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Hepatitis B and C often progress to decompensated liver cirrhosis requiring orthotopic liver transplantation (OLT). After OLT,
hepatitis B recurrence is clinically controlled with a combination of hepatitis B immunoglobulin (HBIG) and nucleos(t)ide
analogues. Another approach is to induce self-producing anti-hepatitis B virus (HBV) antibodies using a HBV envelope antigen
vaccine. Patients who had not been HBV carriers such as acutely infected liver failure or who received liver from HBV self-limited
donor are good candidate. For chronic HBV carrier patients, a successful response can only be achieved in selected patients such
as those treated with experimentally reduced immunosuppression protocols or received an anti-HBV adaptive memory carrying
donor liver. Hepatitis C virus (HCV) reinfects transplanted livers at a rate of >90%. HCV reinfected patients show different
severities of hepatitis, frommild and slowly progressing to severe and rapidly progressing, possibly resulting from different adaptive
immune responses. More than half the patients require interferon treatment, although the success rate is low and carries risks for
leukocytopenia and rejection.Managing the immune response has an important role in controlling recurrent hepatitis C.This study
aimed to review the adaptive immune response in post-OLT hepatitis B and C.

1. Introduction

Hepatitis B virus (HBV) infection and hepatitis C virus
(HCV) infection are themain causes of end-stage liver disease
requiring orthotopic liver transplantation (OLT). However,
the post-OLT course is quite different between the two
types of hepatitis. The post-OLT hepatitis B recurrence rate
is >80% without any prevention, while >90% of recurrent
infections can be controlled with a combination of hepatitis
B immunoglobulin (HBIG) and nucleos(t)ide analogues
(NAs) [1]. Non-OLT chronic hepatitis B patients are treated
with antiviral proliferative NA agents, with >90% long-term
control with minute side effects. The first commercially
available NA, lamivudine (LAM), produced a rapid and
definite short-term antiviral response, but 15–20% of the
patients experienced annual recurrence of resistant virus and
70% of them did so after 5 years [2]. Fewer than 3% of

patients treated with newer NAs such as entecavir (ETV) or
tenofovir (TDF) experience resistant virus; these newer NAs
are accepted as first-line and long-term treatment [3, 4].

After OLT, more than half of the patients become rein-
fected. It is difficult to eradicate the virus once these patients
become reinfected [5].

The mechanism for controlling HBV viral recurrence
is direct viral replication control by a combination of NAs
and HBIG as passive immunoprophylaxis [6]. As HBIG
combination therapy has important roles, the B-cell-related
adaptive immune response appears to play a role in control-
ling HBV after OLT. However, as HBV-induced hepatitis is
characterized by T-cell immune response, both B- and T-cell
adaptive immune responses have vital roles [7]. When active
immunization of patients with HBV vaccine is performed,
HBV-specific and non-HBV-specific immune responses can
be obtained.

Hindawi Publishing Corporation
International Journal of Inflammation
Volume 2014, Article ID 814760, 15 pages
http://dx.doi.org/10.1155/2014/814760

http://dx.doi.org/10.1155/2014/814760


2 International Journal of Inflammation

HCV reinfects >90% of patients, with more than half
of these patients developing chronic hepatitis requiring
interferon- (IFN-) based antiviral treatment [8]. Non-OLT
chronic hepatitis C patients have been treatedwith IFN-based
immune reaction-related treatment. Recently, pegylated IFN
(Peg-IFN) has been used in combination with ribavirin and,
more recently, with the addition of a direct-acting antiviral
agent (DAA) targeting the HCV nonstructural protein (NS)
3/4A protease [9]. Single Peg-IFN resulted in only 30% of
patients experiencing sustained viral response (SVR), repre-
senting undetectable HCV-RNA longer than 24 weeks after
finishing IFN [10].This demonstrated>99%viral eradication,
while the Peg-IFN and ribavirin combination resulted in
50% SVR [10, 11]. Peg-IFN plus ribavirin and telaprevir or
simeprevir resulted in >80% SVR for patients with genotype
1, which is the more difficult-to-treat genotype of HCV
[12]. All-oral, IFN-free regimens are expected to become
commercially available in the near future [13].

