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Antibiotic tolerance—the ability of bacteria to survive for an extended time in the presence of bactericidal
antibiotics—is an understudied contributor to antibiotic treatment failure. Herein, I review the manifestations,
mechanisms, and clinical relevance of tolerance to cell wall–active (CWA) antibiotics, one of the most important
groups of antibiotics at the forefront of clinical use. I discuss definitions of tolerance and assays for tolerance detec-
tion, comprehensively discuss the mechanism of action of β-lactams and other CWA antibiotics, and then provide
an overview of how cells mitigate the potentially lethal effects of CWA antibiotic–induced cell damage to become
tolerant. Lastly, I discuss evidence for a role of CWA antibiotic tolerance in clinical antibiotic treatment failure.
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Part I. Introduction

The discovery, development, and clinical imple-
mentation of antibiotics stands as one of the great-
est achievements of the 20th century. They have
enabled the treatment of myriad infectious diseases
and facilitated important life-saving advances in
medicine, such as organ transplantation. Among
the most important are cell wall–active (CWA)
antibiotics, which selectively inhibit the synthe-
sis or turnover of this essential bacterial struc-
ture. These agents include, inter alia, the β-lactams
(e.g., penicillins, cephalosporins, carbapenems, and
monobactams), glycopeptides (e.g., vancomycin,
teicoplanin, telavancin, oritavancin, and dalba-
vancin), and fosfomycin. The history describing
their discovery and clinical development is the
source of legend. These accounts range from the
serendipitous, yet Argus-eyed, discovery of peni-
cillin by A. Fleming in the 1920s who noted the
inhibitory activity on Staphylococcus aureus on an
agar plate contaminated with the mold Penicillium
notatum,1 to the exotic with the discovery by E.
Kornfeld in the 1950s of compound 05865, that

is, vancomycin (named from the word “vanquish”),
produced by an isolate, Streptomyces orientalis (now
Amycolatopsis orientalis), recovered froma soil sam-
ple from Borneo.2
However, these and related compounds have

often been deployed with abandon and little con-
sideration to the ease with which resistance can
emerge. The emergence and increasing occurrence
of antibiotic resistant organisms is a serious pub-
lic health concern and places a substantial burden
on the healthcare system and society in general.
The Centers for Disease Control and Prevention
estimates that more than 2 million antibiotic resis-
tant infections occur in the United States each year,
resulting in at least 23,000 deaths, $20 billion in
excess direct healthcare costs, and $35 billion in lost
productivity.3 Clearly, frank antibiotic resistance is a
global threat; however, antibiotic tolerance (defined
below) is believed to contribute to both treatment
failure and the development of overt antibiotic resis-
tance. Despite seminal work in the 1970s and 1980s
that focused on CWA antibiotic tolerance, this
remains underappreciated and understudied (e.g.,
a PubMed search for “antibiotic tolerance” yields
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Figure 1. Time-kill experiment illustrating the distinction
between CWA antibiotic resistance, tolerance, and lack of tol-
erance at high inoculum. Shown are real data from an actual
experiment where either a resistant isolate of Klebsiella pneu-
moniae (carrying the carbapenemase KPC-1), a tolerant iso-
late of the same species (K. pneumoniae 1084), or a nontoler-
ant E. coli isolate were exposed to the carbapenem antibiotic
meropenem. The resistant isolate divides and thus increases in
live cell counts, while the tolerant isolate neither grows nor sig-
nificantly dies and the nontolerant isolate declines in viability
by several orders of magnitude. Note that what is shown here
represents exposure to antibiotics at high inoculum, where a
very high number of tolerant cells remains viable.

1/60th of the number of articles unearthed with the
search term “antibiotic resistance”). Therefore, the
primary motivating factor for this review is to illu-
minate the topic of tolerance ofCWAantibiotics and
to inspire the scientific community to address this
important and fascinating subject.

Definitions and measurements of tolerance
Antibiotic tolerance remains a poorly defined term.
Typically, it is used to express that bacteria remain
viable (but unable to grow) for extended periods
after exposure to an antibiotic typically considered
bactericidal (Fig. 1). This is in clear contrast to resis-
tance, which is defined as the ability to proliferate in
the presence of an antibiotic (quantifiable by well-
defined measures, such as the zone of inhibition
around an antibiotic-containing disk, or the mini-
mum inhibitory concentration, MIC). I herein treat
tolerance as largely separate frompersistence, which
is defined as a small fraction of a bacterial popula-
tion that is completely refractory to killing by bacte-
ricidal antibiotics. Numerous excellent reviews are
available concerning persistence,4–6 which will not
be discussed specifically in this review. However, as
there is an overlap between persistence (small sub-
population of bacterial cells that survive antibiotic
exposure) and tolerance (whole population of bac-
terial cells slowly dying), inclusion of persisters to

some degree is necessary. Indeed, persistence has
previously been defined as heterotolerance, that is,
a subcategory of tolerance.4

Numerous attempts have been made to quantify
tolerance in a clinically meaningful way. The ear-
liest studies utilized some measure of the absolute
survival numbers of a population after antibiotic
exposure for a certain timeframe, with arbitrary
cutoff points for what was considered tolerant; for
example, >100 colony forming units (cfu)/mL after
24-h incubation with antibiotic7 or 2% survival
after 24 hours.8 A more widely established measure
for tolerance is the minimum bactericidal concen-
tration (MBC), typically reported in its relationship
with the MIC. Tolerance breakpoints were often
arbitrarily set at MBC/MIC >10–100 (Ref. 9).
For MBC determinations, bacterial cultures are
exposed to increasing concentrations of an antibi-
otic, followed by the determination of viability
after some fixed time of incubation (typically 24
hours).10,11 Usually, killing at first increases with
antibiotic concentration, followed by a plateau
where little additional killing is observed. In some
instances, higher antibiotic concentrations effect
less killing (termed the Eagle effect or paradoxical
effect, which can be observed with certain β-lactam
antibiotics12). The MBC is then (again, somewhat
arbitrarily) defined as the minimal concentration of
antibiotic that kills 99.9% of bacteria. Several prob-
lems with the MBC metric for assessing tolerance
were reported early on.UnlikeMICdeterminations,
MBCs were found to be highly variable between
different growth media and culture volumes used
in these assays,9,13–16 adversely affecting its useful-
ness for clinical studies. Further, some bactericidal
antibiotics never yield an MBC against some bac-
terial species (even if they are fully susceptible, but
less than 99.9%of the population is killed).17,18 Most
importantly, when considering the phenomenology
of tolerance, a bacterial isolate with a low MBC
might still be considered tolerant if it takes an
extended time to reach 99.9% of killing. For exam-
ple, an isolate that experiences a 1000-fold drop in
viability within 1 h at a certain antibiotic concentra-
tion would arguably be less tolerant than an isolate
that takes 24 h to reach the same level of killing,
yet both might have the same MBC. As a potential
way to circumvent this problem, another proposed
tolerance measure uses the time needed to kill
99–99.9%of bacteria; that is, theminimumduration
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Figure 2. Summary of the main classes of CWA antibiotics and their mechanism of action. Antibiotics not used clinically are in
parentheses. ROS, reactive oxygen species; GT, glycosyltransferase.

