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Abstract

The control of protein aggregation is an important requirement in the development of bio-pharmaceutical formulations.
Here a simple protein model is proposed that was used in molecular dynamics simulations to obtain a quantitative
assessment of the relative contributions of proteins’ net-charges, dipole-moments, and the size of hydrophobic or charged
surface patches to their colloidal interactions. The results demonstrate that the strength of these interactions correlate with
net-charge and dipole moment. Variation of both these descriptors within ranges typical for globular proteins have
a comparable effect. By comparison no clear trends can be observed upon varying the size of hydrophobic or charged
patches while keeping the other parameters constant. The results are discussed in the context of experimental literature
data on protein aggregation. They provide a clear guide line for the development of improved algorithms for the prediction
of aggregation propensities.
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Introduction

The control of protein aggregation in the context of formulation

development for biopharmaceuticals is a field of research with

growing importance as the number of new bio-pharmaceutical

drug candidates in various stages of development is steadily

increasing. [1,2] The required high protein concentrations and the

often complex composition of drug formulations can render their

development a time and cost-intensive multi-dimensional optimi-

zation task. [3,4] Theoretical models for the prediction of relative

protein aggregation propensities based on sequence or structure

data would enable a more rational approach and accelerate the

development of new or improved drug candidates. A number of

such models have been proposed and can be broadly divided into

two categories: Statistical approaches and physics based models

applying molecular simulation. The former rely to some extent on

chemical intuition, using descriptors such as net-charge or

sequence patterns, and often include empirical parameters fitted

to reproduce experimental data. [5–7] The empirical nature of

these models can limit their transferability and makes it difficult to

quantify the relative contributions of colloidal versus conforma-

tional in-stabilities to aggregation. [8,9] A more serious limitation

is the fact that these statistical models were generally trained and

tested using experimental data on amyloidosis only. [10] Thus

they are unlikely to be applicable to a broader class of protein

aggregation phenomena. Physics based approaches can, in

principle, predict the contribution of colloidal interactions to

aggregation propensities. [11–13] Here a difficulty is the

complexity of such systems and the involved time and length

scales, which require an exorbitant computational effort. A

reduction of this effort through the introduction of simplifications

such as coarse grained protein models and an implicit solvent

representation, limits the accuracy of such approaches. [13–15].

An interesting semi-empirical approach is the calculation of

spatial aggregation propensities (SAP) as proposed by Trout and

co-workers. [16] The SAP is a structure based descriptor for the

hydrophobicity of patches on a proteins surface which the authors

use as a measure for aggregation propensity. Recently this concept

was extended resulting in a new descriptor called developability

index (DI), [17] a linear combination of the proteins SAP and its

net-charge. Calculation of the DI requires as input merely the

proteins structure, or, if a homology model can be used, the

protein sequence. This and the fact that its calculation involves

a comparatively small computational effort makes it an attractive

tool for a quick in-silico pre-screening of protein aggregation

propensities. However, so far the predictive power of this

descriptor has not been demonstrated beyond the a small number

of cases discussed in the original publication. Also experimental

results have been published which suggest that, at least in some

cases, hydrophobicity and net-charge are not the dominating

factors determining aggregation propensities. For example Chari

et al. showed that for a human antibody the dependence of

protein-protein interactions on the pH can be explained by

a combination of the proteins net-charge and dipole moment. [18]

Yadav et al. studied the viscosity of concentrated solutions of two
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anti-bodies and various mutations thereof. [19,20] They found

that the presence of charged, rather than hydrophobic, patches in

the proteins complementarity determining regions determine their

aggregation propensities. in a recent publication the authors

demonstrate that high-concentration viscosity behavior of mono-

clonal antibody solutions does not show a clear correlation with

the proteins’ net-charges. [21] A comprehensive study involving

the experimental determination of solubilities of proteins encoded

in the EColi genome the authors find no correlation between

solubilities and hydrophobic residue content. [22] In a more

recent study Price et al. come to a similar conclusion. [23].

Taken together the limited experimental evidence available so

far does not allow for a clear conclusion regarding the relative

importance of various structure based descriptors such as net-

charge, dipole moment, and the presence of hydrophobic or

charged patches. The fact that the structures and sequences of the

proteins used in many published studies are not in the public

domain is not helpful. Even if more experimental data were

available it would still be difficult to quantify the relative impact of

different properties from experimental data alone since numerous

effects and parameters, including the presence of mutations, the

buffer type and ionic strength, partial unfolding, the effect of

osmolytes, etc, can be inter-dependent and in an experimental

setup it is difficult or impossible to control all these parameters

independently.