HCV-related liver cirrhosis is a common indication for
OLT [14]. However, HCV persists in almost all post-OLT
patients. Graft reinfection is universal after OLT [15], leading
to high-titer HCV viremia, with cirrhosis developing within
5 years of transplantation in approximately 20% of patients
and within 10 years in 50% [16]. Thus, HCV infection after
OLT differs completely from chronic hepatitis C (CHC)with-
out transplantation. However, the mechanisms underlying
accelerated HCV-induced liver damage after OLT are poorly
understood. Several factors appear to be involved in the
risk of hepatitis C recurrence, particularly those related to
viral and immune responses. Immunosuppressive therapy
is a likely cause for the severe accelerated course of HCV-
related hepatitis after OLT [16, 17]. In particular, high-dose
steroids, immunosuppressive drug combinations, powerful
induction treatments, and acute rejection can worsen patient
outcomes [18].The pathology of HCV-related disease reflects
immune reactions to virus-infected hepatocytes [7]. In post-
OLT settings, immunosuppressive drugs definitely affect the
clinical course. The effects of interferon-based treatment
are limited to 30–50% of patients, with especially poorer
results in post-OLT patients, and also carry the possibility
of inducing mortal chronic rejection that should be avoided
[19].

In this review, we summarize the aberrant immune
system in HBV- and HCV-related hepatitis, together with the
changes in these diseases after OLT.

2. Immune Mechanisms in Non-OLT
HBV- and HCV-Related Hepatitis

2.1. Immune Mechanisms in HBV-Related Hepatitis. After
infecting a patient once , HBV persists in the liver for the rest
of a person’s life, even after the patient achieves a clinically
cured condition with seroclearance of HBV envelope antigen
(hepatitis B surface antigen, HBsAg) and emergence of
HBs antibody (HBsAb) [20]. In controlling viral replication,
immune function has been revealed to be important, as
immunosuppressive treatment for cancer chemotherapy or
organ transplantation can induce viral replication even in

HBsAgnegativewithHBsAbpositive clinically cured patients
and organ transplant recipients [21, 22]. HBV is an enveloped
DNAvirus containing a relaxed circularDNAgenome, which
is converted into a covalently closed circular (CCC)DNA that
persists in the nucleus of infected cells as minichromosomes
[23].

Natural killer (NK) cells work as the innate immune
modulator to induce the death of microbial-infected cells
with strong cytotoxic activity and the production of high
levels of certain cytokines and chemokines in a nonmajor
histocompatibility complex- (MHC-) restricted manner dis-
tinct from T and B cells [24]. Upon HBV infection, NK cells
migrate to the liver, with a decrease in their numbers in the
spleen and bone marrow, suggesting the recruitment of NK
cells from these organs [24]. As hepatocytes normally express
little MHC class I, NK cells may play a more important role
in the early defense against HBV infection before the MHC
class I expression is upregulated after viral replication in
hepatocytes [25].

Antigen-presenting cells (APCs), such as Kupffer cells
(liver resident macrophages) and dendritic cells, have impor-
tant roles in intermediating the innate to adaptive immune
responses [26]. Kupffer cells or macrophages behave in
both an immunostimulatory and immunoregulatory fashion
upon HBV exposure. The addition of HBV particles and
HBsAg induces the production of proinflammatory cytokines
interleukin- (IL-) 1𝛽, IL-6, CXCL-8, and tumor necrosis
factor (TNF)-𝛼 by human CD68+macrophage-enriched cells
via NF-𝜅B (nuclear factor kappa-light-chain-enhancer of
activated B cells) activation [27]. However, another study
reported no such cytokine production with immunoregu-
latory cytokine transforming growth factor- (TGF-) 𝛽 pro-
duction [28]. The immune system activates Kupffer cells to
eradicate HBV, while HBV evades the Kupffer cell-related
pathway to reduce the inflammatory pathway and change
the environment to be favorable for survival. Pretreatment of
nonparenchymal cells, includingKupffer cells, withHBsAg or
HBV virion, abrogates the Toll-like receptor- (TLR-) related
antiviral response such as IFN-𝛽, interferon-stimulated gene
(ISG), or NF-𝜅B. In the liver biopsy specimens of patients
with active hepatitis B, Kupffer cells have been revealed
to possess higher expression of galectin-9, which is an
immunoregulatory molecule [29]. Kupffer cells accumulate
around injured hepatic loci and produce several cytotoxic
and fibrosis progression-related molecules [30]. However,
they also have an important function in scavenging apoptotic
hepatocytes, which could function as a bait for inflammation,
and depletion of Kupffer cells could induce worsening of hep-
atitis [31, 32]. Kupffer cells function as both proinflammatory
and anti-inflammatory and profibrotic and antifibrotic cells
in their environment. Both the hepatitis state and Kupffer
cell polarity are needed to understand the immunological
pathogenesis in HBV-related hepatitis.

