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The impact of inter‑observer 
variation in delineation 
on robustness of radiomics features 
in non‑small cell lung cancer
Gargi Kothari1,2*, Beverley Woon2,3, Cameron J. Patrick4, James Korte5,6, Leonard Wee7,8, 
Gerard G. Hanna1,2, Tomas Kron2,5,9, Nicholas Hardcastle2,5,9 & Shankar Siva1,2

Artificial intelligence and radiomics have the potential to revolutionise cancer prognostication and 
personalised treatment. Manual outlining of the tumour volume for extraction of radiomics features 
(RF) is a subjective process. This study investigates robustness of RF to inter‑observer variation (IOV) 
in contouring in lung cancer. We utilised two public imaging datasets: ‘NSCLC‑Radiomics’ and ‘NSCLC‑
Radiomics‑Interobserver1’ (‘Interobserver’). For ‘NSCLC‑Radiomics’, we created an additional set 
of manual contours for 92 patients, and for ‘Interobserver’, there were five manual and five semi‑
automated contours available for 20 patients. Dice coefficients (DC) were calculated for contours. 1113 
RF were extracted including shape, first order and texture features. Intraclass correlation coefficient 
(ICC) was computed to assess robustness of RF to IOV. Cox regression analysis for overall survival 
(OS) was performed with a previously published radiomics signature. The median DC ranged from 
0.81 (‘NSCLC‑Radiomics’) to 0.85 (‘Interobserver’—semi‑automated). The median ICC for the ‘NSCLC‑
Radiomics’, ‘Interobserver’ (manual) and ‘Interobserver’ (semi‑automated) were 0.90, 0.88 and 0.93 
respectively. The ICC varied by feature type and was lower for first order and gray level co‑occurrence 
matrix (GLCM) features. Shape features had a lower median ICC in the ‘NSCLC‑Radiomics’ dataset 
compared to the ‘Interobserver’ dataset. Survival analysis showed similar separation of curves for 
three of four RF apart from ‘original_shape_Compactness2’, a feature with low ICC (0.61). The majority 
of RF are robust to IOV, with first order, GLCM and shape features being the least robust. Semi‑
automated contouring improves feature stability. Decreased robustness of a feature is significant as it 
may impact upon the features’ prognostic capability.
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DC  Dice coefficients
DICOM  Digital imaging and communications in medicine
GLCM  Gray level co-occurrence matrix
GLDM  Gray level dependence matrix
GLRLM  Gray level run length matrix
GLSZM  Gray level size zone matrix
HNSCC  Head and neck squamous cell carcinoma
HU  Hounsfield units
IBSI  Image biomarker standardisation initiative
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ICC  Intraclass correlation coefficient
IOV  Inter-observer variation
LoG  Laplacian of Gaussian
NGTDM  Neighbouring gray tone difference matrix
NSCLC  Non-small cell lung cancer
OS  Overall survival
PMCC  Peter MacCallum Cancer Centre
RF  Radiomics features
TCIA  The cancer imaging archive
VOI  Volume of interest