To summarize, the available experimental data is difficult to

compare and interpret. Here we address this issue and our results

contribute to the understanding of the relative impact of a proteins

physico-chemical properties on its colloidal interactions. The basis

of the present study is a simple protein model that is used in

Molecular Dynamics (MD) simulations. The model features

physico-chemical descriptors with values inside the ranges typically

found in small globular proteins. The descriptors considered here

include the net-charge, the dipole-moment, and the hydrophobic-

ity and polarity of surface patches, respectively. Using this model

we determined the dependence of colloidal protein-protein

interactions on each of the four descriptors. We find that

variations of the net-charge and the dipole moment, both, have

a clear and, importantly, comparable impact on the strength of

these interactions. By contrast the variation of protein-protein

interactions due to the presence of hydrophobic or charged

patches is comparatively small and does not follow a clear trend.

We interpret our results in the light of available experimental data

and discuss their implications for the development of improved

models for the prediction of protein aggregation propensities.

Results

The Protein Model
The protein model and the simulation protocol used here were

carefully designed to include important factors such as entropic

contributions by using an explicit solvent model, to be simple

enough to allow for the collection of semi-quantitative results for

a range of test cases, and, most importantly, to allow for a clear

assignment of effects to causes. Two major differences between this

model and existing molecular simulation approaches [13,15]

promise to provide new insights: The solvent is represented by an

explicit water model and the protein model is designed in a way

that allows for a rigorous assessment of the relative influence of

net-charge, dipole-moment and the size of hydrophobic and

charged patches on colloidal interactions. For this protein model,

in the following referred to as pseudo-proteins (PP), we put

forward the following requirements: i) PPs are roughly spherical

and fairly rigid to improve the speed of convergence for

simulations in explicit water; ii) PPs are large enough to resemble

real proteins with respect to the size dependence of the

hydrophobic effect; [24,25] iii) like proteins, the model features

a heterogeneous and asymmetric surface charge distribution; iv)

PPs can represent molecules with a range of different surface

charge distributions, net-charges and dipole-moments, as found

for real proteins, and, within certain limits, each of these

parameters can be varied independently of the others.

As a basis for the PP model the structure of a C240 fullerene was

used, a molecule that is relatively rigid, roughly spherical, and,

with a diameter of about 1.8 nm, of a similar size as small globular

proteins or protein domains. One additional atom was positioned

at the center of each PP interacting with a steep repulsive potential

with the other atoms to better maintain the spherical shape of the

PPs. To obtain molecules that resemble proteins partial charges

were assigned to each carbon atom. These charges were assigned

randomly but biased so as to reproduce, on average, a charge

distribution similar to the one found on real proteins. To establish

such distributions a set of 55 small globular proteins for which

crystal structures are available were analyzed. Charges based on

the widely used Amber99 all atom protein force field [26] were

assigned to the atoms in each protein and the solvent accessible

surface areas (SASA), and the relative frequencies of SASAs of

atoms with a particular charge were calculated as histogram. The

latter represents a probability distribution of charges, as shown in

Figure S1. The charges assigned to the atoms of a PP were then

drawn from this distribution and randomly assigned to the atoms

on a C240. The Van der Waals interactions between the PP atoms

and between PP atoms and water were modeled as Buckingham

potentials. Initial Buckingham parameters were chosen so that the

resulting potentials resembled the Lennard Jones potentials of

polar peptide atoms in the Amber99 force field. Both, the charges

and the parameters for Van der Waals interactions were further

optimized to reproduce average protein-water interactions estab-

lished beforehand in a set of MD simulations of proteins in explicit

solvent. More details about this procedure and the resulting

parameters are given in the SI. In the following a given charge

distribution on a PP will be referred to as a topology. Examples of

two PPs with different topologies are shown in Figure 1.

Selection of Topologies
In house software was used to generate about 36000 random

topologies with protein-like surface charge distributions, as

discussed in the previous Section. To allow for a comparison

between real proteins and results calculated here PPs with net-

charges and dipole moments within appropriate ranges need to be

used. To establish such ranges we used a set of models of small

globular proteins from the protein data base [27] and assigned

partial charges from the Amber99 force field. [26] Details are

given in the SI. The resulting ranges are for the net-charge,

a valency ranging from 0 to 210, and for the dipole moment

a range from 0 to 70 eÅ. Qualitatively, these ranges are confirmed

by published experimental and theoretical data. [28,29].