Strong HBV-specific CD8+ T-cell responses have been
shown to correlate with viral and hepatitis control during
acute infection [33]. In chronically infected patients, HBV-
specific CD8+ T-cell responses are weak and occur with
low frequency, while patients with low viral load exhibit
multispecific strong responses [34]. The epitopes targeted by
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the CD8+ T cells have been deeply analyzed in HLA-A and
-B restricted epitopes, as these have been believed to have
antiviral impact [35, 36]. However, a recently characterized
HLA-C restricted epitope has also been revealed to have
a clinical impact and is an especially frequent allele in
patients who live in Southeast Asia [37]. Several factors
have been suggested to explain this phenomenon. In HBV-
specific CD8+ T cells, proapoptotic protein Bcl2-interacting
mediator (BIM) is upregulated, naı̈ve T-cell phenotypes such
as CD45RA, CD27, CD28, and CCR7 are highly expressed,
and immune regulatory molecules such as programmed
death-1 (PD-1), cytotoxic lymphocyte antigen 4 (CTLA-
4), and T-cell immunoglobulin mucin-3 (TIM-3) are also
highly expressed [29, 38–41]. Several experimental trials that
were conducted to block such immunoregulatory exhaustion
molecules showed reversal of these immunoregulatory con-
ditions [41, 42].

Similar to the CD8+ T cells, CD4+ T cells have also
been found to exhibit a lower response in the acute phase
of infection in patients who developed chronic hepatitis later
[43].TheCD4+ T-cell response in patients who recoveredwas
found to be more frequent, stronger, and more multispecific
than that observed later in patients with chronic hepatitis
[40]. The IFN-𝛾 producing antiviral Th1 response against
HBV core has been revealed to be stronger in patients with
resolved infection even several years after infection [44].

The humoral immune response has been acknowledged
as an avenue for understanding the clinical course of acute
and chronic hepatitis B [45]. The antibody responds against
viral structural antigens such as the core antigen (HBcAg)
and the envelope antigen (HBsAg). Anti-HBcAg IgM anti-
body (IgM-HBcAb) is accepted as the earliest and most
diagnostic marker of acute infection. Anti-HBc IgG antibody
(IgG-HBcAb) develops during acute infection and remains
positive for the duration of the patient’s life [46]. HBsAg
emerges in serum from the acute phase of infection and
remains when the patient exhibits chronic hepatitis B, while
in patients who experience an acute self-limiting course
HBsAg could be cleared. Anti-HBs antibody (HBsAb) is
a virus-neutralizing antibody recognized as having lower
viral and disease activities. The lack of anti-HBs in chronic
infection can be attributed to a selective exhaustion of B
cells and IL-10 secreting immunoregulatory B-cell expansion
[45, 46].

2.2. Immune Mechanisms in HCV-Related Hepatitis. Since
HCV is not also a cytopathic virus, immune reactions play a
central role in the development of chronic hepatitis (Figure 1)
[47, 48]. Innate antiviral responses constitute the first-line
defense system against infected virus. HCV disables some
innate antiviral systems to escape from the immune pressure
[48]. The lack of a strong Th1-type helper T-cell response
and cytotoxic T-cell response against HCV leads to chronic
infection with this virus [49–51]. High-magnitude, broad,
polyfunctional, and sustained T-cell responses correlate with
spontaneous recovery [35, 49, 52], but these responses are not
correlated with interferon-induced viral clearance [53].

The role of NK cells in chronic hepatitis C is not
completely understood. However, as NK cells are the first
immunological walls against HCV, much evidence has been
uncovered. An NK-cell activating and inhibitory receptor
gene polymorphism has been discovered to have roles in the
course of HCV infection [54, 55]. As IFN-𝛼 is the basic treat-
ment for chronic hepatitis C, IFN-producing NK cells have
been defined as key immune cells. NK cells can produce IFN-
𝛼, IFN-𝛾, and TNF-𝛼 and induce dendritic cell activation
and support innate to adaptive immune response bridging
[56]. NK cells can also lyseHCV-infected hepatocytes, T cells,
and APCs and modulate immune responses [57]. However,
HCV itself has been revealed to have a role in the potential
inhibition of NK cell function, resulting in chronic hepatitis
[58].

Antigen presenting cells such as Kupffer cells, macro-
phages, or dendritic cells (DCs) behave in both an immunos-
timulatory and immunoregulatorymanner uponHCV expo-
sure, as in HBV [26]. In chronic hepatitis C patients, Kupffer
cells are increased and activated as the higher expression
markers CD163 and CD33 [59, 60]. In vitro analysis has
revealed thatHCVcore andNS3-affectedKupffer cells secrete
proinflammatory cytokines such as IL-1𝛽, IL-6, and TNF-
𝛼 and also immunosuppressive cytokine IL-10 [61]. Proin-
flammatory cytokine release might explain the induction
and persistent inflammation in chronic hepatitis C, while
immunosuppressive cytokine release explains the difficulty
in the eradication of HCV-infected hepatocytes. The direct
effects of HCV on the inflammatory signal in Kupffer cells
have been revealed to upregulate the immunoregulatory
molecule PD-L1 [62]. Probably, HCV interferes with Kupffer
cell-related antiviral activities but induces strong enough
inflammatory cytokines to result in chronic inflammation.
The effects of Kupffer cells on liver fibrosis progression
are similar to those in HBV infection. The Kupffer cells
accumulate around inflammatory foci and express cytotoxic
molecules such as granzyme B, perforin, and reactive oxygen
species to induce inflammation and fibrosis [63].