Personalising treatment and accurate prognostication are driving factors for advances in medicine. Radiomics 
has been proposed as a potential tool to advance this. There are several published studies assessing the value of a 
radiomics based approach in predicting outcomes for oncology patients. These studies found radiomic features 
to be associated with oncological outcomes including local control and overall  survival1–3, risk of lymph node 
 metastases4, rates of pathological complete  response5, and tissue  biomarkers6. Aerts et al. 2014 published a 
radiomics signature (then reproduced in distributed learning fashion by Shi et al. 2019) that incorporated four 
radiomics features found to be prognostic in non-small cell lung cancer (NSCLC)7,8. Despite the burgeoning 
literature on prognostic radiomics models, there are ongoing issues with reproducibility of models, with mini-
mal overlap in the radiomics features found to be prognostic between  studies1,9,10. A number of different factors 
have been found within the radiomics literature to affect the robustness of radiomics features, including the 
feature extraction  process11 and image acquisition parameters such as slice  thickness12, image  reconstruction13, 
 kernels14, tube voltage and  current15 and type of  scanner16. An essential yet challenging part of the current 
radiomics workflow involves delineation of a volume of interest (VOI). In most cases, delineation remains a 
process requiring either complete or partial manual effort by an expert. An inherent limitation of this approach 
is the inter-observer variation (IOV) that this introduces to the radiomics process. Numerous studies have 
documented that IOV exists in contouring radiation oncology target volumes in different tumour  streams17,18. 
Only a few studies have investigated how variation in contouring may affect radiomic feature results. Whether 
certain radiomics features or feature classes are more or less robust to IOV in contouring is poorly understood, 
with studies investigating this limited by mixed tumour cohorts, use of non-standardised radiomics features, 
and/or small patient numbers, and have conflicting  findings19–25. One study by Haarburger et al. 2020 showed 
that in patients with lung, liver or kidney lesions, shape and first order radiomics features were the most stable 
to IOV in  delineation24, while another study by Pavic et al. 2018 in NSCLC, mesothelioma and head and neck 
cancer showed that while robustness of radiomics features to IOV in delineation significantly varied by tumour 
type, shape features were the least stable across all tumour  types22. In addition to a lack of consistency regarding 
which radiomics features are most robust to IOV in delineation, there is limited data available regarding the 
impact this has on the prognostic ability of a radiomics feature. One study by Vuong et al. 2020 showed that 
choosing only features robust to variation in CT acquisition parameters and IOV in delineation in a multi-centric 
NSCLC imaging dataset resulted in a prognostic model that performed equally well as a model derived from an 
imaging dataset with standardised imaging parameters, albeit with different radiomics features included within 
the  models26. No studies to our knowledge in NSCLC have specifically investigated whether the use of a different 
set of contours in patients with NSCLC undergoing radiotherapy will result in the loss of prognostic ability of 
radiomics features, and whether this is related to the robustness of this feature to IOV in delineation. This large 
multi-centre study therefore aims to assess the robustness of radiomics features to IOV in contouring and the 
resultant impact of this on the prognostic power of radiomics features in a homogenous cohort of patients with 
NSCLC undergoing curative intent radiotherapy.

Methods
Datasets. For this study, we utilised de-identified imaging datasets and clinical data from an openly acces-
sible online centralised repository, The Cancer Imaging Archive (TCIA) (https:// www. cance rimag ingar chive. 
net)27.

The first dataset we employed is a NSCLC cohort from Netherlands, (‘NSCLC-Radiomics’, version 3: updated 
23/10/2019)28. This dataset consists of 422 NSCLC patients treated at MAASTRO in Maastricht with curative 
intent radiotherapy with or without chemotherapy. One patient was excluded from analysis as the patient under-
went surgery prior to radiotherapy (‘Lung1-128’). Three further patients were excluded from analysis due to data 
processing errors in the original MAASTRO contour file (Lung1-083, Lung1-137, Lung1-158). Radiotherapy 
treatment planning digital imaging and communications in medicine (DICOM) CT images and physician-
delineated primary NSCLC tumours as radiotherapy structure sets were downloaded from the TCIA website 
and used to calculate radiomics feature values. All patients had a spiral CT scan taken of 3 mm slice thickness 
(voxel dimensions 1 mm × 1 mm × 3 mm). The majority of CT scans are non-contrast scans, as per a recently 
published study that provided a quantitative analysis which classifies scans from this dataset as contrast or non-
contrast29. At the time of initiation of the study (October 2018 to January 2019), radiotherapy structure sets were 
not available for 92 patients on the TCIA website and these were manually contoured at Peter MacCallum Cancer 
Centre (PMCC) by a radiation oncologist (GK) with additional review by a lung radiologist (BW) as required. 
At the time of delineation, the radiation oncologist and radiologist did not have access to the original contours 
performed at MAASTRO, clinical data, or additional diagnostic imaging or reports. Delineation was performed 
with the original aim of replicating the work published in Aerts et al.  20147. The MAASTRO contours for these 
92 patients subsequently became available online in October 2019, allowing for this study to be performed.

https://www.cancerimagingarchive.net
https://www.cancerimagingarchive.net
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The second dataset we employed consists of 22 patients with PET confirmed non-metastatic NSCLC treated 
with radiotherapy (‘NSCLC-Radiomics-Interobserver1’, subsequently referred to as ‘Interobserver’)30. CT scans 
used for radiotherapy planning (spiral CT scan of the whole thorax with intravenous contrast), contours for the 
primary tumour and clinical data were available for 20 patients (unavailable for patient 9 and 19) and are included 
for radiomics analysis. For these patients, manual and semi-automated contours of the VOI were created by five 
radiation oncologists, resulting in a total of five manual and five semi-automated contours per patient. DICOM 
metadata for the CT images used for both datasets can be found in Supplementary material. Figure 1 illustrates 
the datasets used in this study.