of killing (MDK99) as a readout for tolerance.19,20
Lastly, Goessens et al. proposed the use of the toler-
ance percentage, which is measured by conducting
anMBC experiment, but then reporting the percent
survival of the bacterial population at the begin-
ning of the plateau, that is, the survival fraction
at the antibiotic concentration above which no
further killing is observed.8 As such, the tolerance
percentage would likely be a useful quantifier for
persistence but not necessarily for tolerance since
the latter is generally defined through a temporal
aspect (“slower” killing). Therefore, the MDK99 is
probably the most relevant measurement to capture
the full breadth of tolerance phenotypes.
What almost all tolerance tests have in com-

mon is that unlike the gold standard MIC, they
are too cumbersome and time-consuming to be
routinely conducted in a clinical laboratory. This
problem has been recognized and two tests have
thus been established to measure tolerance by the
appearance of colonies in the zone of growth inhibi-
tion around an antibiotic-containing disk upon pro-
longed incubation. This is accomplished either by
adding, post-incubation, an enzyme that degrades
the antibiotic,21 or, in its more recent iteration from
Nathalie Balaban’s group, by adding nutrients and
relying on antibiotic dissipation through diffusion
to allow for regrowth of rare survivors (TDtest22).
While these tests are only semiquantitative, for
example, provide readouts of “no colonies” versus
“few colonies” versus “many colonies,” they could
potentially be compatible with a clinical microbiol-
ogy laboratory workflow, opening up new avenues
to include tolerance testing in the clinical practice.

Part II. Mechanisms of tolerance

Mechanism(s) of action of CWA antibiotics
To understand mechanisms of tolerance, one must
first understand the mechanism of action of CWA
antibiotics (summarized in Fig. 2); for that, an
excursion into bacterial cell wall synthesis and

turnover is necessary. Most bacteria surround
themselves with a cell wall, which is either a
thin layer (∼2–6 nm) covalently linked to an
outer membrane (Gram-negative bacteria) or a
thick layer (∼50–60 nm) covalently linked with
other polysaccharides (e.g., teichoic acids (TAs))
that often have regulatory functions.23,24 In both
Gram-negative and -positive bacteria, the cell wall
mainly comprises peptidoglycan (PG), a polymer
of [N-acetyl-glucosamine]-[N-acetylmuramic acid]
(NAG–NAM) residues that have short oligopeptide
chains attached to the NAM residues. The NAG-
NAM disaccharide unit is almost invariant across
bacterial species (with the exception of condition-
specific modifications likeO-acetylation25,26), while
the oligopeptide chain is highly variable depending
on species and growth conditions.24 However, some
commonalities, grounded in biochemical neces-
sity, exist. For example, in all bacteria, the peptide
sidechain contains d-amino acids; the third position
is occupied by a d-amino acid that possesses free
amine groups (typically diaminopimelic acid (DAP)
or lysine (Lys)) and positions 4 and 5 consist of two
d-alanine (d-Ala) residues in the vast majority of
bacterial species.24,27
The basic building block for the cell wall is

called lipid II and represents an NAG–NAM dis-
accharide with a pentapeptide sidechain and a
C55 lipid anchor (undecaprenol phosphate (UP)).
This precursor is produced in the cytoplasm by
an assembly line of so-called Mur enzymes, which
first produce an NAM monosaccharide that is
sequentially outfitted with amino acids to build the
oligopeptide chain. The resulting NAM-peptide
is then attached to UP-pyrophosphate (UPP) and
subsequently joined with an NAG residue to form
lipid II. Lipid II is translocated into the periplasm by
dedicated flippase enzymes (MurJ and Amj28–30),
where it is then used to assemble the final cell
wall in two major reactions. The pyrophosphate
bond in lipid II is used to provide energy for a
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glycosyltransferase reaction (GT reaction); that
is, the polymerization of the disaccharides into
polysaccharide strands of varying lengths.31 This
reaction liberates the UPP carrier, which is first
dephosphorylated by several phosphatases32–35 and
then recycled for another round of lipid II produc-
tion in the cytoplasm.36,37 The second reaction is
transpeptidation (TP reaction), which exploits the
energy of the d-Ala–d-Ala link to effect covalent
linkage between a free amine group ofDAPor Lys in
the third position of the oligopeptide sidestem and
the subterminal d-Ala residue of an adjacent PG
strand.31 Variations of this theme exist, with often
elaborate peptide crossbridges between the Lys-d-
Ala bond inGram-positive bacteria, as well as direct
DAP–DAP crosslinks in both Gram-negatives
and -positives.24,27
GT reactions can be catalyzed by three dif-

ferent types of synthases: the class A penicillin-
binding proteins (aPBPs), the shape, elongation,
division, and sporulation (SEDS) proteins RodA
and FtsW, as well as monofunctional transglyco-
sylases with unclear physiological significance.38–42
TP reactions are catalyzed by aPBPs and mono-
functional class B PBPs (bPBPs); the latter typi-
cally associate with SEDS proteins to catalyze cell
wall assembly.39–41 A special type of TP reaction
(e.g., catalyzing crosslinking between DAP–DAP)
is mediated by l,d transpeptidases.43–45 Why bacte-
ria encode separate biochemical entities catalyzing
essentially the same reactions is poorly understood,
but aPBPs appear to have a general (nonspecial-
ized) PG synthesis and perhaps repair function,46–48
while bPBP–SEDS pairs have more specialized
functions in cell elongation and division.39–41 A bal-
ance between aPBPs and bPBP-SEDS activities is
also important for cell width and cell wall turnover
homeostasis in Bacillus subtilis.49,50
While the PG cell wall is essential for mainte-

nance of structural integrity and thus a relatively
rigid structure, it is also remarkably dynamic. A
large number of often biochemically redundant
enzymes termed autolysins are able to cut and pro-
cess PG. For a detailed discussion of these enzymes,
several excellent reviews are available (e.g.,
see Refs. 51–54). The physiological functions
of these cutting processes include creating gaps for
insertion of new PG during cell elongation,55–57
facilitating daughter cell separation after cell
division,58–64 insertion of macromolecular transen-

velope complexes into the cell wall,65,66 and PG
recycling.67 Autolysins are organized into four
major families. The amidases cleave between the
oligopeptide sidechain and the polysaccharide
backbone. The endopeptidases (EPs) cut the inter-
molecular oligopeptide crosslinks between DAP3
and d-Ala4 (d,d EPs), between DAP3–DAP3,
as well as intramolecular DAP3-d-Glu2 bonds
(d,l EPs), or within the peptide bridge elabo-
rated by some Gram-positive bacteria.68 The lytic
transglycosylases (LTGs) cut within the polysaccha-
ride backbone in a nonhydrolytic, intramolecular
nucleophilic attack mechanism that generates char-
acteristic saccharide-anhydro residues,69 while the
similar muramidases cut the backbone through a
hydrolytic mechanism. Lastly, the carboxypepti-
dases (which cleave off terminal amino acids from
the oligopeptide sidestems) are often grouped with
the autolysins, though their cleavage activity does
not directly result in cell wall integrity failure.54,70
The amidases are active during cell division and

have a function in daughter cell separation, which
is understood in great mechanistic detail.61,63 EPs
have a demonstrated, yet less well-understood role
in cell elongation and division.55–57,71,72 The LTGs
and muramidases facilitate insertion of transenve-
lope complexes, PG recycling, daughter cell sep-
aration, and toxin secretion.64,65,67,73,74 The car-
boxypeptidases have a poorly understood role in
cell shape generation and in the regulation of PG
synthesis.70,75–78 Since autolysin-mediated cleavage
processes are potential threats to cellular structural
integrity, they are likely carefully controlled or bal-
anced by efficient cell wall synthesis at all times, and
this has indeed been demonstrated for amidases and
to some degree for EPs.62,63,79–82 Understanding the
role and cleavage specificities of autolysins will be
important to understand the mechanism of action
of CWA antibiotics in the next sections.