There are aminimumof two subsets ofDCs.MyeloidDCs
(mDCs) produce a large amount of IL-12 upon stimulation,
while plasmacytoid DCs (pDCs) produce a large amount of
IFN-𝛼 in viral infection [64]. DC function has been reported
as broadly impaired in CHC patients [65–68]. However,
several reports have indicated contradictory results that DC
function is not impaired in CHC patients [69–73]. Most of
these reports are studies with mDCs; however, pDCs are also
reportedly functionally impaired and reduced by increased
apoptosis [74]. Since culture conditions and chronic hepatitis
conditions in the patient may change the phenotype of
immune cells, functional differences in DCs during chronic
HCV infection remain contentious. In vitro transfection or
the addition of HCV proteins such as core, NS3, or NS4
has been reported to result in reduced function of DCs
[75]. Because of the scarcity of in vitro culture systems for
HCV, these experimental results are also contentious. With
the recent establishment of infectious cell culture-produced
HCV, impaired pDC functions have been revealed [64].

The role of the humoral immune response in the clearance
of HCV is not well understood. After viral clearance, most
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Figure 1: Immune status in chronic hepatitis C and postorthotopic liver transplantation (OLT) hepatitis C. (a) NK cells are the first
immunological defense system from hepatitis C virus (HCV). The phenotype defined with the activation or inhibitory receptor gene
polymorphism affects the chronic hepatitis C activity and the post-OLT hepatitis activity. The interferon producing function is decreased
by HCV proteins. (b) Kupffer cells or dendritic cells (DCs) have important roles in bridging innate and adaptive immune responses. These
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while a lower frequency of Tr1 is correlated with hepatitis control with HCV positive status. NK: natural killer cell, OLT: orthotopic liver
transplantation, HCV: hepatitis C virus, MHC: major histocompatibility complex, IFN: interferon, Treg: regulatory T cell, and Tr1: type 1
regulatory T cell.
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antibody titers wane despite the persistent T-cell response
[35]. A neutralizing antibody response is detectable, even in
chronic hepatitis C patients [76]. The target of the response
is placed in and around the envelop proteins E1 and E2 and
the hypervariable region near the amino terminus of E2 [77].
Neutralization epitopes have been revealed to be masked
by extensive glycosylation and by virions covered with lipid
droplets and might not be effectively targeted [78, 79]. In
addition, as the RNA-dependent RNA polymerase of HCV
lacks proofreading activity, it is easy for HCV-RNA tomutate
and escape from the host immune pressures [80]. Although
20–30% of infected patients recover from the infection with
strong T-cell response memory and possible neutralization
antibody B-cell response, they could be reinfected with the
virus, indicating difficulties in producing disease-controlling
vaccines [81].

Strong HCV-specific CD4+ T-cell and CD8+ T-cell
responses have been shown to be evident in HCV patients
with resolved infection, while diminished in patients with
chronic hepatitis C [7]. To recognize viral-infected hep-
atocytes or APCs, viral epitopes should be expressed on
the MHC. Interferon upregulates MHC class I expression;
however, replicating HCV-RNA reduces that expression [82].
Interferon is released from NK cells and DCs during an early
phase of viral infection and has important roles in eradicating
HCV, as this is the key drug for treatment [83]. This HCV
interference with MHC expression must be one reason why
CHC patients show reduced CD8+ T-cell responses.

Recent attention has focused on regulatory T cells
(Tregs) and their contribution to CHC. Their mechanism of
immunosuppression depends on both cell-cell contact and
immunosuppressive cytokine secretion [84]. A subpopula-
tion of Tregs that express CD18 and also CD49b-expressing
type 1 regulatory T (Tr1) cells have also attracted attention
[85], because they produce large amounts of immunosup-
pressive cytokines such as IL-10 and TGF-𝛽, with which
they inhibit type 1 and 2 helper responses [86]. Tregs and
Tr1 cells may contribute to HCV persistence by suppressing
HCV-specific T-cell responses [87–89]. Treg frequencies and
activities are apparently higher in CHC patients than in those
who have achieved viral clearance [90]. Recently discovered
T-cell regulatory molecules such as PD-1, 2B4, and TIM-3
have been revealed to be coexpressed in intrahepatic HCV-
specific CD8 T cells, indicating that HCV-induced T-cell
functional exhaustion represses viral eradication [91].