The charge distribution on a proteins surface can be expected to

have an impact on protein-protein interactions, both, through

interactions between charged patches, attraction through interac-

tions between regions of charges with opposite or repulsion

between regions with equal sign [20,30], and through contribu-

tions from interactions between, and thus the desolvation of,

hydrophobic patches. [16] To assess these effects two descriptors

are introduced here. The local sum of squared charges (lssci) of

a region centered on a given atom i on a PPs surface is.

Descriptors for Protein Aggregation
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lssci~q2
i z

X

j,rijvdmax

q2
j =r

n
ij ð1Þ

This is the sum of the squared partial charges on all atoms closer

than a certain threshold dmax to an atom i. See Figure 1 for

a visualization of this concept. The contribution of atoms other

than the primary atom i can be scaled by their distance, giving rise

to the factor 1=rnij . The effect of varying the parameters dmaxand n

in Eqs. 1 and 2 is discussed below. The second descriptor defined

here is called local sum of charges (lsc)

lsci~qiz
X

j,rijvdmax

qj=r
n
ij ð2Þ

which is the sum of the partial charges on all atoms closer than

a certain threshold dmax to an atom i. Again the contribution of

atoms other than the primary atom i can be scaled through a factor

1=rnij .

As a measure for the colloidal interactions, and thus aggregation

propensity, between a pair of PPs with a given topology we use

mlssc, its smallest lssc value. The smaller this number, the lower

the charge density of a patch of a particular size, and the more

aggregation prone a particular topology is assumed to be. This

assumption is based on the same concept as the SAP. [16] The

effect of charged patches is measured by mlsc, the product of the

maximum and minimum lsc values for a given topology. For

a protein with, both, an extended positively and negatively

charged patch we can expect to see attraction, reflected by a large

negative mlsc value.

Out of the random topologies three sets were selected. Details

are summarized in Table 1. Set varHP: twelve topologies with

identical net-charge of 22 e and dipole moment of 18 eÅ but with

a range of mlssc and mlsc values. Set varQ: three topologies with

varying net-charges. Here one topology of set varH (PP07) was

selected and the central atom was assigned a charge of 24 e or

28 e, instead of the original charge of zero, resulting in three

topologies with identical values for mlssc and mlsc and dipole

moment but net-charges of 22, 26, and 210 e. Set varD: six

topologies with a constant net-charge of 22 e and a variation of

dipole moments. It turned out being difficult finding topologies

with a wide variation of the dipole moment but constant mlssc and

mlsc values, thus the latter vary within set varD.

Effect of n and dmax

mlssc and mlsc values were calculated for all topologies within

set varPH with dmax = 2.65 Å and dmax = 5.0 Å. Given the

geometry of the PPs a value of dmax = 2.65 Å ensures that the

surface region considered represents a spherical region including

10 atoms. For dmax = 5.0 Å this number is 30. In each case results

with n = 0, 1, and 2 were compared. It was found that the

dependence on the parameter n is relatively weak. Any

combination of sets of mlssc and mlsc values calculated at different

values of n generally showed a Pearson correlation greater than

r = 0.9. Good correlations (between r = 0.78 and 0.99) were also

found when comparing mlsc values for the topologies in set varPH

calculated at the two values considered for dmax. For mlssc values

this correlation was comparatively poor, e.g. with n = 0 a correla-

tion of r = 0.32 is found between mlssc values calculated at

dmax = 2.65 Å and dmax = 5.0 Å. 5 Å is about the largest value for

dmaxthat can be considered here due to the size and convex

geometry of the PPs. Also it was suggested that patches around 5 Å

are optimal in the calculation of the conceptually similar SAP

values. [16] Therefore in the following mlssc and mlsc values with

dmax~5A and n = 0 will be reported.