Mechanism of action of β-lactam antibiotics.
The mechanism of action of β-lactam antibi-
otics is simple: they inhibit the TP active site of
PBPs. Following the resulting interruption of PG
assembly, the cell wall is usually degraded, caus-
ing either lysis and death, or the emergence of
viable, cell wall–deficient forms.17,83–88 However,
considering the downstream consequences of
β-lactam–PBP interactions in more detail gives rise
to considerable complexity. First, not all β-lactams
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have the same affinity for all PBPs. In extreme
cases, specific PBPs are exclusively inhibited by
specific antibiotics (e.g., bPBP2 in many Gram-
negative bacteria, which is inhibited by mecillinam,
or bPBP3, which in many bacteria is inhibited by
aztreonam or cephalexin), but most β-lactams bind
to multiple PBPs with different affinities.89–93 Even
at concentrations above the MIC, the consequences
of β-lactam exposure can thus be a function of the
compound’s concentration, rather than causing
a simple dichotomy of growth versus death. For
example, imipenem inhibits bPBP2 primarily at
concentrations just above the MIC, but all PBPs
at higher concentrations,94 favoring dramatically
different cell fates (see below). Affinities can vary
between bacterial species too. The Gram-negative
bPBP2 inhibitor mecillinam mentioned above
specifically inhibits the class A PBPs in Strepto-
coccus pneumoniae,92 and cefsulodin inhibits both
aPBPs in Escherichia coli, but only aPBP1B in
Vibrio cholerae.95 The physiological importance of
specific β-lactam–PBP affinities becomes appar-
ent when considering the second complication of
β-lactam mechanism of action: inhibition of
different PBPs can have drastically different con-
sequences for cells. Inhibition of the cell division–
specific bPBP3 by aztreonam results in filamenta-
tion and slow death, and inhibition of PBP2 results
in continued cell wall synthesis, but an inability to
divide and maintain rod shape and thus delayed
lysis and death. By contrast, inhibition of the aPBPs
generally results in catastrophic structural integrity
failure and rapid cell lysis and death.90,94,96 In
the model organism E. coli, where most work on
β-lactam susceptibility has been conducted, the
most rapid lysis is observed when aPBPs plus one
or more bPBPs are inhibited simultaneously.94
The last complication of β-lactams is the historic

observation that β-lactam exposure can result in
two separate death pathways, a lytic pathway and
a nonlytic pathway. This was first observed by
Alexander Tomasz’s group in the 1970s where an
autolysin-deficient mutant of S. pneumoniae did
not lyse in the presence of penicillin, but still died.97
Similarly, isolates of various Streptococcus species
differ in their lytic responses: Streptococcus sanguis
neither lyses nor dies (but is growth-inhibited),
Streptococcus pyogenes does not lyse, but dies, and
S. pneumoniae both lyses and dies in the pres-
ence of penicillin.98 Thus, lysis and death induced

by β-lactam antibiotics are separable phenom-
ena. The question of what kills lysis-deficient,
β-lactam–exposed cells was reilluminated by
Thomas Bernhardt’s group in 2014. Here, the para-
doxical observation that the bPBP2 inhibitor mecil-
linam still killed cells with genetic backgrounds
where bPBP2 is nonessential, led to the realization
that β-lactam exposure does notmerely result in PG
synthesis inhibition and activation of autolysins. In
addition to inducing cell wall degradation, inhibi-
tion of the TP active site promotes the continuous
generation of long, uncrosslinked PG strands,
which are immediately degraded by LTGs in a pro-
cess termed futile cycling.99 This runaway process in
turn likely results in precursor depletion (especially
depletion of the limited UP membrane carrier,
which is shared with other essential biochemical
pathways) as well as unnecessary energy expendi-
ture, and significantly contributes to cell death.99
Consistent with such a model, overexpression of
aPBPmutants with inactivated TP domains induces
lysis in E. coli,100 putatively also due to futile cycling.

Glycopeptide antibiotics. The glycopeptide
antibiotics are high molecular weight antibiotics
that are generally only active against Gram-positive
bacteria as due to their large size they do not
significantly penetrate the outer memberane of
most Gram-negative bacteria.101 What all gly-
copeptides have in common is their ability to
bind tightly to PG or PG precursors, though the
specific binding region and thus killing potency
can vary. Vancomycin and related glycopeptides
(e.g., oritavancin) bind tightly to the d-Ala-d-Ala
end of stem oligopeptides and thus primarily
inhibit the TP reaction through steric obstruction
of PG synthase–substrate binding.102 However,
vancomycin binding can also inhibit GT activ-
ity due to its affinity to the pentapeptide in lipid
II.103,104 Ramoplanin has a high affinity for the
sugar portion of lipid II, essentially sequestering
this essential building block from PG synthases
and thereby inhibiting PG assembly (primarily by
preventing GT activity).105 The newly discovered
glycopeptides complestatin and corbomycin exhibit
general PG binding properties (likely binding
the polysaccharide backbone), which obstructs
the activity of autolysins.106 Lastly, some newer
generation glycopeptides (e.g., telavancin) may
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have additional mechanisms of action like mem-
brane disruption and depolarization.107

Precursor synthesis and recycling inhibitors.
Several clinically used antibiotics inhibit PG pre-
cursor synthesis and recycling. Fosfomycin, which
is used to treat infections due to members of
the Enterobacterales,108 covalently modifies and
inhibits MurA, which catalyzes the first step of
PG precursor synthesis.109 Inhibition ultimately
results in precursor depletion, precluding cell wall
assembly. d-cycloserine is a structural d-Ala ana-
log that inhibits alanine racemase as well as d-Ala-
d-Ala ligase,110 resulting in the production of a
lipid II species that lacks the d-Ala-d-Ala cap and
can thus not be used for canonical d,d crosslink-
ing by the PBPs. Bacitracin and teixobactin are
cyclic peptides with a unique mechanism of action:
both bind to the UPP carrier molecule. Bacitracin
sequesters the free form of UPP,111 thus inhibit-
ing the dephosphorylation and recycling of this
essential precursor. Ultimately, cell wall assembly
fails due to the cell’s inability to translocate precur-
sors across the cytoplasmic membrane. Teixobactin
likely interacts with UPP when linked with a sac-
charide residue (as found in lipid II and lipid III)112
and this compound inhibits PG synthesis as well as
other UP-dependent synthesis pathways,113 poten-
tially through sequestration of building blocks in
supramolecular complexes.114

