. Results and Discussion
3.1. Material Synthesis and Characterization

After preparation, adsorbent material was characterized by using the physical–chemical
methods described earlier.
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3.1.1. Scanning Electron Microscopy Coupled with Energy Dispersive X-Ray Spectroscopy
(SEM–EDX)

In Figure 1a,b, the SEM pictures recorded for pure Ch and for Ch-DB30C10 produced
adsorbent are depicted and in Figure 1c,d the EDX spectra recorded for pure Ch and for
Ch-DB30C10 produced adsorbent are depicted.
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Analyzing the image presented in Figure 1a, it can be observed that the support
material (Ch) presents a smooth and porous surface. Similar, from the SEM picture depicted
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in Figure 1b, it can be observed that the prepared adsorbent material (Ch-DB30C10) has a
different surface morphology due to the presence of the crown ether (observed as white
spots on top of the Ch particles) [31].

The presence of the crown ether on the Ch surface was evidenced also by recording
the EDX spectra. In the case of the spectra recorded for produced adsorbent, an increase in
the quantities of C and O can be observed, along with the decrease in the quantity of N.
This is correlated with the fact that the crown ether has in its structure only C and O atoms.

3.1.2. FT-IR Spectroscopy

In Figure 2 the FT-IR spectra recorded for pure Ch and for new prepared adsorbent
material (Ch-DB30C10) are presented.
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Figure 2. FT-IR spectroscopy.

In the spectra recorded for pure Ch, the presence of some characteristic peaks at 3360,
2919, 2874, 1640, 1592, 1375, 1153, 1061, and 893 cm−1 can be observed [32]. Vibrations
located at 3360 cm−1 are specific for –N–H and –O–H bonds. Adsorption bands located at
2919 and 2874 cm−1 are attributed to the stretching vibrations of symmetric and asymmetric
–C–H bonds, being specific to polysaccharides [33]. The residual N-acetyl group is evidenced
by the stretching vibrations observed at 1640 and 1375 cm−1. The vibration observed at
1153 cm−1 can be attributed to the asymmetric bond –C–O-C–, and the bands located at
1061 and 893 cm-1 correspond to the presence of the -C-O bond [34].

From the FT-IR spectra of Ch-DB30C10, it can be observed that the peaks are lo-
cated at approximately the same wave numbers, but they are more intense [33]; therefore,
confirming Ch functionalization with crown ether.

3.1.3. Determination of the Specific Surface using the BET Method
(Brunauer–Emmett–Teller)

N2 adsorption/desorption isotherms recorded for pure Ch and for Ch-DB30C10 are
presented in Figure 3. In the inset graph, the pore size distribution obtained using the BJH
method was presented. Both samples indicate a type II isotherm after IUPAC [35].
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Figure 3. Determination of the specific surface using the BET method.

This type of isotherm is specific for nonporous or macroporous adsorbents.
Analyzing the data obtained from the isotherms, the results indicate an increase in

surface area and total pore volume for sample Ch. The textural data obtained for both
samples are: raw Ch presents a specific surface area of 15.25 m2 g−1 and a total pore volume
of 0.01493 cm3 g−1. In the case of newly prepared adsorbent material, a surface area of
1.973 m2 g−1 and a total pore volume of 0.003599 cm3 g−1 was obtained.

As a result, from the textural parameters we observed that after the DB30C10 was
introduced the pores were filled but the average pore size was not altered. Additionally,
it can be stated that pores are filled one by one, so adsorbed material has the tendency to
gather sidewards, from where pores are filled. Therefore, no changes were noticed in the
material structure, so the pore structure remained unchanged.

3.1.4. Point of Zero Charge, pHpZc

One possibility for gathering information about the electrical charge of the Ch-DB30C10
surface is represented by determination of point of zero charge (pHpzc). In Figure 4 the
graphical representation used for determination of point of zero charge for newly prepared
adsorbent material is depicted. Based on experimental data presented in Figure 4, it can be
concluded that Ch-DB30C10 point of zero charge is 8. When the solution pH is higher than
pHpzc, the material surface will be negatively charged, and when pH values are lower it
means that the material surface has a positive charge [36,37].
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In aqueous solution, at pH lower than 4, the formation of different anionic complexes
of Ru(III) was reported, such as [RuCl4(H2O)2]− [38,39], due to the hydrolysis of ruthenium
salt. Additionally, it was proved that at a pH higher than 4, ruthenium ions precipitate as
Ru(OH)3·nH2O, meaning that the Ru(III) recovery must be carried out at a pH lower than
4 [40]. By correlating this observation with the determined pHpzc value, it can be concluded
that at pH < 4 it will be adsorbed as an anion complex onto the material surface.