Radiomics analysis. Radiomic features were extracted utilising a free and open-source software, PyRadi-
omics (v3.0). Software wrapper extensions collectively known as O-RAW were used to convert DICOM objects 
into numerical arrays as inputs for  PyRadiomics31. The open source PyRadiomics has standardised the feature 
calculation  formulae32. Radiomic feature definitions and their compliance, or in certain cases, divergence from 
Image biomarker standardisation initiative (IBSI)  guidelines33 can be found documented online (https:// pyrad 
iomics. readt hedocs. io). The image pre-processing methodology involved extracting intensity in bin widths of 25 
Hounsfield Units (HU), with no image resampling and no image intensity normalization. All of these settings 
are the default in PyRadiomics. This was performed in order to replicate the original studies using these datasets, 
although it is recognised this may not be consistent with current practice and recommendations by  IBSI33. We 
also analysed our results using isotropic resampling to 2 × 2 × 2 mm (as per IBSI recommendations) and range 
re-segmentation (-300HU to + 200HU)34.

Radiomic features are broadly divided into three feature groups of shape (n = 16), first order (n = 19) and 
texture (n = 75) features. Three of these features (original_shape_Compactness1, original_shape_Compactness2 
and original_firstorder_StandardDeviation) are considered redundant in PyRadiomics (v3.0), however were 
included in this study to allow for comparison of our results with prior studies and for completeness. First order 
features describe intensity histogram features of a VOI, whereas shape features describe the 3D geometric proper-
ties of the VOI. Textural features, describe spatial relationships of pixel intensities within a VOI and are further 
divided into symmetrical gray level co-occurrence matrix (GLCM), gray level size zone matrix (GLSZM), gray 
level run length matrix (GLRLM), neighbouring gray tone difference matrix (NGTDM), and gray level depend-
ence matrix (GLDM). Additionally, wavelet and Laplacian of Gaussian (LoG) filters (sigma values 1.0, 2.0 and 
3.0) were applied to the images, following which first order and texture features were subsequently recalculated, 
resulting in 1133 features, which were used in this analysis. Fixed bin widths of 5 and 10 were used for wavelet 
and LoG filters respectively. The coif1 wavelet package from the pywavelets library (v0.5.2, https:// github. com/ 
PyWav elets/ pywt) was used to generate wavelet features with a starting bin edge of 0. The exact settings used for 
radiomics feature extraction are detailed in the parameter file (see Supplementary material).

Analysis
NSCLC-Radiomics n = 92

(MAASTRO and PMCC contours) 

Interobserver n = 20

(5 observers, manual and semi-automated contours)

Manual segmenta�on

NSCLC-Radiomics n = 92

(PMCC contours)
No addi�onal contours

Excluded pa�ents

NSCLC-Radiomics n = 4

(1 surgery, 3 MAASTRO file incorrect)

Interobserver n = 2

(contours unavailable)

Datasets downloaded

NSCLC-Radiomics n = 422

(MAASTRO contours)

Interobserver n = 22 

(5 observers, manual and semi-automated contours)

Figure 1.  Methods flow chart. This flow chart describes the process of patient selection, creation of contours, 
and exclusion for the two datasets downloaded from the open access online archive ‘The Cancer Imaging 
Archive’: ‘NSCLC-Radiomics’ and ‘NSCLC-Radiomics-Interobserver1’ (referred to as ‘Interobserver’).