Primary consequences of CWA antibiotic expo-
sure. Why PG degradation and lysis is a conse-
quence of exposure to CWA antibiotics is poorly
understood in detail for most bacteria; however,
autolysins are clearly the main effectors of this
process,88,115 and this was recognized as early as
1957.116 In S. pneumoniae, the amidase LytA is the
sole contributor to penicillin-induced lysis. Under
normal growth conditions, LytA is sequestered by
lipoteichoic acids (LTAs).23,117 Exposure to peni-
cillin results in the degradation of an LTA syn-
thase, the lack of which then favors the produc-
tion of cell wall–associated TAs (WTAs) rather
than LTAs. WTA recruits LytA, resulting in cell
wall degradation, lysis, and death.118 Consequently,
a �lytA mutant fails to lyse in the presence of
penicillin.118–120 Similarly, mutants in the major
autolysin of S. aureus, the bifunctional murami-
dase/amidase Atl, exhibit reduced death and lysis
in the presence of CWA antibiotics,121,122 suggest-

ing some commonality with the S. pneumoniae sys-
tem. The identification of a single autolysin that is
required for CWA antibiotic–induced lysis (like in
S. pneumoniae) is unusual. Most bacteria contain a
multitude of autolysins with their specific contribu-
tions to the lysis process unknown. Species-specific
differences may also exist. In E. coli, products of
LTG andEP-mediated PGdegradation are observed
after β-lactam exposure,123,124 and the amidases
appear to be major contributors to lysis.61 In
V. cholerae, EPs mediate initial cell wall degradation
after exposure to penicillin, while the sole amidase
is not required for the degradation process itself,
but determines the location of its initiation (with a
shift from septal blebbing to lateral wall blebbing
in a �amiB mutant).17 Interestingly, exposure to
the aPBP glycosyltransferase inhibitormoenomycin
results in the degradation of the PG sacculus but
does not yield LTG products in E. coli,124 suggest-
ing that LTG activity is not actually required for
sacculus destruction under all conditions. Likely,
the appearance of LTG breakdown products thus
depends on active GT activity (see “futile cycling”
discussed above) by the Rod system and/or aPBPs.

Other downstream events of PG synthesis inhi-
bition. All things considered, exposure to CWA
antibiotics is a traumatic event for any bacte-
rial cell, as these antibiotics eventually cause the
destruction of the cell wall by autolysins. Thus,
not surprisingly, exposure to such agents results
in various sequelae that reflect distinct cellular
responses as well as purely physical consequences
of massive cell wall damage. Exposure to β-lactams
has been tied to the generation of reactive oxy-
gen species (ROS),125 or not;126,127 activation of
iron uptake;128 changes in TCA cycle intermedi-
ate concentrations;129 induction of the heat shock
response;130,131 induction of the SOS DNA damage
response;132,133 RNA degradation;116,134 and strin-
gent response (SR) induction.135 In principle, any or
all of these processesmay contribute to some degree
to β-lactam–mediated cell death (or tolerance, as
shall be considered later), but their detailed contri-
butions have remained poorly understood.

Environmental factors promoting tolerance
A well-recognized hallmark of antibiotic effi-
cacy is its strong dependence on environmental
factors,136,137 and this is especially true for CWA
antibiotic tolerance. For example, pH,138,139 the
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presence of certain d-amino acids in the growth
medium140 or coculture with other bacteria,141 can
drastically affect CWA antibiotic tolerance through
poorly understood mechanisms. Tolerance can be
a function of media composition as well: plank-
tonic cells of Mycobacterium abscessus, for exam-
ple, exhibit high tolerance to the β-lactam antibiotic
cefoxitin (and other antibiotics) in standard labora-
tory growthmedia, but not in artificial cystic fibrosis
sputum medium.142
Environmental variables that affect growth are

particularly relevant for CWA antibiotic tolerance.
Since cell death and lysis induced by CWA antibi-
otics relies on active PG turnover as detailed above,
a reduction or cessation of cell wall modifications
should result in increased tolerance. One way of
achieving this is to stop growing, and especially
to stop cell division, which appears to be a par-
ticularly dynamic (and thus vulnerable) aspect of
cell wall synthesis and turnover. Processes associ-
ated with cell division are, indeed, a major con-
tributor to β-lactam–induced lysis, at least in E.
coli.143–145 Further, it is well established that the
degree and rate of death induced by β-lactam antibi-
otics strongly correlates with growth rate;146,147 that
is, slowly growing cells are killed less rapidly than
fast growing cells. Not surprisingly then, tolerance
is often enhanced by environmental conditions that
favor slow growth. As such, entry into station-
ary phase, nutrient/metal depletion, and growth
in biofilms are often associated with high toler-
ance to β-lactams.142,148–151 In addition, reduced
growth might be the underlying cause of the inocu-
lum effect, that is, the observation that usage of
high inocula for killing assays results in drasti-
cally increased MBCs.152 Lastly, slow growth may
also underlie the observed tolerance of respiration-
defective small colony variants in multiple bacterial
species.153
Slow growth is likely a major contributor to toler-

ance during infection, given the inhospitable envi-
ronment infecting bacteria often find themselves
in. Nutrient depletion, cell damage by immune
functions, and transition metal sequestration affect
growth rate in the host and not surprisingly, many
infections indeed yield nongrowing or slowly grow-
ing cells.154,155 This was demonstrated inmodel “tis-
sue cage” infections, where a porous plastic body is
inoculated with a bacterial suspension and inserted
subcutaneously into experimental animals to emu-

late infections associatedwithmedical devices.156 In
a rat infection model of S. aureus, tissue cages were
mostly populated by nongrowing cells (defined by
their failure to resume growth within 2 h of subcul-
ture into Mueller Hinton Broth (MHB)) that were
1000- to 10,000-fold more tolerant to oxacillin and
vancomycin than bacteria grown solely in MHB.157
Salmonella typhimurium growing in macrophages
becomes highly tolerant against a variety of antibi-
otics (including cell wall–active compounds),158
and this has also been proposed to be a con-
sequence of slow/nongrowth under these nonop-
timal conditions.149,151,158 Similarly, tolerance can
also be caused simply by coadministration of antibi-
otics that stop or slow down growth.159 For exam-
ple, antagonism between chloramphenicol (CHL)
and penicillin is a well-known in vivo and in vitro
phenomenon20,115,160 and likely relies on the pro-
tective slowdown/shutdown of growth induced by
inhibitors of translation. Likewise, erythromycin
can treacherously induce vancomycin tolerance in
S. pneumoniae, confounding the interpretation of
tolerance assays.161–163

However, it is important to note that slow/
nongrowth is actually neither necessary nor suf-
ficient for tolerance to PG-acting compounds.
Slowly or nongrowing Borrelia burgdorferi cells
(the etiological agent of Lyme disease) are effec-
tively killed by vancomycin and ceftriaxone in
stationary phase;164 conversely, V. cholerae fails
to be appreciably killed even when exposed to
β-lactams during optimal growth in exponential
phase.17,165,166 Growth rate also correlates imper-
fectly with killing activity in E. coli when grown
in a minimal medium with a panel of nutrient
sources,167 and a recent study has suggested that
metabolic state (i.e., ATP availability) is more
predictive of antibiotic-mediated killing than
growth rate.168 Likely, it is thus not growth/division
rate per se that modulates killing by cell wall–
active agents, but rather the specific nature and
dynamics of PG turnover processes, which are
imperfectly correlated with growth rate. Consis-
tent with this idea, several β-lactams have been
identified that do kill nongrowing cells. Imipenem
and some experimental β-lactams can induce
lysis in stationary phase cultures of E. coli and
those that have stopped growing due to nutrient
starvation.169–171 This might be due to the car-
bapenem’s ability to inhibit l,d transpeptidases.172
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In some bacteria, DAP–DAP crosslinks are
upregulated under nongrowth conditions like sta-
tionary phase,45,173 and at least in Mycobacterium
tuberculosis, l,d TPs (rather than PBPs) contribute
significantly to PG integrity maintenance.174 Lysis
of nongrowing E. coli cells by carbapenems might
reflect a similar enhanced reliance on l,d TPs
under nongrowth conditions. Importantly, lysis
protection by slow growth may also be overcome by
simply increasing the concentration of β-lactams,146
which may provide potential lessons for the treat-
ment of infections caused by tolerant bacteria (see
discussion below).
The complications surrounding slow growth and