3.2. Adsorption Studies
3.2.1. The pH Influence

One parameter that has a great influence on Ru(III) adsorption is represented by the
solution pH, with the obtained data presented in Figure 5.
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Analyzing data from Figure 5, it can be observed that the adsorption capacity increases
with the increase in the solution pH from 0.5 to 2. At pH 2 the maximum adsorption capacity
of around 3 mg Ru(III) per gram of adsorbent material was reached. Further increase in
the pH leads to a decrease in the adsorption capacity. This behavior must be correlated
with the complex behavior of Ru ions in aqueous solutions, where those ions suffer from
hydrolysis with formation of different complexes. Marenich et al. [41] proved that at acidic
pH, ruthenium forms aqua-complexes, such as RuIII(H2O)18

3+. At this point, by correlating
the data from Figure 5 with the information regarding the RuCl3 hydrolysis, it can be
concluded that the recovery of such ions from aqueous solutions must be carried out at
pH 2.

3.2.2. Influence of the Contact Time and Temperature

Other important parameters for adsorptive processes are represented by the contact
time and working temperature. In the present paper, the influence of these two parameters
on the Ru(III) adsorption on Ch-DB30C10 was followed. In Figure 6, the dependence
between maximum adsorption capacity and contact time at three different temperatures
is depicted.
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10 mg L−1 Ru(III), pH 2).

From data presented in Figure 6, it can be observed that at all temperature values
the increase in the contact time until 120 min has a beneficial effect, leading to an increase
in the maximum adsorption capacity. For any further increase in the contact time, the
adsorption capacity remains relatively constant at approximatively 2.5 mg Ru(III) adsorbed
per each gram of adsorbent material. Based on these observations, it can be concluded
that the optimum contact time is 120 min. It can also be observed that the increase in the
temperature leads to no significant increase in the maximum adsorption capacity (from
2.5 mg g−1 at 298 K, to 2.6 mg g−1 at 318 K), so any further experiments were carried out at
298 K.

3.2.3. The Ru(III) Initial Concentration Influence

Likewise, the influence of the Ru(III) initial concentration on its adsorption process on
Ch-DB30C10 was studied. In Figure 7 the dependence between the maximum adsorption
capacity and Ru(III) initial concentration is presented.
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From the data presented in Figure 7, an increase in maximum adsorption capacity
as well as the increase in Ru(III) initial concentration can be observed until 250 mg per
liter. Further increase in the initial concentration leads to no increase in the maximum
adsorption capacity. Therefore, it can be concluded that the maximum adsorption capacity
of approximately 52 mg Ru(III) per gram of adsorbent material was obtained for an initial
concentration of 250 mg Ru(III) per liter. Experimental data proved that the raw Ch
exhibited a maximum adsorption capacity of 17.5 mg Ru(III) per g, respectively, and crown
ether presented a maximum adsorption capacity of 36.3 mg Ru(III) per g. In this context, it
can clearly be observed that the prepared material is superior to the individual components.

3.2.4. Kinetic Studies

In order to determine the kinetics of studied process, the Lagergren model (pseudo-
first order model) and Ho and McKay model (pseudo-second order model) were used. The
kinetic equation used to describe the pseudo-first order model is [42]:

ln
(
qe − qt

)
= lnqe − k1t

where:
qe—adsorption capacity at equilibrium (mg/g);
qt—adsorption capacity at t time (mg/g);
k1—pseudo-order-one speed constant (1/min);
t—contact time (min).
A similar mathematical equation used to describe the pseudo-second order model

is [43–45]:
t

qt
=

1
k2q2

e
+

t
qe

where:
qe—adsorption capacity at equilibrium (mg/g);
qt—adsorption capacity at t time (mg/g);
k2—pseudo-order-two speed constant (g/mg·min);
t—contact time (min).
Parameters associated with the kinetic models used were determined from graphical