Strong innate and adaptive immune responses are
responsible for HCV clearance; however, the virus itself
affects many sites of the immune system, ameliorating the
effective antiviral immune functions. To control NK, Kupffer
cells, B cells, or T cellsmight be difficult as they act in different
ways in different CHC conditions.

3. Immune Responses in Post-OLT HBV
Recurrence Control

3.1. Overview of Post-OLT HBV Control with Nucleos(t)ide
Analogues and Hepatitis B Immunoglobulin. A multicenter
study in Europe in 1993 identified the risk of post-OLT HBV

recurrence [92]. The risk was low in patients with acute liver
failure who were intolerant of HBV. However, the recurrence
rate in patientswith liver cirrhosis, especiallywith high serum
HBV-DNA at OLT, was >80% [92]. As the immune system is
repressed with steroids and calcineurin inhibitors, recurrent
hepatitis B produces severe hepatitis with a high incidence of
mortal liver failure. However, present protocols that use NA
in combination with long-term HBIG have resulted in >90%
control of HBV recurrence [1].

The first trial of long-term HBIG combined with the
first-generation NA lamivudine (LAM) was conducted in
1998. Monthly HBIG administration with LAM resulted in
all patients surviving for 1 year after OLT without serum
HBV-DNA positivity [93]. Subsequent reports also described
successful control of HBV recurrence with this combination
[94]. The historical progression of controlling post-OLT
HBV recurrence is summarized in Table 1. As patients with
positive HBV-DNA before OLT were more likely to later
have HBV recurrence, to maintain anti-HBs antibody titers
>500 IU/L was recommended. If HBV-DNA was negative
before OLT, the anti-HBs antibody titer could be reduced
to 100–150 IU/L with or without LAM. From the standpoint
of cost savings, the HBIG dose requirement was able to be
decreased as clinical data accumulated [95–97]. Currently,
HBIG is administered as required only when anti-HBs
antibody titers fall below target levels. Some reports indicate
that only a short duration of HBIG administration is required
and that it can be withdrawn several months after OLT [98].
If HBV-DNAwas negative at the time of OLT, HBIG could be
withdrawn at several months after OLT. For acute liver failure
patients who had been infected with the virus shortly before
hepatitis development, HBIG could also be withdrawn. Of
course, strict monitoring of HBV-DNA and HBV surface
antigen (HBsAg) titers should be continued throughout the
patient’s life.

The mechanism of protection against HBV reactivation
by the combination of drugs is not well defined.The cccDNA
episome is the transcriptional template for HBV messenger
RNA transcripts that encode viral structural and NS proteins
and the pregenomic RNA template for reverse transcription
and synthesis of the viral genome [5]. NAs inhibit the
reverse transcription of pregenomic RNA, resulting in a
rapid decrease in serumHBV-DNA, but cannot eliminate the
cccDNA reservoir [99]. HBIG contains high-titer antibodies
against HBsAg, which is the major component of the enve-
lope of the HBV virion.

The possible mechanisms through which HBIG pre-
vents HBV transmission are that it neutralizes circulating
virus by immune complex formation, protects näıve hepato-
cytes against HBV released from extrahepatic sites through
blocking the putative HBV receptor, or anti-HBs antibody
internalizes into hepatocytes, interacts with HBsAg, and
inhibits HBsAg secretion from cells [100]. To protect against
HBV infection of näıve hepatocytes might be difficult, since
recent studies have revealed that intrahepatic HBV-DNA is
detectable in >50% of even well-controlled patients after OLT
[5]. The HBV virion released from the infected cells could
be blocked with anti-HBs antibody. In an in vitro assay, the
internalized antibody was seen to induce the accumulation
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of intracellular viral particles even after the antibody was
removed from the cell culture supernatant [101].

Several new NAs such as adefovir dipivoxil (ADV),
entecavir (ETV), telbivudine (LdT), and tenofovir (TDF)
have become commercially available [102]. Because of the risk
of developing resistance, LAM is no longer recommended
as a first-line treatment for hepatitis B. The currently rec-
ommended first-line agents are ETV and TDF, which have
resulted in a very low emergence of resistance [3, 4]. Such
newerNAs are very effectivewhen combinedwithHBIG even
during short duration, post-OLT HBV control [103–109].
Because of low resistance and the powerful antiviral response
evoked by ETV and TDF or a combination of NAs, several
institutions have developed successful HBIG-free protocols
if the HBV-DNA titer is low enough at the time of OLT
[103, 110].