antibiotic tolerance are probably best illustrated by
research on the SR. The SR is typically induced
under conditions of nutrient limitation: amino acid,
carbon or fatty acid starvation.175 Starvation is
sensed by second messenger synthetases like RelA
and SpoT. Upon sensing limitation of essential cel-
lular building blocks via interaction with central
hubs of metabolism like the ribosome (RelA), these
proteins synthesize the second messenger guano-
sine penta/tetraphosphate ((p)ppGpp, henceforth,
“ppGpp” for brevity). Accumulation of ppGpp
results in massive transcriptional reprogramming
of the cell,176 and, most importantly, induces tran-
sient growth arrest177–179 (this is the basis for the
well-established technique to isolate auxotrophic
mutants using penicillin enrichment180,181). Not
surprisingly, the SR has been implicated in tolerance
to CWA antibiotics in numerous studies with both
Gram-positive and -negative bacteria,178,182–188 and
in some cases, clinical mutants with enhanced toler-
ance due to background SR upregulation have been
isolated.189 In a particularly intriguing example, the
ppGpp synthetases RelP and RelQ of S. aureus are
induced by antibiotic exposure itself, resulting in
high ampicillin and vancomycin tolerance.135 The
more interesting question surrounding the SR and
antibiotic tolerance, however, is whether or not
growth arrest is the only effector of SR-induced
tolerance.
A particularly counterintuitive early observation

was that in E. coli, SR-induced tolerance could be
prevented (and lysis reinstated) by the addition
of CHL to amino acid–starved cells.186,187,190 CHL
addition was proposed to “relax” SR cells to prevent
SR induction. Since SR induction by amino acid
starvation depends on the interaction of uncharged

tRNAs with the ribosome,191 inhibiting ribosome
function could interrupt the continuous induction
of RelA; ppGpp might then be rapidly degraded
by the hydrolase SpoT, resulting in the resump-
tion of ppGpp-inhibited processes. CHL was used
at high, growth-inhibitory concentrations in SR
experiments and the observation of CHL-induced
lysis in SR-induced, β-lactam–treated cells thus sug-
gested that slow or nongrowth was not the only fac-
tor promoting SR-induced tolerance.
How might SR protect cells from CWA

antibiotic–mediated lysis independent of growth
arrest? Early work from Edward Ishiguro’s group
and others suggested that ppGpp accumula-
tion correlated with a decrease in PG synthesis
functions192 (possibly at a step distal to precursor
synthesis193,194), and concomitant reduction in
PG incorporation. These observations suggested
that SR not only induced growth arrest, but also
modulated PG synthesis and potentially turnover
functions. Consistent with this idea, SR induction
resulted in changes in PG architecture.195 Further,
an increase in both RelA and l,d TPase activity
is for an unknown reason required to reprogram
E. coli cells from majority DAP-d-Ala to majority
DAP–DAP crosslinks,196 also suggesting a PG
modulatory function for the SR. Lastly, a poten-
tially direct connection between the SR and cell wall
turnover was described in S. pneumoniae, where
amino acid deprivation changed the cell surface
concentration of the autolysin LytA.185 As for the
mechanistic link between SR and PG turnover,
some studies suggested an involvement of fatty
acid synthesis in the lysis process, since addition of
the fatty acid inhibitor cerulenin could once again
protect amino acid–starved, CHL-treated cells
from lysis.194,197 As a caveat, cerulenin might have
simply reverted these cells to a high ppGpp state,
as fatty acid starvation was subsequently shown to
induce SR.183,198,199 However, a connection between
phospholipid synthesis and SR-mediated ampicillin
tolerance was also suggested by another experi-
ment: Overexpression of the glycerol-3-phosphate
acetyltransferase PlsB (the first dedicated step
toward membrane phospholipid synthesis200 and
a target of ppGpp201) reversed SR-induced toler-
ance, suggesting that ppGpp-mediated shutdown
of PlsB (overcome by overexpressing it) might be a
key step in tolerance development.188 In apparent
contradiction to all that has been presented above,
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a recent study found no reduction in PG incorpo-
ration (and turnover after antibiotic treatment) in
RelA overexpression strains when correcting for
reduced growth rate,202 and the degree to which SR
exerts a direct effect on PG turnover thus remains
unclear. Taking all available evidence together,
the exact mechanistic connection between SR
induction and CWA antibiotic tolerance indepen-
dent of a growth-inhibitory effect thus remains
poorly understood and might vary with bacterial
species.

Genetic underpinnings of tolerance: loss of
autolysin activity
A standard procedure in bacterial genetics is to
generate mutants either defective or enhanced in
a phenotype to interrogate its mechanistic under-
pinnings. This approach has been applied to tol-
erance research as well, both in the laboratory
and by exploiting the power of natural selec-
tion (e.g., through the study of clinically selected
mutations).203,204 However, the analysis of mutants
for tolerance pathways is not always straightfor-
ward. Highly tolerant mutants often include those
with defects in important metabolic processes that
probably confer CWA antibiotic tolerance solely
as a secondary consequence of the slow growth
rate associated with these mutations. For example,
the small GTPase RsgA of S. aureus is required
for ribosome assembly. An rsgA mutant exhibits
reduced growth rate and is thus more tolerant to
penicillin.205 Similarly, mutations in amino acid
homeostasis (isoleucine tRNA synthetase) exhibit
apparent vancomycin tolerance via slow growth.206
These types of mutants are thus less informative to
elucidate mechanisms of tolerance, though they do
often emphasize the significance of slow growth for
tolerance development.
Early research using hypertolerant (both lab-

oratory and clinically derived) Gram-positive
bacteria (S. pneumoniae, S. aureus, B. subtilis, and
Lactobacillus species) led to the conclusion that
these variants were defective in major autolysin
activity,88,115,120,207,208 either due to direct muta-
tional inactivation of cell wall hydrolases,204,209,210
by altering PG structure (potentially changing
the substrate of autolysins)195,211 or by disrup-
tion of regulatory pathways upstream of autolysin
activity.88 For example, some highly tolerant
mutants identified in Gram-positive bacteria pro-

duced higher levels of TAs,204,212 which can inhibit
autolysin activity,23 by sequestration118 and/or
protective coating of otherwise vulnerable PG
species.122
In many cases, the regulatory pathways upstream

of autolysin activity are still incompletely under-
stood. Mutants in the lrgAB versus cidAB loci
of S. aureus, for example, had opposing effects
on tolerance to penicillin. In the absence of
lrgAB, autolysin activity was high, and tolerance
consequently low.213 In the absence of cidAB,
autolysin activity was low, and tolerance was 100-
fold higher than the parental strain.214 LrgA and
CidA exhibit similarities to antiholin/holin pro-
teins of bacteriophages,215 and it was proposed that
CidA (holin homolog) is somehow required for
autolysin export, which is opposed by the antiholin
homolog LrgA. The physiological function of these
systems has been proposed to be DNA release dur-
ing biofilm formation,216 but how they contribute to
autolysin regulation is still unknown. What is con-
spicuously missing from the list of examples above
are Gram-negative bacteria. Indeed, it seems to be
challenging to generate mutants in autolysins or
their regulators that confer high tolerance, but this
might simply be a consequence of using E. coli for
most experiments, which is among the least toler-
ant Enterobacterales for unknown reasons.83 The
relative paucity of autolysin-deficient, highly tol-
erant mutants might be due to their thinner PG
layer, which would not allow for the same degrada-
tion buffering capacity compared with the thicker
Gram-positive cell wall, or due to some differences
in autolysin activity or regulation (e.g., a higher
degree of functional redundancy in key autolysins
in Gram-negatives).