Free Energies of Association
MD simulations as described in the Methods Section were

performed for each topology in Table 1. A total simulation time

between 360 and 790 nano seconds per topology was required to

obtain the numbers given in the following. As a measure for the

strength of colloidal interactions the value of the minimum of the

Figure 1. Two PPs with different surface topologies. Left: PP10, right: PP08. Atoms are colored according to the net-charges they carry (blue
negative, red positive, white neutral). The PPs are oriented so that the atom with the maximum lssc value, the center of the patch with the highest
hydrophobicity, is in the center of each representation.
doi:10.1371/journal.pone.0059797.g001
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potential of mean force (PMF) closest to contact, DGminwas used

here. This corresponds to the free energy of association between

two PPs in aqueous solution. The results are given in Table 1. The

correlations between DGminand mlssc or mlsc as shown in the

diagrams in panel A and B of Figure 2 demonstrate that DGminfor

PPs with equal net-charge and dipole moment does vary to

a certain extent but with respect to simple descriptors of the

surface charge distribution no clear trends can be observed. This

result becomes significant through a comparison with results

obtained by varying the dipole-moment or the net-charge as

shown in panel C and D of Figure 2 respectively. A clear trend

towards greater attraction with decreasing net-charges and

increasing dipole-moments can be observed. The differences

become clearer when comparing the full PMFs for the topologies

in set varQ and varP to those obtained for the two PPs from set

varPH with the highest and lowest mlssc values (Figure 3) The

difference between the interactions calculated for the latter is

negligible compared to the differences resulting from variations of

the net-charge and dipole moments. Generally there are, indeed,

differences between PPs with varying charge distributions.

Calculated values for DGmincan differ by as much as 18 kJ/mol.

However, the two topologies resulting in the least and the most

favorable DGminvalues have nearly identical mlssc or mlsc values.

These relations vary somewhat with different values of dmaxand n

but in no case the magnitude of the Pearson correlation between

DGminand mlssc or mlsc exceeds a value of r = 0.42. In addition to

mlsc we also considered the products of the two highest or the two

lowest lsc values of each PP, a measure for the repulsive effect of

like-charged patches. Again, in no case the Pearson correlation

between these numbers and DGminexceeded a value of r = 0.21.

The results for set varD, the six PPs with the same net-charge and

varying dipole moment, might be attributed to the variations of

charged patches, reflected by the variation of mlsc values, rather

than just the dipole moments. However, a variation of mlsc values

alone cannot account for a substantial variation in DGmin, as

shown be the results with set varPH. Thus we conclude that the

presence of large charged patches can affect protein-protein

interactions only if they are accompanied by a substantial variation

of the dipole-moment.

Comparison of panel C and D in Figure 2 demonstrates that

variations of a molecules dipole moment and net-charge have

comparable effects on their colloidal interactions. In order to

estimate the practical consequence of this finding we calculated the

net-charges and dipole moments for two types of proteins that are

typically found in bio-pharmaceuticals, cytokines and antibodies.

The proteins are identified by their PDB Ids [27] in Table 2. For

each protein Amber99 partial charges, corresponding to a pH of 7,

were assigned and the one charged residue whose mutation to

a residue with opposite charge leads to the largest reduction of the

dipole moment and to an expected increase of the net-charge by

two e was determined. The resulting dipole moments and net-

charges and the effect of the mutation are given in Table 2. Both,

the net-charges and dipole moments of the wild-types exceed the

ranges considered for the PPs because the latter are smaller than

proteins considered here. However, the relative are more

important than the absolute values. Panel C and D in Figure 2

demonstrate that a variation of the dipole moment of approxi-

mately 70 eÅ has an effect comparable to a variation of the net-

charge by eight elementary charge units. For the proteins in

Table 2 the mutation of a single residue can reduce the dipole

Figure 2. Correlations between the interaction strength and
DGmin descriptors. A: the surface charge variation (SCV); B:
a hydrophobicity descriptor (QH); C: the dipole moment p; D: the net-
charge q.
doi:10.1371/journal.pone.0059797.g002

Table 1. Properties of pseudo proteins used in this study.