representations of linearized forms of mathematical equations associated with the models.
In the case of the pseudo-first order model, the linear dependence between ln(qe − qt) and
t was represented and from the line equation the values of k1 and qe calc were determined.
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Additionally, when the experimental data were modeled using the pseudo-second order
model, the linear dependence between t/qt and t was represented, and from the line
equation the values for parameters k2 and qe calc were determined. In the present paper, the
kinetics of Ru(III) adsorption on Ch-DB30C10 was studied at three different temperatures:
298, 308, and 318 K. The obtained pseudo-first order and pseudo-secondorder kinetic
isotherms are presented in Figure 8. Based on the depicted kinetic isotherms, the speed
constants, maximum adsorption capacities, and regression coefficients were calculated,
which are presented in Table 1.
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Table 1. Kinetic parameters for the adsorption of Ru(III) onto Ch-DB30C10.

Pseudo-First Order

Temperature (K) qe,exp
(mg/g)

k1
(1/min)

qe,calc
(mg/g) R2

298 2.34 0.012 1.73 0.9808

308 2.44 0.013 1.61 0.9887

318 2.50 0.023 1.68 0.9716

Pseudo-second order

Temperature (K) qe,exp
(mg/g)

k2
(g/mg·min)

qe,calc
(mg/g) R2

298 2.34 0.461 2.43 0.9971

308 2.44 0.677 2.49 0.9979

318 2.50 0.923 2.60 0.9965

Analyzing the data presented in Figure 8 and Table 1, it can be observed that the
experimental data are modeled with higher accuracy by the pseudo-second order model.
This fact is supported by the R2 (0.9965–0.9979) values closer to unity, and by the better
alignment of points with the linear form of the pseudo-second order model. By comparison,
when the obtained experimental data were modeled using the pseudo-first order model,
values of R2 were located between 0.9716 and 0.9887. Likewise, the values of maximum
adsorption capacities using these kinetic models were estimated. In the case of the pseudo-
second order model, at the temperature of 298 K a value of approximately 2.43 mg Ru(IIII)
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per gram of adsorbent was obtained, which is closer to the experimental value of 2.34 mg
Ru(III) per gram of adsorbent. Experimental data proved that the temperature has no
significant influence over the maximum adsorption capacity, so in this case, there is no
need to work at a higher temperature. In order to understand whether film diffusion or
intraparticle diffusion represent the speed determining step, the obtained experimental data
were modeled using the Weber–Morris model. This model is described by the following
mathematical equation:

qt = kdiff • t1/2 + C

where:
qt—adsorption capacity at time t;
kdiff—intraparticle diffusion speed constant, mg/g·min1/2;
C—constant correlated with the thickness of the liquid film surrounding the adsor-

bent particles.
Curves obtained after modeling the experimental data with the Weber–Morris model

are presented in Figure 9.
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terial at different temperatures.

From the data depicted in Figure 9, it can be observed that the curves representing the
dependence qt versus t1/2 do not pass through the origin. Such behavior is associated with
a multi-step adsorptive process, which means that both the film and intraparticle diffusion
can influence the adsorption kinetics. Numerical values obtained for parameters kdiff and
C associated with the Weber–Morris model are presented in Table 2.
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Table 2. The intraparticle diffusion model parameters for the adsorption of Ru(III) onto Ch-DB30C10.

Intraparticle Diffusion Model

Temperature
(K)

K1diff
(mg/g·min1/2) C1 R2 K2diff

(mg/g·min1/2) C2 R2

298 0.402 0.108 0.9237 0.174 0.0186 0.8979

308 1.611 0.139 0.9231 0.383 0.0492 0.7989

318 2.216 0.166 0.8912 0.585 0.0566 0.8986

From the data presented in Table 2, it can be observed that the value of kdiff increases
with the increase in the working temperature. Additionally, it can be observed that the
diffusion constants for the first stage are larger than the constants associated with the
second stage. Based on that, it can be concluded that the first stage is determines the global
adsorption speed and the second one limits the overall process [2].