https://pyradiomics.readthedocs.io
https://pyradiomics.readthedocs.io
https://github.com/PyWavelets/pywt
https://github.com/PyWavelets/pywt
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Statistical analysis. Statistical analysis was performed using R (v4.0.2)35. To study the range of IOV in 
tumour delineation, the Dice coefficient (DC)36,37 was calculated, which compares the overlap between two 
contours. The DC ranges between 0 and 1, with 0 indicating no spatial overlap and 1 indicating complete over-
lap between a pair of contours. For the ‘NSCLC-Radiomics’ dataset, there were two contours available for 92 
patients (the original contour defined at MAASTRO and the second contour delineated at PMCC) with one DC 
calculated per patient. For the ‘Interobserver’ dataset, DC was calculated separately for the manual (n = 5) and 
semi-automated (n = 5) delineations, and separately for each unique pair of observers, resulting in 10 manual 
and 10 semi-automated DC per patient. The robustness of radiomic features to IOV was defined using the two-
way (2,1) random effects intraclass correlation coefficient (ICC)38. ICC was computed for each radiomics feature 
to specify variation in results between (1) MAASTRO and PMCC contours for the ‘NSCLC-Radiomics’ dataset, 
and separately for the (2) five manual and (3) five semi-automated delineations within the ‘Interobserver’ data-
set, resulting in three ICC values per radiomics feature. An ICC value of 0 indicates no reliability whereas a value 
of 1 means that the measurements are highly stable. Univariate Cox regression analysis for overall survival (OS) 
was performed using the radiomics features utilised in Shi et al.  20198 for the subset of 92 patients from both the 
original MAASTRO and PMCC  contours39,40.

Results
Clinical characteristics. The available clinical characteristics of patients within the ‘NSCLC-Radiom-
ics’ and ‘Interobserver’ datasets are shown in Table 1. The ‘NSCLC-Radiomics’ dataset is further divided into 
patients with additional PMCC contours and patients without PMCC contours. For all three groups of patients, 
the median age was between 65 and 70, the majority were male, and had Stage III disease. There were some dif-
ferences however in the categorisation of patients particularly across stage and histology. There were a greater 
proportion of patients with Stage IIIB disease in the ‘NSCLC-Radiomics’ group compared to the ‘Interobserver’ 
group. With respect to histology, the majority of patients with PMCC contours had squamous cell carcinoma, 
while patients without PMCC contours had an equal distribution of squamous and large cell carcinoma. The 
majority of patients in the ‘Interobserver’ group had adenocarcinoma.

Dice coefficients. For the 92 patients within the ‘NSCLC-Radiomics’ dataset that had PMCC volumes con-
toured, 22 volumes had a DC of less than 0.6. PMCC volumes in which the DC were less than or equal to 0.6 were 
reviewed. Of these, eight patients had the incorrect lesion contoured as the primary (location of primary was not 
available at the time of initial contour) or included the nodal volume within the VOI. These were amended to 
contour the correct lesion or exclude the nodal volume. The resultant DC for all datasets are shown in Fig. 2A, 
with the lowest median DC attributed to the ‘NSCLC-Radiomics’ dataset of 0.81 and the highest median DC of 
0.85 seen in the ‘Interobserver’ (semi-automated) dataset.

Intraclass correlation coefficient. The median two-way random effects ICC values for all radiomics fea-
tures for the ‘NSCLC-Radiomics’, ‘Interobserver’ (manual) and ‘Interobserver’ (semi-automated) contours were 
0.90, 0.88 and 0.93 (Fig. 2B). The ICC varied according to the feature type (see Fig. 3). For all datasets the ICC 
was highest for the texture features GLDM, GLRLM, GLSZM, and NGTDM, and generally lower for first order 

Table 1.  Clinical characteristics. N = number; PMCC = Peter MacCallum Cancer Centre; IQR = interquartile 
range; *excludes 1 patient who underwent surgery prior to radiotherapy.

Characteristic

NSCLC-Radiomics

PMCC contours, N = 92 No PMCC contours, N = 329* Interobserver, N = 22

Age (median, IQR) 70 (62, 75) 68 (61, 76) 67 (57, 71)

(Missing) 2 20 0

Gender

Female 37 (40%) 94 (29%) 9 (41%)

Male 55 (60%) 235 (71%) 13 (59%)

Overall stage

I 13 (14%) 80 (24%) 3 (14%)

II 12 (13%) 28 (8.5%) 1 (4.5%)

IIIA 35 (38%) 76 (23%) 16 (73%)

IIIB 32 (35%) 144 (44%) 2 (9.1%)

(Missing) 0 1 0

Histology

Adenocarcinoma 18 (21%) 33 (11%) 10 (45%)

Large cell carcinoma 13 (15%) 101 (35%) 3 (14%)

Squamous cell carcinoma 50 (57%) 102 (35%) 6 (27%)

Other / Not specified 6 (6.9%) 56 (19%) 3 (14%)