Nongenetic mechanisms of tolerance: stress
response systems and damage repair
As described above, cell wall–acting agents tend to
cause massive cell damage and thus induce complex
responses. In principle, bacteria can become toler-
ant by suppressing those responses that are harmful
to the cell, and/or by recognizing and repair-
ing damage induced by the antibiotic (inducible
responses promoting tolerance are summarized
in Table 1). Bacterial responses to the environ-
ment are typically mediated by dedicated two-
component systems, alternative sigma factors
and other stress-sensing regulators, which sense
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Table 1. Inducible mechanisms of CWA tolerance

Species Signal
Tolerance
genes Proposed tolerance mechanism Citations

Streptococcus
pneumoniae

Unknown Unknown Production of teichoic acids
and downregulation of
autolysin activity

204, 212

Vancomycin ciaRH Downregulation of autolysin
activity

232

Vancomycin ptvR Unknown 235
Streptococcus
pyogenes

Unknown Stk Unknown 230

Staphylococcus
aureus

Unknown Unknown Production of teichoic acids
and downregulation of
autolysin activity

204, 212

Unknown lrgAB/cidAB Downregulation of autolysin
activity

213, 214

β-lactam exposure relP/relQ Slow growth 135
Unknown sodA Detoxification of ROS

Enterococcus
faecalis

Unknown sodA Detoxification of ROS 237

Bacillus subtilis Cell wall fragments walRK Inhibition of autolysin activity
through IseA

227

Escherichia coli pH Unknown Unknown 138
d-amino acids Unknown Unknown 140
Cell envelope/wall

damage
Rcs Unknown 225

Vibrio cholerae CWA exposure and
autolysin
overexpression

vxrAB Upregulation of cell wall
synthesis and remediation of
toxic iron influx

166

Penicillin exposure/
misfolded OMPs

rpoE Cell envelope maintenance 165

Penicillin exposure sodB Detoxification of ROS 128, 165
Pseudomonas
aeruginosa

Starvation/biofilm
growth/stationary
phase

sodB Detoxification of ROS 221, 238

Entry into stationary
phase

rpoS Unknown 219

Burkholderia
pseudomallei

Unknown, likely CWA
exposure

rpoE/degS Unknown 148

Multiple species Nutrient starvation relA/spoT Slow growth/reduced PG
turnover

180, 181

specific signals (e.g., cellular damage) and induce
damage repair regulons.217 Many stress-sensing
systems are induced by exposure to CWA antibi-
otics, and the diversity of transcriptional responses
to these agents reflects the diversity of cell damage
induced byCWAantibiotics. Not surprisingly, stress
responses often contribute to survival (and thus tol-
erance) in the presence of CWA antibiotics. The cell
envelope stress response alternative, sigma factor

RpoE, for example, is activated by CWA antibiotics
and required for β-lactam tolerance in Burkholderia
pseudomallei and V. cholerae.148,165 RpoE controls
general cell envelope health functions, such as
periplasmic proteases and chaperones,218 and likely
contributes to cell envelope strength when the cell
wall is weakened. The stationary phase alterna-
tive sigma factor RpoS contributes to imipenem
tolerance in P. aeruginosa,219 perhaps due to its
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involvement in maintaining the OM permeability
barrier,220 or through its positive control over the
superoxide dismutase SodB.221

The most well-studied pathogen in the con-
text of Gram-negative extreme β-lactam tolerance
is V. cholerae. Here, the VxrAB two-component
system is the major contributor to tolerance.
VxrAB is induced by various forms of cell wall
damage (CWA antibiotics and overexpression
of endogenous PG EPs).166 A �vxrAB mutant
exhibits ∼10,000-fold decreased tolerance against
CWA antibiotics compared with the wild-type
strain; importantly, this is not the consequence of
enhanced lysis, but rather reflects reduced recovery
of cell wall–deficient spheroplasts that are formed
in response to CWA antibiotics in this organism.17
VxrAB positively controls genes encoding cell wall
synthesis enzymes (including the entire intracel-
lular precursor pathway), type VI secretion, and
biofilm formation, and negatively controls motility
and iron acquisition genes.128,166,222,223 Both posi-
tive control over PG synthesis and negative control
over iron acquisition contribute to CWA antibiotic
tolerance.128 While PG synthesis induction is an
intuitive way for a cell to recover from cell wall loss,
control of iron acquisition was at first puzzling.
Intriguingly, V. cholerae accumulates high intracel-
lular iron levels upon β-lactam exposure and this
is exacerbated in the �vxrAB mutant.128 Further,
β-lactam exposure resulted in induction of the Fur
iron starvation response, likely due to direct oxida-
tion of its Fe2+ corepressor by β-lactam–induced
H2O2 production.128 It thus appears that VxrAB’s
role in tolerance is at least partially to tone down an
out-of-control iron starvation response that would
otherwise overload β-lactam–stressed cells with
iron, causing downstream toxic events like the gen-
eration of ROS. Consistent with thismodel, deleting
iron transporters partially restored high tolerance
levels to a �vxrAB mutant.128 The VxrAB system
thus aptly illustrates the complex physiological
consequences of β-lactam exposure and tolerance
pathways, where cells not only have to overcome
cell wall loss, but also remediate toxic iron influx
and potentially downstream accumulation of toxic
ROS.
While the VxrAB system is only conserved

among Vibrionaceae, other pathogens have poten-
tially functionally analogous cell envelope stress
response systemswith roles inCWAantibiotic toler-

ance. The enterobacterial Rcs phosphorelay system
negatively controls motility224 and is required for
recovery from a cell wall–deficient state in E. coli,225
which is reminiscent of VxrAB phenotypes. In B.
subtilis, the WalRK two-component system plays a
central role in cell wall homeostasis under normal
growth, but also under CWA antibiotic–induced
stress conditions.226 WalRK controls IseA/YoeB, a
post-translational inhibitor of EP activity, which
effectively downregulates lytic activity upon expo-
sure to CWA antibiotics.227 Interestingly, IseA is
induced through WalRK specifically in response
to the accumulation of PG degradation products
resulting from d,l EP activity,228 which are likely
to accumulate in CWA-stressed cells. The Ser-
ine/Threonine protein kinase Stk that putatively
feeds into the WalRK signaling cascade229 has been
implicated in penicillin tolerance in S. pyogenes,230
which might further suggest a conserved role for
WalRK in CWA antibiotic tolerance. In S. pneu-
moniae, the CiaRH two-component system pro-
motes tolerance to bacitracin, d-cycloserine, and
vancomycin.231,232 This system is induced by CWA
antibiotics (vancomycin)130 and controls several
small RNAs233 with unclear targets. However, one
of the consequences of activation is reduced autoly-
sis through a process that requires capsular polysac-
charide biosynthesis.232,234 Lastly, and similarly
poorly understood, S. pneumoniae also encodes the
PtvR transcriptional repressor, which controls a reg-
ulon that slightly (∼5- to 10-fold) enhances van-
comycin tolerance upon sensing the antibiotic.235
In addition to obvious cell envelope stress func-