Further, for Ru(III) adsorption on Ch-DB30C10, the activation energy was calculated
using the Arrhenius equation and the speed constant was obtained using the pseudo-second
order model.

ln k2 = lnA− Ea

RT
where:

k2—speed constant (g/min·mg);
A—Arrhenius constant (g·min/mg);
Ea—activation energy (kJ/mol);
T—absolute temperature (K);
R—the ideal gas constant (8.314 J/mol·K).
The value of the activation energy indicates whether the studied adsorptive process is

physical or chemical. In the case of Ru(III) adsorption on Ch-DB30C10, the value of the acti-
vation energy was determined from the linear dependence between lnk2 and 1/T (depicted
in Figure 10). For this process, the activation energy has a value of 27.3 kJ mol−1, meaning
that the Ru(III) adsorption is a physical adsorption (value lower than 40 kJ mol−1) [46].
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3.2.5. Thermodynamic Studies

Thermodynamic studies were performed in order to determine the following ther-
modynamic parameters: ∆G◦, ∆H◦, and ∆S◦. All of these studies were performed in the
temperature range between 298 and 318 K. Firstly, based on the van’t Hoff equation and
from the linear dependence between ln Kd versus 1/T (depicted in Figure 11), the values
of enthalpy standard variation (∆H◦) and entropy standard variation (∆S◦) were deter-
mined. Further, the value of free Gibbs energy was determined using the Gibbs–Helmholtz
equation [47].
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Obtained values of the thermodynamic parameters are presented in Table 3.

Table 3. Thermodynamic parameters for adsorption of Ru(III) onto Ch-DB30C10.

∆Hº
(kJ/mol)

∆Sº
(J/mol·K)

∆Gº
(kJ/mol) R2

298 K 308 K 318 K

97.06 362.4 −10.9 −14.56 −18.19 0.9981

Analyzing the information presented in Table 3, it can be observed that the value
of ∆H◦ is positive, meaning that the studied adsorption process is endodermic. For the
free Gibbs energy, negative values were observed, which increased with the increase in
the temperature, meaning that the process is spontaneous and influenced by temperature.
Positive values of ∆S◦ indicate that the adsorptive process is favorable and is taking place
at the interface of the Ch-DB30C10/Ru(III) solution.

3.2.6. Equilibrium Studies

In the next step, the mechanism of the adsorption process was established by model-
ing the obtained experimental data with three specific isotherms: Langmuir, Freundlich,
and Sips.
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The Langmuir isotherm [48] was used to model the obtained experimental data, in
order to evaluate the maximum adsorption capacity of the prepared adsorbent material.
The nonlinear expression of the Langmuir isotherm is:

qe =
qLKLCe

1 + KLCe
,

where:
qL—Langmuir maximum adsorption capacity (mg/g);
KL—Langmuir constant.
The Freundlich isotherm assumes that the surface of the adsorbent material used is

heterogeneous, so it can be further considered that the distribution of the adsorption heat
on such surface is uneven and multilayer adsorption can occur due to the presence of an
unlimited number of active centers.

The Freundlich isotherm is an empirical isotherm [49] given by the relationship:

qe = KFC1/nF
e

where KF and nF—the characteristic constants that can be related to the relative adsorption
capacity of the adsorbent and the intensity of adsorption.

The Sips isotherm [50] was derived from the Langmuir and Freundlich isotherms. In
the case of low adsorbate concentrations, it reduces to the Freundlich isotherm, and if the
adsorbate concentrations are high, it exhibits the characteristics of the Langmuir isotherm.
Therefore, this isotherm can be used to compute the adsorption capacity. The nonlinear
equation of the Sips isotherm is:

qe =
qSKSC1/nS

e

1 + KsC1/nS
e

,

where:
KS—constant related to the adsorption capacity of the adsorbent;
nS—the heterogeneity factor.
In Figure 12, the obtained adsorption isotherms are presented.
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From the slopes of the straight lines of the adsorption isotherms represented in
Figure 12, specific parameters were determined for each isotherm used for modeling the
experimental data (Table 4).

Table 4. Parameters of the isotherm model for adsorption of Ru(III) onto Ch-DB30C10.