(Missing) 5 37 0
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and GLCM features. Shape features had a lower median ICC in the ‘NSCLC-Radiomics’ dataset compared to the 
‘Interobserver’ dataset. For all original feature types, ‘Interobserver’ (semi-automated) contours had the high-
est median ICC. The addition of LoG and wavelet filters (applied to all apart from shape features) increased the 
median ICC value of most feature types, although within some groups a few outlier features with lower ICCs are 
seen. Excluding patients with DC of less than 0.6 from the ‘NSCLC-Radiomics’ dataset increased the median 
ICC of feature types, in particular shape features, however first order and GLCM still had lower median ICC val-
ues compared to the other feature types (Supplementary material, Fig. 1). With respect to the outliers, over 200 
radiomics features had an ICC of less than 0.6 in any of the datasets, with 64 of these features appearing in mul-
tiple datasets (Supplementary material, Tables 1, 2 and Fig. 2). Interestingly the feature ‘original_shape_Com-
pactness2’, which is a feature that is represented in the Aerts et al. 2014 radiomics  signature7 has a low ICC for 
both the ‘Interobserver’ (manual) and ‘Interobserver’ (semi-automated) contours (0.47 and 0.51 respectively). 
The radiomic features (with or without a filter) with an ICC of less than 0.6 to most commonly be present in 
any of the datasets were ‘firstorder_mean’ (n = 14), ‘firstorder_Skewness’ (n = 13), ‘firstorder_RootMeanSquared’ 
(n = 11), ‘glcm_MCC (maximum correlation coefficient)’ (n = 13), and ‘gldm_LargeDependenceLowGrayLev-
elEmphasis’ (n = 10) (Supplementary material, Table 3). ICC results by feature type and the number and type of 
features with a low ICC of < 0.6 within the ‘NSCLC-Radiomics’ dataset did not differ after resampling and re-
segmentation of radiomics features as per IBSI guidelines (Supplementary material, Fig. 3 and Table 4).

Relationship between dice coefficients and intraclass correlation coefficients. A previously 
published prognostic signature developed using the ‘NSCLC-Radiomics (n = 421)’ dataset found four radiom-
ics features to be prognostic for overall survival: original_firstorder_Energy, original_glrlm_GrayLevelNonU-
niformity, wavelet-HLH_glrlm_GrayLevelNonUniformity and original_shape_Sphericity^3 (named ‘original_
shape_Compactness2’ in PyRadiomics v3.0)8. All features have a very high ICC (0.91, 0.97 and 0.95 respectively) 
apart from ‘original_shape_Compactness2’ which has a lower ICC of 0.61 within the ‘NSCLC-Radiomics’ data-
set. Bland–Altman plots for these four features generally show that tumour volumes with high DC had low abso-
lute differences in the value of the radiomics feature, while lower DC had higher absolute differences (see Supple-
mentary material, Fig. 4). Examples of outliers, in which tumour contours had high DC, yet also had a relatively 
high absolute difference in the result of the radiomics feature ‘original_shape_Compactness2’ are shown (Fig. 4).

Survival analysis. Survival analysis was performed as per the original Aerts et  al. 2014  analysis7. The 
median value of the four radiomics features was calculated separately for the original MAASTRO and PMCC 
contours on the ‘NSCLC-Radiomics’ dataset (see Supplementary material, Table 5). Univariate Kaplan–Meier 

Interobserver (semi−automated)

Interobserver (manual)

NSCLC−Radiomics

0.00 0.25 0.50 0.75 1.00
Dice coefficient

A

Interobserver (semi−automated)

Interobserver (manual)

NSCLC−Radiomics

0.00 0.25 0.50 0.75 1.00
Intraclass correlation coefficient

B

Figure 2.  Boxplots of Dice coefficients (DC) and intraclass correlation coefficients (ICC). This figure 
summarises the (A) DC and (B) ICC values for the ‘NSCLC-Radiomics’, ‘Interobserver (manual)’ and 
‘Interobserver (semi-automated)’ sets of contours.
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Figure 3.  Intraclass correlation coefficients (ICC) by feature type. This figure separately considers the ICC 
values of radiomics features by different classes of features, as well as with the addition of Laplacian of Gaussian 
(LoG) and wavelet filters for the ‘NSCLC-Radiomics’, ‘Interobserver (manual)’ and ‘Interobserver (semi-
automated)’ sets of contours.