As the strong NAs are very effective in HBV con-
trol, immune cell-related treatments are not administered,
although hepatitis B infection is an immunemediated disease
[1].

3.2. Adaptive Immune System to Get Anti-HBs Antibody
Response with HBV Vaccine. The practice of active immu-
nization of post-OLT recipients with HBV vaccine is emerg-
ing. For a successful vaccine response, the immune system
has important roles. Most studies report low response rates,
even with doubled concentrations or prolonged injections of
vaccines (Table 2) [111–115]. Patients who had not been HBV
carriers (such as adult patients with acute liver failure due
to sexual transmission and nonchronic HBV carriers with
anti-HBc antibody-positive donor livers) are good candidates
for vaccine administration [112, 116–121]. Patients with acute
HBV infection who undergo OLT are often positive for
anti-HBs antibody even before OLT and have powerful
immune responses. Such patients should respond well to
vaccination since they have not developed tolerance to HBV,
unlike chronic carriers. However, some HBV carriers have
responded to vaccination.

Since noncarriers respond well to HBV vaccination, even
under prednisolone and calcineurin inhibitor usage, immune
tolerance is expected to play a large role in this process. In
non-OLT HBV patients, analysis has revealed that HBsAg-
positive newborns had higher regulatory T-cell frequencies
and dysfunctional CD8 T cells, which represent immune
tolerant status [122]. However, another report analyzing the
immunological characteristics of HBsAg-positive young car-
riers and aged patients with active hepatitis revealed compa-
rable peripheral T-cell proinflammatory cytokine production
capacity and HBV-specific IFN-𝛾 responses [123]. These
findings indicate that tolerant carriers can react with HBV
antigens and can show active immunity against HBV vacci-
nation, if regulatory T-cell function diminishes. With good
responses to newerNAs afterOLT,HBV-DNAdecreases even
in the liver, and this might recover compressed HBV-specific
T cells to react with HBV.

Chronic HBV carrier recipients, including patients with
positive HBV-DNA at OLT, do not respond well to HBs-
antigen-containing vaccine, with response rates being mostly

<30% [114, 115, 119, 124, 125]. Tahara et al. reported 64.7%
positive responses to experimentally minimized immuno-
suppressant treatment [118]. The immune status of these
patients was evaluated by a mixed lymphocyte reaction
(MLR) assay in response to antidonor and anti-third-party
allostimulation using an intracellular carboxyfluorescein
diacetate succinimidyl ester- (CFSE-) labeling technique.
“Third-party” refers to healthy volunteers with the same
blood type as the patients. The autologous lymphocytes, the
donor lymphocytes, and the third-party lymphocytes were
irradiated and used as the stimulator cells, and the recipients’
lymphocytes were used as the responder cells in MLR. The
investigatorsminimized immunosuppression until the donor
lymphocytes showed no response as autologous lymphocytes,
but third-party lymphocytes showed a positive response.
The investigators found that vaccination was successful in
patients showing a donor-specific MLR hyporesponse, with
a well-maintained response to the third-party stimulus. The
vaccine was not successful in patients showing hyporesponse
to both the donor and the third party. These results provide
encouragement that even immune tolerant liver cirrhosis
patients can react with HBV vaccines under lower immuno-
suppressant protocols after OLT.

Another protocol of repeated vaccine administration
resulted in successful immunization in 40% of patients
with post-OLT liver cirrhosis [117]. The donors to good
responders were the spouses of recipients and had high anti-
HBs antibody titers before donation. The spouses with high-
titer anti-HBs antibodies were probably infected with HBV
by the recipients after marriage, resulting in the anti-HBs
antibody boost. The immune systems of these donors should
not have developed tolerance to the virus [126]. The adoptive
immune transfer of theHBV-specific immune response could
be achieved [127].

To successfully transfer immune memory to recipients,
the anti-HBs antibody titer of the donors should be high.
Luo et al. have shown that a high anti-HBs antibody titer
(>1000 IU/L) in donors is essential for adoptive transfer [128].
These results suggest that pre-OLT HBV vaccination for
candidate living donors might facilitate improved post-OLT
vaccine responses in recipients with liver cirrhosis. Several
experimental adjuvant vaccines have also been tried with up
to 44.8% success rates [111, 119, 129].