Name qa Pb lsscmin 1scmin DGmin
c error d

set varHP

PP01 22 18.07 0.59 26.7 237.7 5.0

PP02 22 18.14 0.56 25.7 236.1 3.6

PP03 22 18.04 0.37 212.2 234.5 4.9

PP04 22 17.98 0.58 214.0 228.9 4.8

PP05 22 18.00 0.66 213.1 234.1 4.6

PP06 22 18.32 0.45 29.2 236.2 4.2

PP07 22 17.86 0.59 24.1 231.7 1.9

PP08 22 18.08 0.67 23.9 229.4 2.0

PP09 22 18.15 0.61 211.5 217.6 4.5

PP10 22 18.20 0.31 28.4 230.1 3.9

PP11 22 17.76 0.54 210.9 230.8 4.3

PP12 22 17.92 0.58 24.8 228.7 1.6

set varQ

PP07 22 17.86 0.59 24.1 231.3 1.7

PP13 26 18.27 0.59 24.1 27.7 3.9

PP14 210 18.71 0.59 24.1 16.0 1.8

set varD

PP15 22 0.65 0.57 21.9 231.4 1.4

PP07 22 17.86 0.59 24.1 231.8 1.7

PP16 22 35.08 0.55 28.9 233.9 1.6

PP17 22 55.53 0.72 211.5 236.5 4.1

PP18 22 65.75 0.80 217.1 252.1 5.8

PP19 22 71.95 0.68 232.6 279.0 10.3

aNet-charge in elementary charge units, e.
bDipole moment in eÅ.
cfirst energy minimum in potential of mean force in kJ/mol.
dError bars from boot-strap analysis.
doi:10.1371/journal.pone.0059797.t001
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moment by up to 133 eÅ, on average 37 eÅ for cytokines and

115 eÅ the larger antibodies. At the same time a maximum

increase in net-charge of only two elementary charge units can be

achieved. These numbers demonstrate that for a given number of

mutations the reduction of the dipole moment can lead to a more

pronounced effect on colloidal stability than the increase of net-

charge.

For 22 cytokines and 3 IgG antibodies the variation of net-

charge and dipole moment that can be achieved with mutation of

a single residue are shown.In three of the 25 cases in Table 2

(1HUL, 1IGT, and 1IGY) the variation of the net-charge caused

by the mutation of a charged residue to a residue with opposite

sign gave unexpected results, as the magnitude of the resulting

charge difference was different from two. Whether this is a genuine

effect due to interactions with neighboring residues, or a result of

a limited accuracy of the software used here [31] is unclear at this

point. However, the answer to this question is beyond the scope of

this work, and is not expected to change the overall conclusions.

Analysis of Literature Data
As discussed in the introduction little is available in the public

domain in terms of comparable experimental data for aggregation

propensities of different proteins. We found two data sets that seem

to be appropriate as test cases for our conclusions. The first,

referred to as setA, is a subset of 18 proteins from a large set,

comprising a large portion of the EColi strain K12 proteome. [22]

The way in which the proteins in this subset were selected is

described in the Methods section. The second, setB, is a set

comprising the wildtype and 19 single point mutations of

RNAseSA. [32] In both cases data for relative solubilities are

available. Although aqueous solubility and aggregation propensity

are different quantities, we expect to generally find a good

correlation between the two. This assumption was recently

confirmed for a small set of IgG antibodies. [33].

Structural models for the proteins in the two sets were generated

as described in the Methods section and the net-charge, dipole-

moment and nSAP, a variation of the original SAP-score, [17]

were calculated. Introducing this variation was necessary because

in the original form of the developability index the SAP-score was

not normalized, presumably because all the protein surface areas

in the test set used in the original publication were equal or very

similar. To account for the different protein sizes as found in setA

we normalized the SAPscores dividing its value, as calculated by

the original formula, by the sum of the SASA values of all involved

residues, resulting in a value we refer to as nSAP. For

completeness we also calculated SAPmax values, the largest of

all SAP values for each protein, the number that was used in the

original publication that proposed the SAP. [16] The calculated

net-charges of each protein where combined with one out of the

three descriptors (desc in eqn 3) nSAP, SAPmax, and the dipole-

Figure 3. Calculated potentials of mean force between pseudo proteins. A: three PPs with varying net-charge, constant hydrophobicity and
dipole moment; B: the two PPs with the largest and smallest hydrophobicities (QHmax) but identical net-charges and dipole moments; C: six PPs with
varying dipole moment, identical net-charge and similar QHmaxvalues.
doi:10.1371/journal.pone.0059797.g003

Table 2. Effects of point directed mutagenesis on descriptors.