Figure 4.  Case examples. Two examples (patient A and B) from the ‘NSCLC-Radiomics’ dataset are provided 
highlighting patients who had high Dice coefficients (DC) yet also had relatively high absolute differences in 
the shape feature ‘original_shape_Compactness2’ (A = Lung1-157, DC = 0.90, Difference = 0.15; B = Lung1-378, 
DC = 0.79, Difference = 0.12). Note blue = MAASTRO contour and pink = PMCC contour.
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survival curves and hazard ratios for both sets of contours were similar for all features apart from ‘original_
shape_Compactness2’, which had the lowest ICC value of 0.61 amongst the four features, and for which the 
survival curves did not separate when using the PMCC contours (see Fig. 5 and Supplementary material, Fig. 5 
and Table 6). For this feature, the hazard ratio for survival was significant for the MAASTRO contours (HR 0.79, 
95% CI 0.63–0.99, p-value = 0.04), however the hazard ratio is notably higher and loses statistical significance for 
survival for the PMCC contours (HR 0.90, 95% CI 0.72–1.12, p-value = 0.34). The feature with the highest ICC, 
original_glrlm_GrayLevelNonUniformity, has a statistically significant hazard ratio for survival on the MAAS-
TRO contours (HR 1.31, 95% CI 1.03–1.67, p-value = 0.03) and maintains this using the PMCC contours (HR 
1.28, 95% CI 1.00–1.63, p-value = 0.05). The above findings suggest that features that are highly robust to IOV in 
delineation are less likely to lose their prognostic ability, while features that are less robust, are more likely to lose 
their prognostic ability with contour variation.

Discussion
This study has shown that the majority of radiomics features are robust to IOV in contouring in the setting of 
NSCLC being treated with radical intent radiotherapy, with a high median ICC for radiomics features found 
in both the ‘NSCLC-Radiomics’ and ‘Interobserver’ datasets. In particular, texture features GLDM, GLRLM, 
GLSZM, and NGTDM were the most robust, while first order and GLCM features were the least robust to IOV 
in delineation. The robustness of shape features varied according to the dataset, with a lower median ICC in the 
‘NSCLC-Radiomics’ dataset compared to the ‘Interobserver’ dataset. For all original feature types, contours gener-
ated using semi-automated methods were the most robust. The addition filters generally increased the robustness 
of most feature types. To our knowledge, this is the first study to also suggest for features that are less robust to 
IOV in contouring, defined by their lower ICC values, variation in contouring may affect the features’ prognostic 
ability and therefore should be used with caution in prognostic models predicting survival. The results of this 
study may also at least partly provide an explanation for the lack of reproducibility of radiomics based prognostic 
models, showing that variation in contouring alone, may lead to differences in some radiomics features that are 
significant enough to result in these features no longer being able to predict survival. In this study, we therefore 

+

+

++
+

+
++ +

+

+

+++
+

+
+ +0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10 11
Time (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

A

+

+

++
+

+
++ +

+

+

+++

+

+
+ +

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10 11
Time (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

B

+

++++
+

+

+

+++

+

+
+

++
+ +

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10 11
Time (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

C

+

+

++
+

+
++ +

+

+

+++

+

+
+ +

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10 11
Time (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

D

+ + + +PMCC <median PMCC > median MAASTRO < median MAASTRO > median

Figure 5.  Kaplan Meier survival curves. Overall survival curves for MAASTRO and PMCC contours from 
the ‘NSCLC-Radiomics’ dataset are given for four radiomics features found to be prognostic in a previously 
published model, showing similar separation of curves for three features (A, B and D), while feature C shows 
separation of curves for the MAASTRO contour, however not for the PMCC contour (A = original_firstorder_
Energy, B = original_glrlm_GrayLevelNonUniformity, C = original_shape_Compactness2, D = wavelet-HLH_
glrlm_GrayLevelNonUniformity).
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also provide a detailed list of radiomics features that are not robust to IOV in delineation, which may help guide 
future studies in selecting and excluding features to be used within prognostic models.