The vaccine response depends on immune tolerance to
the virus in both recipients and donors. The liver is the
largest immune organ in the abdomen; therefore, it plays a
critical role in immune responses. Multiple populations of
nonhematopoietic liver cells, including sinusoidal endothe-
lial cells, stellate cells located in the subendothelial space,
and liver parenchymal cells, can function as APCs [130]. The
viral-specific immune competence of the grafted liver might
overcome general immune tolerance to the virus in chronic
HBV carriers.

3.3. Adaptive Immune System to Get Anti-HBs Antibody
Response with HBV Vaccine in HBV Naı̈ve Recipients Who
Received Livers from Anti-HBc Antibody Positive Donors. As
a shortage of donor organs is a universal problem, anti-HBc
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positive healthy carriers could be candidate donors. With
regard to the above vaccination protocols, non-HBV-related
patients who received anti-HBc antibody positive donor
livers have fared quite favorably. The post-OLT incidence of
de novo hepatitis B occurring in anti-HBc antibody-positive
donors without prophylaxis is high (33–100%) [22, 131, 132].
These HBV-näıve patients are good candidates for the HBV
vaccine because 50–80% tend to respond well [112, 120,
121]. Pre-OLT vaccination is also possible if patients have
sufficient time before undergoing OLT. In countries with
universal vaccination programs, the recipients might already
have anti-HBs antibody and could be boosted with additional
vaccination beforeOLT, resulting in 78%of prospective recip-
ients having a high titer of anti-HBs antibody (>1000 IU/L)
[133]. In pediatric patients, the vaccination responses were
observed to be good in recipients with higher anti-HBs titers
at the time of OLT and lower tacrolimus levels at the time of
vaccination [134].

4. Adaptive Immune Responses in Post-OLT
Hepatitis C Recurrence Control

4.1. Overview of Post-OLT Hepatitis C Recurrence and Treat-
ment. As HCV recurrence is observed in almost all the
patients who receive OLT, HCV eradication before OLT has
been tried, although with unsuccessful outcomes [135, 136].

Post-OLT IFN administration is the only way to achieve
better outcomes.HCVgenotypes 1b and 4 seem to be negative
predictive factors for recurrence because of a lower response
to pegylated interferon (Peg-IFN) and ribavirin combination
therapy [136]. The host and donor factors associated with
poorer outcomes are female gender, older donor age, steatosis
of the graft, and the IL-28B single nucleotide polymorphism
(SNP) [137–140]. A human genomewide association study
recently uncovered many disease-susceptible genes or drug
sensitivity-related genes. In CHC patients, the IL-28B gene
SNP was found to be related to spontaneous clearance and
susceptibility to treatment with Peg-IFN plus ribavirin [141–
143]. The combination of recipient and donor IL-28B genetic
polymorphism has been revealed to be important in post-
OLT HCV treatment outcomes [137].

Recently, direct-acting antivirals such as NS3 protease
inhibitors or NS5 polymerase inhibitors or a combination
of them have come to represent a new highly effective
treatment strategy [144]. The triple combination therapy of
Peg-IFN, ribavirin, and a protease inhibitor (telaprevir) has
been accepted as a highly effective treatment for non-OLT
CHC, producing >75% sustained virological response (SVR)
[145]. However, as telaprevir inhibits cytochrome P450 3A4
and reduces the metabolism of calcineurin inhibitors, the
trough levels of cyclosporine A (CyA) increase to 4.6-fold
and FK 506 (FK) to 70-fold [146].This phenomenon requires
that triple therapy be used with strict care. The second
generation protease inhibitor simeprevir very weakly inhibits
cytochrome P450 3A4 and is safer than telaprevir. Triple
therapy including simeprevir is safer than triple therapy with
telaprevir and is currently recommended [147].

4.2. Adaptive Immune Responses inHepatitis C Recurrence. In
post-OLT settings, T-cell activities are affected by immuno-
suppressive therapy [148]. Although the T-cell response
is repressed with calcineurin inhibitors, post-OLT CHC
patients often show severe hepatitis recurrence with high
viral load [14]. In post-OLT CHC patients, the importance
of immune reaction has been accepted. Several reports
have mentioned that HCV-specific immune responses cor-
relate with post-OLT hepatitis C progression [149, 150].
The frequency of HCV-specific IL-17-secreting CD4+ T
cells was shown to be increased in severe inflammation
in liver fibrosis patients [150]. The serum cytokine profile
of these patients with severe recurrence exhibited higher
inflammatory cytokines (IL-17, IL-1𝛽, IL-6, IL-8, and mono-
cyte chemoattractant protein [MCP]-1), decreased antiviral
cytokine IFN-𝛾, and increased IFN-𝛾 reducing cytokine IL-
10, suggesting the presence of the inflammatory phenotype
with repressed antiviral immune response.