tions, some less intuitive responses are also induced
by CWA antibiotics, and these may similarly
contribute to tolerance. Reactive oxygen species
accumulate upon exposure to CWA antibiotics,
purportedly due to an imbalance of respiratory
processes125,129,236 that results from large-scale
perturbations of cell wall metabolism. ROS can
potentially contribute to CWA antibiotic–induced
lethality, and detoxification of ROS promotes CWA
antibiotic tolerance in some bacteria; for exam-
ple, superoxide dismutases (SODs) are effectors
of β-lactam tolerance in Enterococcus faecalis, V.
cholerae, and Pseudomonas aeruginosa.165,221,237
In P. aeruginosa, a convergence of three stress
response functions (SR, ROS detoxification, and
an alternative sigma factor) promotes tolerance
during growth in biofilms: the SR (see above)
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was implicated in tolerance to carbapenems and
other antibiotics via its positive control over the
Mn-dependent SodB.238 Amutant incapable of pro-
ducing ppGpp survived ∼10,000-fold less than the
wild-type in the presence of high meropenem con-
centrations and an sodB mutant recapitulated this
phenotype.221 Additionally, sodB was coregulated
by the stationary phase alternative sigma factor
RpoS. Overall, these observations suggest that an
ability to detoxify ROS that accumulate after antibi-
otic exposure may be an important component
of tolerance development. This is contrasted by
observations in divergent bacteria that suggest ROS
can actually promote the formation of persister
cells, that is, a hypertolerant subpopulation.239,240
It is, therefore, possible that ROS have contrary
effects on heterogeneous pathogen populations
and either promote or reduce tolerance/persistence
depending on the specific physiological state or
growth environment bacteria are in upon antibiotic
exposure. Consistent with a growth modality com-
ponent, the requirement for SODs appears to be
most prominent during stationary phase or biofilm
growth in both V. cholerae and P. aeruginosa,128,221
rather than during exponential growth.
In both E. coli and S. aureus, exposure to

β-lactams results in induction of the SOS DNA
damage response.132,133 In E. coli, this is medi-
ated specifically by inhibition of PBP3 in a sens-
ing process requiring the two-component system
DpiAB.133 SOS induction results in inhibition of cell
division through the FtsZ antagonist SulA. Since cell
division is typically the location where β-lactam–
mediated lysis starts, at least in E. coli,145 preventing
septum formation might delay lysis and thus pro-
mote temporary tolerance.
For unknown reasons, the heat shock response

(via the alternative sigma factor RpoH) is induced
by CWA antibiotics in phylogenetically diverse
bacteria,130,131,241–243 suggesting a conserved path-
way for induction. The signal for heat shock might
be protein misfolding due to oxidation, which has
been reported to occur in after exposure to β-lactam
antibiotics.128,129 The exact degree to which heat
shock contributes to tolerance is poorly understood;
however, artificially upregulating RpoH prevented
β-lactam–induced lysis in E. coli,244 suggesting a
potential role in surviving β-lactam exposure. Fur-
ther, in S. pneumoniae, the heat shock–induced pro-
tease ClpL enhances tolerance to oxacillin, likely by

stabilizing the expression of bPBP2x,131 thus, pro-
moting cell wall integrity maintenance.

Part III. Tolerance and antibiotic therapy

A special case of CWA antibiotic tolerance:
L-forms and spheroplasts
While shutting down growth is an effective means
to resist antibiotic killing, some bacterial species
and environmental conditions favor a different
fate. Many bacteria are capable of fully enduring
the destructive effects of CWA antibiotic exposure
by converting to viable, cell wall–deficient forms
(Fig. 3). Cell wall–deficient L-forms (extensively
and excellently reviewed elsewhere, see Refs. 84,
86, and 245) circumvent PG essentiality by pro-
liferating via FtsZ-independent stochastic mem-
brane blebbing.246,247 In addition, many Gram-
negative bacteria are capable of converting into a
nondividing, cell wall–deficient spheroplast state
upon β-lactam exposure. Importantly, spheroplasts
are distinct from the spherical cells that emerge
upon inhibition of bPBP2. While the latter super-
ficially resemble spheroplasts, they actually elabo-
rate a full cell wall,83 while true spheroplasts are
devoid of detectable PG material,17,83 and thus pre-
sumably rely on the strength of their outer mem-
brane to maintain structural integrity. The abil-
ity to do so appears to be widespread among
clinically significant Gram-negative pathogens (by
current count Acinetobacter baumannii, Enter-
obacter species, Haemophilus influenzae, Klebsiella
species, P. aeruginosa, Serratia marcescens, and
V. cholerae17,83,85,87,248) and is observed under in
vivo-like conditions (e.g., rabbit cecal fluid and
human serum).17,83 In V. cholerae and some Enter-
obacterales isolates, spheroplast formation results in
an extreme form of tolerance, essentially converting
β-lactams to bacteriostatic antibiotics against these
bacteria.17,83,165 Spheroplasts readily and quickly
revert to rod-shaped bacteria upon withdrawal of
the antibiotic,83,87 which would potentially enable
them to repopulate an infection upon depletion
of the offending antibiotic. Importantly, L-forms
and spheroplast-like forms have been isolated
from patients treated with CWA antibiotics,249,250
and this form of tolerance might thus be an
under-recognized reason for antibiotic treatment
failure.250 The exact mechanisms of spheroplast for-
mation and maintenance are poorly understood,
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Figure 3. Variations of the morphological consequences of CWA antibiotic exposure. CWA antibiotics induce cell wall degrada-
tion inmost growing bacteria. Resistant isolates can grow in the presence of these antibiotics. Susceptible, nontolerant populations
lyse and die, while rare persisters may remain intact. In the absence of resistance mechanisms and in addition to persisters, CWA
antibiotic–treated bacteria can present as L-forms (Gram-positive and -negative bacteria) that are able to divide in the absence of
a cell wall, nondividing and cell wall–deficient spheroplasts (Gram-negative bacteria), or tolerant cells of unknown morphology
(here depicted as rods). Living cells are shaded in green; dead cells and debris are in gray.

but physiological and genetic factors promoting this
type of tolerance have been identified.87,128,165 In V.
cholerae, survival of, and recovery from, the sphero-
plast state requires induction of PG synthesis func-
tions, remediation of toxic iron influx, likely detox-
ification of ROS, and induction of cell envelope
stress responses, as detailed above.128 An intrigu-
ing unresolved problem is how β-lactam–tolerant
spheroplasts survive futile cycling99 induced by β-
lactams and what makes their OM particularly
resilient compared with nontolerant (lysis-prone)
Gram-negatives.