Textural features were the group most robust to variations in contouring, while first order and shape features 
were more sensitive to changes in contour. As suggested by the examples in Fig. 4, the inclusion of regions 
surrounding the tumour on CT scan which are often highly subjective, such as vessels, spiculation or ground 
glass changes, or areas of pleural attachment or surrounding atelectasis, may significantly change the overall 
smoothness of the contour, and resultant shape of the contour. Additionally, decisions to use certain features 
on contouring software, such as interpolation between slices which may result in a smoother contour versus 
contouring slice by slice, may also impact upon the radiomics result of the shape feature. These results are similar 
to the findings of a study by Pavic et al. 2018 which assessed IOV in contouring in patients with lung cancer, 
mesothelioma and head and neck squamous cell carcinoma (HNSCC) and found an overall high stability rate of 
radiomics features (defined as ICC > 0.8) in lung cancer (90% of radiomics features), with shape features having 
the lowest ICC in all tumour  sites22. Interestingly the stability rate was considerably lower for HNSCC (59%) and 
mesothelioma (36%) suggesting robustness of radiomics features to IOV in contouring is tumour site dependent. 
Another study in 20 patients with lung cancer found that manual segmentation resulted in the lowest ICC for 
first order radiomics features (ICC = 0.63) compared to textural (ICC = 0.82) and shape (ICC = 0.80)  features19. In 
contrast, however, one lung cancer study did not find any particular class of radiomics features to be less robust 
to contouring  variation21, and another study in patients with lung, kidney and liver malignancies, found shape 
and first order features to be the most robust to variation in  contours24. The difference in results of the latter study 
compared to our findings may partly reflect the different patient population and tumour sites in this study, as 
well as the use of a ‘lung nodules’ imaging dataset, that captured all lesions within the lung, some of which may 
not have been malignant tumours. Ultimately, the robustness of a feature to IOV should be taken into account 
when developing radiomics based prognostic models, as contouring variation for less robust features may affect 
their prognostic performance, as seen with feature ‘original_shape_Compactness2’, which appeared to lose its 
prognostic power using PMCC contours.

This study also showed that improvement in DC usually resulted in greater agreement in radiomics feature 
results. Measures to reduce contouring variation therefore should be considered in radiomics studies to improve 
reproducibility of results. One method that may reduce contouring variation is the use of semi-automated tech-
niques such as that used within the ‘Interobserver’ dataset, which resulted in both an improvement in DC and 
ICC of radiomics features. This technique has also been shown to improve contour and radiomics results agree-
ment in other  studies10,19,21. Another potential way to decrease IOV includes ensuring availability of all clinical 
and diagnostic information to clinicians creating contours. The consistency of shape features, in particular, may 
be improved through ensuring data such as biopsy, staging, diagnostic CT scans and PET images are available at 
the time of contouring. While this is usually the case, this may become more challenging when using open access 
online repositories, as used in this study, or when imaging data is shared across departments and institutions for 
the purpose of creating contours to be used in radiomics research. Certainly, in this study, DC were higher in the 
‘Interobserver’ versus ‘NSCLC-Radiomics’ dataset, in which the observers using the former dataset had access 
to the same set of information during delineation of contours, compared to no additional information available 
upon delineation of the PMCC contours within the ‘NSCLC-Radiomics’ dataset. This finding is further supported 
by a systematic review that investigated the repeatability and reproducibility of radiomics features and found that 
shape metrics using PET images appeared to be less subject to  IOV10. Finally, the use of contouring guidelines, 
where available, should be utilised and may also reduce contouring variation. Various solutions may also exist 
to mitigate the impact of IOV in contouring on radiomics feature results following completion of contours. Use 
of filters, as shown in this study, may improve the ICC of radiomics features and reduce the impact of contour 
variation. Post-processing of contours, including exclusion of voxels with very high or low HU on CT that may 
clearly indicate bone or air, may improve the accuracy of contours, although did not improve the robustness of 
features within this study.