Several studies have demonstrated that Tregs induce
allograft tolerance [151, 152]. Moreover, Tregs and Tr1 cells
are overexpressed in patients with severe hepatitis C recur-
rence compared with patients with no or minor recurrence
[86, 153]. These results suggest that Tregs and Tr1 cells
are involved in HCV recurrence after OLT. Because the
strength of immunosuppressive therapy and the viral load
would be changed after OLT, the time course of the immune
response has important roles. Recently, we have shown that
Tr1 frequency was repressed in 40 days after OLT under the
condition of persistently normal alanine aminotransferase
(ALT), even at 3 years after OLT [8]. Tr1, which has a strong
IL-10 production capacity, may reduce HCV-specific T-cell
responses and induce active hepatitis with ALT elevation.
Monitoring Tr1 frequency might be a way to determine
which patients would develop active hepatitis. However,
HCV-specific CD4+ T-cell IFN-𝛾 production, which was
higher in patients with persistently normal ALT until 3 years
after OLT, was found to diminish after 3 years (Tsuzaki R.
et al. accepted manuscript for Acta Med Okayama, 2014).
This result indicates that, although the adaptive immune
response could control hepatitis, the strength of the response
might diminish over time. These results from our experience
indicate that IFN-based anti-HCV therapy could be applied
for patients with higher Tr1 after OLT, whomight show active
hepatitis until 3 years after OLT. Whether the Tr1 reduction
treatment will become the next treatment strategy is not clear,
as selective reduction of Tr1 might be difficult. However, as
calcineurin inhibitors reduce regulatory T cells, minimum
usage of calcineurin inhibitors might be the way this can be
accomplished now [154].

4.3. Innate Immune Responses in Hepatitis C Recurrence.
Innate immune responses have also been identified as HCV
targets and could be depressedwith respect to their functions.
Dendritic cells (DCs) and NK cells are thought to play a
central role in the interplay between the innate and adaptive
immune responses. Kupffer cells are also involved in post-
OLT hepatitis C recurrence, as NF-𝜅B was highly expressed
in patients with post-OLT HCV recurrence. However, the
specificity for the disease state is not well characterized [155].
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In post-OLT settings, blood pDCs decreased after OLT
and the pDC product IFN-𝛼 also decreased. These decreases
might affect the recurrence of post-OLT hepatitis C [156].

NK cells have also been deeply investigated with respect
to their activities in HCV infection and hepatitis. NK cells
are implicated in various viral infections, including HCV
and front-line anticancer immune responses. The HCV-E2
protein has been revealed to bind the NK CD81 receptor
and decrease the release of IFN-𝛾, resulting in noneffec-
tive antiviral responses [157]. Another NK cell receptor,
the killer immunoglobulin receptor (KIR), which displays
an inhibitory function, has been revealed to be correlated
with post-OLT hepatitis C. The KIR-ligand mismatch and
recipient KIR2L3 haplotype have been shown to correlate
with recurrent hepatitis C [55]. IFN treatment susceptibility
of post-OLT HCV recurrence has also been shown to be
correlated with the NK receptor haplotype KIR2DS2 [158].
Intravenous administration of living donor perfusate of NK
cells could reduce the HCV-RNA increase after OLT [159].
As acutely infected hepatitis C patients show self-recovery at
a rate of 20–30%, a strong NK cell response might control
hepatitis C even under immunosuppressive treatment.

Adaptive immune response in post-OLT HBV remains a
problem that should be investigated, as this virus continues to
be difficult to be eradicated from the infected liver. However,
the anti-HCV treatment protocol is drastically changing
because several clinical trials of new DAA with >80% viral
eradication might result in these drugs being introduced to
the market; therefore, the importance of investigating the
immune system in post-OLT HCV will probably consolidate
to selected refractory patients in the next 10 years.

5. Conclusion

The adaptive immune response in post-OLT hepatitis B
recurrence is hidden under strong antiviral HBIG and
NA combination treatment. However, the effectiveness of
active immunization is dependent upon adaptive immune
responses being effective for patients with non-HBV-related
disease who have received anti-HBc antibody-positive donor
livers and patients with acute liver failure who are not
immune tolerant to HBV. Vaccination is not sufficiently
effective for patients with liver cirrhosis; nevertheless, the
donor immune memory for HBV and the strength of the
immunosuppressant drugs have important roles. Adaptive
immune responses, especially of the CD4+ and CD8+ T cells
and the Treg, have strong effects in post-OLT hepatitis C
viral recurrence and in recurrent hepatitis activities. The
regulatory T cells and Tr1 cells affect the clinical course
and could be used as prediction markers. As IFN-based
treatments have risks after OLT, forecasting the patient’s
course with such markers could be beneficial.
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