Langmuir Isotherm

qm,exp (mg/g) KL (L/mg) qL (mg/g) R2

52.1 0.053 73.6 0.9626

Freundlich isotherm

KF (mg/g) 1/nF R2

8.19 0,481 0.8764

Sips isotherm

KS qS (mg/g) 1/nS R2

0.013 55.9 0.78 0.9931

From the data presented in Table 4, it can be observed that Sips isotherm accurately
describes Ru(III) adsorption on Ch-DB30C10, due to the regression coefficient being closer
to 1 [2], and due to the value of adsorption capacity being closer to the experimental one.
Because the studied adsorption is described by the Sips isotherm, it can be concluded that
this can take place as a multi-layer adsorption.

In Table 5, the adsorption capacities obtained for the adsorption of Ru(III) on different
adsorbent materials are presented. Based on these data, it can be concluded that Ch-
DB30C10 has the best performance for Ru(III) adsorption.

Table 5. Comparison of adsorption performance with other materials for Ru(III).

Adsorbent Material pH T (K) C0 (mg L−1) qm (mg g−1) Reference

Raw C. glutamicum biomass 2.5–2.7 293 61.6 16 [9]
Lewatit MonoPlus M600 2.5–2.7 293 61.6 6.7 [9]

Ion-imprinted blend membrane
(Ru(III)-IIM) 2 298 60 44.1 [51]

PNSBs 2 338 3250 40 [52]
Amberjet 4200 2.5–2.7 298 1000 31.2 [26]

NIM 2 298 60 20.6 [51]
M500 2.5–2.7 298 3250 17.9 [26]

TRPO/SiO2-P 1 298 1059.8 54.6 [2]
Ch-DB30C10 2 298 275 52 This work

3.3. Desorption Behavior

An important aspect is represented by the possibility of reusing the adsorbent material.
Therefore, in this context the desorption of adsorbed Ru using different eluents, such as
HNO3, HCl, and H2SO4, was studied with concentrations between 0.1 and 5 M. Obtained
experimental data are depicted in Table 6. From the obtained experimental data, it can
be observed that the increase in the eluent concentration leads at increase in desorption
efficiency. Additionally, it can be observed that the maximum desorption efficiency of
96.7 was obtained when HNO3 5 M was used as the eluent.

Table 6. Desorption efficiency of Ru(III) using various eluents.

Eluent Concentration
HNO3 HCl H2SO4

0.5 M 1 M 5 M 0.5 M 1 M 5 M 0.5 M 1 M 5 M

Efficiency, % 85.6 92.4 96.7 78.7 81.2 87.4 45.6 76.8 79.8
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3.4. Proposal of a Mechanism for the Ru(III) Adsorption Process

Based on the performed studies, the following mechanism for Ru(III) adsorption onto
Ch-DB30C10 (Figure 13) was proposed.
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4. Conclusions

In present study, a new adsorbent material was prepared using chitosan functional-
ization with dibenzo-30-crown-10 ether, and the obtained material had good efficiency
for Ru(III) adsorption for aqueous solutions. The best results were obtained when the
process was undertaken at pH 2, contact time of 120 min, and 298 K. By using the optimum
conditions, kinetic, thermodynamic, and equilibrium studies were performed.

From the kinetic studies, it was determined that the pseudo-second order model was
the best out of the studied processes. In order to make a clear distinction between film and
intra-particle diffusion, experimental data were modeled using the Weber–Morris model.
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The porous structure of Ch-DB30C10 active sites can also be located inside the channels, but
experimental data indicated that the Ru(III) ions are adsorbed inside the crown ether. In this
case, it can be concluded that the metallic ions are adsorbed as film and the intra-particle
diffusion is not a limiting factor for the studied adsorption process. Based on the value of
activation energy, it was established that Ru(III) adsorption is a physical process. Based on
the obtained experimental data, it was observed that the maximum adsorption capacity of
Ch-DB30C10 was 52 mg Ru(III) per gram of adsorbent material.

In order to establish whether the prepared material can be reused, desorption tests
were performed using different eluents. From these, 5 M HNO3 represents the optimum
one for Ru(III) recovery (96.7%). After desorption, the adsorbent material was used for
a new recovery cycle. The maximum number of adsorption/desorption cycles until the
adsorbent material was exhausted was 11. Based on the obtained data, an adsorption
mechanism was proposed.

It can be concluded that the newly prepared adsorbent material can be used for further
recovery of Ru(III) ions from aqueous solutions by adsorption.
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