While the improvement in consistency across contours may improve robustness of radiomics features, it also 
raises the challenging question of what constitutes the ‘ground truth’ with respect to the radiological tumour 
volume. Interrogation of imaging of surgical patients and correlation with histopathological findings may be 
helpful, however not a feasible approach in non-surgical cases, and has inherent limitations due to the processing 
methods required of tissue prior to histopathological analysis. Contouring guidelines may improve consistency 
across observers, however, these guidelines are largely developed for the purposes of radiotherapy treatment 
and may not be entirely ‘fit for purpose’ for radiomics research. Radiotherapy treatment contours are generally 
developed in order to minimise the risk of tumour miss, and in some cases may include tumour motion, resulting 
in larger contours, whereas for radiomics research, it may be more important to exclude areas in which there is 
uncertainty regarding tumour involvement. The choice of approach may result in affect the radiomics features 
of the tumour, including shape features. Furthermore, it is yet to be determined whether the entire tumour, or 
certain regions of the tumour have radiomics features relevant for particular endpoints. There is increasing evi-
dence that the peri-tumoural zone may be significant in determining prognostic endpoints such as locoregional 
recurrence, response to treatment and  survival41–45. Apart from dividing the tumour into regional zones, it may be 
beneficial to recognise the inherent uncertainties in creating a VOI, and to conceptualise ‘probabilistic’ contours, 
either through in silico modelling or through ‘expert’ input, to take into account the estimated odds that a certain 
region represents tumour, and to subsequently interrogate the radiomics features of these different regions. This 
could also be performed by considering the ‘overlap’ region of multiple contours of a tumour as a representa-
tion of the ‘ground truth’, although this would be a labour intensive approach. Ultimately, the elimination of the 
need for a human derived contour, through approximation of a volume of interest by use of a seed point within 
the tumour and creation of a 3D square area indicating a region of interest may also be utilised in conjunction 



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12822  | https://doi.org/10.1038/s41598-022-16520-9

www.nature.com/scientificreports/

with deep learning techniques. This is a promising approach that is currently being utilised and investigated in 
the  literature46–49. The validity of all these approaches, however, require further exploration in a systematic way.

Limitations of this study include the use of a single observer for creation of PMCC contours and lack of 
availability of all diagnostic imaging and pathology reports at our institution. Whilst this limitation may have 
reduced consistency between contours for a given patient, the resultant greater range in DC allowed us to more 
fully explore the impact of IOV in contouring on radiomics features, as well as postulate regarding differences 
seen between the ‘NSCLC-Radiomics’ and ‘Interobserver’ datasets given the differences in methodology. Any 
effect of intra-observer variation in delineation has not been studied. The findings from this study may also not 
be applicable to different tumour histologies and stages, and to different imaging modalities, including contours 
developed on imaging other than radiotherapy planning scans and by craft groups other than radiation oncolo-
gists, however the homogenous nature of our patient dataset, strengthens the applicability of our study findings 
in patients with lung cancer. Our sample size was relatively small for the purpose of determining statistically 
significant associations of radiomics features with survival, and for this reason, the four features found to be 
prognostic in the Aerts et al. 2014  study7, were chosen to compare results of survival analysis between MAASTRO 
and PMCC contours. It is recognised however that some of these features have underlying volume dependen-
cies and may not provide significant additional prognostic information over volume  alone50. Nevertheless, the 
primary objective of this study was to assess the robustness of radiomics features to IOV in contouring, rather 
than to generate a new prognostic signature. Moreover, we were able to highlight the significance of selecting 
robust radiomics features within survival models, which retain their prognostic ability despite contours being 
created by different clinicians. Additionally, to our knowledge, this is the largest IOV study within the radiomics 
literature in patients with histologically proven lung cancer.

Conclusions
In conclusion, we found the vast majority of radiomics features were robust to IOV in delineation of primary 
NSCLC treated with radiotherapy. Overall, first order and GLCM were the least robust, with the lowest median 
ICC across all datasets. These results were overall improved with the addition of LoG and wavelet filters. Three of 
the four radiomics features used within a prognostic signature for NSCLC patients had very high ICC of greater 
than 0.90. The shape feature ‘Compactness2’ was less robust to IOV in contouring and caution may be applied to 
its use. The results of this study may further guide appropriate selection of radiomics features within prognostic 
models in patients with NSCLC. Additionally, this study supports actions to reduce IOV within radiomics studies 
including ensuring availability of all clinical and diagnostic imaging at the time of contouring, and consideration 
given to use of semi-automated techniques.

Data availability
The de-identified imaging and clinical datasets analysed during the current study are available from an openly 
accessible online centralised repository, The Cancer Imaging Archive (TCIA) (https:// www. cance rimag ingar 
chive. net)4,6. Additional data used and analysed during the current study are available from the corresponding 
author on reasonable request.
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