Clinical relevance of CWA antibiotic tolerance
Intuitively, being able to survive exposure to nor-
mally lethal antibiotics might cause treatment fail-
ure if the offending pathogen is able to regrow after
discontinuation of antibiotic therapy. However, just
inhibiting pathogen growth is typically sufficient to
give the immune system time to clear an infection.
Whether for most infections bactericidal antibiotics
perform superiorly to bacteriostatic ones is thus
a matter of contention,251,252 though in at least
some cases they clearly do (e.g., in staphylococcal
septicemia253). As far as direct treatment outcomes

are concerned, tolerance might thus contribute
adversely only under special circumstances, for
example, in environments that are not easily pen-
etrable for immune functions. Several peculiarities
of the tolerance phenomenon compared with resis-
tance (i.e., changes in MIC) have precluded studies
rigorously testing clinical hypotheses surrounding
tolerance. For example, tolerance can be more
condition-specific than resistance. MICs obtained
in routine media used for antibiotic susceptibility
testing, such as cation-adjusted MHB, correlate
with treatment outcome in vivo,254 suggesting that
a concentration of antibiotic that inhibits growth of
a pathogen in the laboratory is likely to do the same
in the human body. Tolerance, on the other hand,
varies dramatically with growth in very specific
niches, as we have outlined above for Salmonella
growing inmacrophages and S. aureus isolated from
model tissue cage infections. Removing a bacterium
from this specific in vivo niche and allowing it to
grow under optimal conditions in the laboratory
could cause it to revert to a nontolerant state almost
immediately. As discussed above, well-established
quantitative tolerance tests that can be incorpo-
rated into a clinical microbiology workflow are also
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lacking, preventing routine testing for tolerance in
the healthcare setting. Existing studies that address
the clinical impact of tolerance, therefore, suffer
from the fact that quantitative definitions of tol-
erance are often arbitrary and cannot be used to
clearly establish causation. Lastly, cryptic resistance
mechanisms (e.g., resistance of a subpopulation that
is not easily detectable by standard MIC assays) can
create the appearance of antibiotic therapy failure
in the absence of overt resistance. Treatment failure
might in such a situation be interpreted as relying
on something other than resistance (i.e., tolerance),
while the real culprit might be heteroresistance,255
like heterogeneously vancomycin intermediate S.
aureus (hVISA).256
Despite the above-mentioned complications,

numerous attempts have been made to quanti-
tatively determine the extent to which tolerance
affects outcome of antibiotic therapy and sev-
eral animal model infections have supported the
importance of tolerance. For example, imipenem
treatment failed to clear an experimental Enter-
obacter cloacae thigh infection in a mouse model,
despite high susceptibility of E. cloacae to the
antibiotic.257 In a guinea pig model of foreign
body infections by S. epidermidis, cure rates
after vancomycin/teicoplanin therapy correlated
more strongly with MBC than with MIC (both
determined in MHB),258 suggesting that intrin-
sic (rather than condition-specific) tolerance can
indeed influence infection outcome. Similar results
were observed in a rat model of foreign body
infections.157 In an endocarditis rabbit model,
higher tolerance in streptococci correlated with
adverse outcome at low, but not high penicillin
concentrations.259 Lastly, thigh infections in a
mouse model using S. aureus were cleared at a
lower rate when caused by highly tolerant variants
compared with wild-type strains exhibiting lower
tolerance.260
Clinical evidence for a role of tolerance in

antibiotic treatment outcomes remains scarce,
although suggestive anecdotes and case reports
abound.253,261–263 Some established infections of
S. aureus are known for their high rates of treat-
ment failure despite their in vitro susceptibility
(determined by MIC and MBC), and often require
surgical intervention.263 Peterson et al. reported
on three patients with S. aureus septicemia or
endocarditis, where initial oxacillin, nafcillin, or

vancomycin monotherapy failed to yield a favor-
able treatment outcome as defined by cessation of
clinical symptoms and/or negative blood culture.16
The MICs and MBCs as determined in standard
laboratory media were well below the blood serum
levels of the antibiotics (which were measured in
the same study), suggesting that clearance failure
may be due to tolerance. A similar observation was
made in another case study of S. aureus endocardi-
tis, where vancomycin therapy failed to treat an
infection caused by fully susceptible bacteria;264
however, note the discussion of hVISA strains
above. Pediatric pharyngitis caused by S. pyogenes
was found to exhibit a high degree of treatment
failure after penicillin therapy, again despite appar-
ent susceptibility of the involved pathogen.265 In
another example, a prospective study conducted
by Elaine Tuomanen’s group found that infection
with CWA antibiotic–tolerant S. pneumoniae iso-
lates correlated with adverse outcomes in pediatric
meningitis patients, where survival after treatment
with CWA antibiotics was 49% for those infected
with tolerant streptococci and 86% in those infected
with nontolerant isolates.266 Tolerance was defined
here via the magnitude of increased survival in
the presence of vancomycin compared with the
nontolerant reference strain R6.
In further support of the relevance of toler-

ance in the healthcare setting, CWA antibiotic–
tolerant mutants have been isolated from patients
after antibiotic therapy.267–269 The vancomycin-
tolerant S. pneumoniae Tupelo isolate was obtained
from a patient with meningitis in which van-
comycin/cephalosporin treatment had failed
despite full vancomycin susceptibility of the
isolate.270 Interestingly, this isolate was later
found to contain a point mutation in the histi-
dine kinase CiaH, which was hypothesized to
activate the tolerance-promoting ciaRH regulon
(see above for details).234 Other vancomycin-
tolerant S. pneumoniae isolates have been tied to
specific capsular serotypes,271 potentially support-
ing the poorly understood connection between
capsule biosynthesis and tolerance, possibly via
CiaRH.234 As is apparent from these examples,
most clinical studies on tolerance have focused
on the classical Gram-positive model organisms
of tolerance research, namely, members of the
genera Staphylococcus and Streptococcus. Much
less is known about the clinical significance of
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tolerance for Gram-negatives, though case studies
suggest instances of similar unexplained treatment
failure despite the organism’s in vitro susceptibility
to antibiotics.249,261,272

Conversely, some studies have failed to show
a clear correlation between tolerance and clinical
outcomes; however, these studies are difficult to
interpret due to their use of several antibiotics
and the aforementioned problems with tolerance
definitions and measurements. Mortality of a
pediatric population with S. aureus bacteremia
correlated more strongly with comorbidities
than with tolerance (defined as MBC/MIC>10),212
but these infections were treated with combi-
nation therapy. Another study found no strong
correlation between tolerance (defined as high
MBC) and oxacillin/glycopeptide treatment out-
comes in patients suffering from endocarditis
caused by S. aureus.273

Overall, the connection between tolerance and
treatment outcome is thus data deficient and
requires—and deserves—further investigation. In
addition, clinical studies have focused mainly on a
direct influence of tolerance on clinical outcomes
and neglected what is most likely a nefarious side
effect of tolerance: its role as a stepping stone toward
development of frank resistance. Several studies
have shown that tolerant cells are a reservoir for the
emergence of resistant variants.274–277 This is at least
in part due to the simple numerical fact that swiftly
eradicating a pathogen population provides a lower
chance of emergence of rare resistant variants.
Furthermore, tolerant, damaged cells can actually
exhibit enhanced mutation frequencies,278,279 and
this might be particularly true for CWA antibiotic–
induced spheroplasts, which are metabolically
active and accumulate oxidative damage. Thus,
it is imperative that efforts be directed toward
devising novel therapies aimed at eradicating tol-
erant pathogens, either through a combination
therapy approach or via the development of novel
antibiotics. The latter might be achieved through a
recently developed, innovative antibiotic screening
platform that relies on indicator-enabled scoring of
lethality in bacteria grown to stationary phase on fil-
ter disks.280 It seems that in some cases, CWA agent
tolerance can be overcome by simply increasing the
concentration of antibiotic, as even slow-growing
bacteria can be killed at higher concentrations of
CWA agents.146 Optimization of antibiotic treat-

ment length and dose during antibiotic therapy thus
likewise hold great potential to improve the efficacy
of existing antibiotics against tolerant cells.281,282
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