pdba mutation q0
b Dqc p0

d Dpe

Cytokines

1AXI R134D 25.0 22.0 94.8 243.5

1IL6 R15D 21.0 22.0 82.5 257.0

1RW5 R16D 23.0 22.0 99.0 246.1

1CNT R189D 23.0 22.0 67.8 248.0

1BGC R51D 22.0 22.0 45.9 223.5

1F6F D162R 4.0 2.0 140.5 253.5

2ILK D44R 1.0 2.0 154.4 251.1

1AU1 E107R 4.0 2.0 65.6 222.2

1BBN E110R 7.0 2.0 64.2 227.5

1M4R E124R 1.0 2.0 85.3 239.8

1D9C E13R 8.0 2.0 265.9 254.8

1LKI E154R 7.0 2.0 101.6 250.6

1HUL E29R 0.0 3.0 72.8 232.3

1EER E37R 3.0 2.0 87.4 236.6

1JLI E43R 0.0 2.0 47.5 214.9

1GA3 E58R 3.0 2.0 22.4 26.8

1EVS E99R 12.0 2.0 201.5 256.4

1B5L K164D 28.0 22.0 126.8 226.0

2HYM K31D 22.0 22.0 114.5 242.4

1AX8 K5D 23.0 22.0 43.7 210.0

2GMF K72D 25.0 22.0 143.5 228.7

1IRL K76D 20.0 22.0 101.0 241.1

Antibodies

1HZH D423R 26.0 2.0 345.5 2133.1

1IGT D31R 5.0 1.0 264.8 282.3

1IGY D352R 4.0 0.0 763.2 2128.1

aPDB ID.
bNet-charge of wildtype (WT) in elementary charge units, e.
cNet-charge, difference between mutant and WT.
dDipole moment of wildtype in eÅ.
eDipole moment, difference between mutant and WT.
doi:10.1371/journal.pone.0059797.t002
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moments to generate three models for the solubility, sol, based on

linear regressions (LR), comparable to the developability index.

[17].

sol~c1 desczc2 DqDzc3 ð3Þ

Recently setA (not the subset used here, but the entire set [22])

was used as a basis for the generation of a model for the sequence

based prediction of protein solubilities. [34] This model (CCSol)

has been made available online on the web-page of one of the

authors. Relative solubilities as predicted by this method (CCSol)

were determined for setA and setB using this online server.

The results of this comparison of experimental protein

solubilities with various theoretical models are summarized in

Table 3. Figures showing details of the statistical analysis that was

performed using R [35] are included in (Figure S2). The p-value

for a LR model based on net-charge and dipole moment is in both

cases smaller than 6:0|10{4, and the correlations between

predicted and experimental values in setA and setB are r2~0:63
and 0:64, respectively. Models based on a combination of the net-

charge and either nSAP or SAPmax generally show poorer

statistical significance (pw5:0|10{2) and weaker correlations

(r2
ƒ0:41). We also tried using the original SAP-score, [17] as

opposed to the normalized nSAP (data not shown) but found no

improvement of correlations. For no model using p, q or nSAP

alone (data not shown) the calculated p-value is better than it is for

the model using both p and q. We conclude that for each of the

two test sets a statistically significant correlation between protein

solubilities and results of a linear regression model based on the

proteins net-charge and dipole moment can be found. We also find

that, for both protein sets, the a model based on net-charge and

dipole moment shows a significantly improved predictive power

compared to models based on a combination of net-charge and

a descriptor of surface hydrophobicity. Interestingly, if we expand

setA, to include, next to proteins that are known to occur as

monomers in solution, by additional proteins that are expected to

occur as dimers (data not shown) then the correlations between

experimental solubilities and the linear regression model of dipole

and net-charge are significantly poorer.

If we are interested in relative, rather than absolute values for

solubilities the result of the linear regression can be expressed as

a single coefficient, e.g., the ratio between c2 and c1 in Eqn 3. For

the model based on q and p this ratio is 213.2 (setA) and 221.5

(setB), respectively. Although the two numbers differ they are quite

similar considering how different the two data sets are, confirming

that in this case q and p are the protein properties dominating

their relative aqueous solubilities. Using the SAP based descriptors

we not only see much larger differences in this ratio, 0.0024 vs

20.01 for nSAP, and 0.219 vs 22.14 for SAPmax, they even

change sign, as for one of the sets (setA) solubility increases, while

for the other (setB) solubility decreases with increasing surface

hydrophobicity. Interestingly the net-charge/dipole model also

out-performs CCSol which is based on a linear regression model

using six sequence-based descriptors. [34].

Discussion

The results shown in Figure 2 and 3 demonstrate that the

variation of colloidal interactions due to a variation of hydropho-

bic or charged patches is less significant than their variation due to

changes of the net-charge and dipole moments. The influence of

ions which is not considered here will mitigate this effect, but

certainly not the overall trends as the ionic strength, I, of bio-

pharmaceutical formulations is typically kept relatively low

(Iƒ0:2M), [3] thereby reducing the effect of charge screening.

At least for monovalent counter-ions we expect the omission of the

effect of counter ions not to effect our major conclusions since the

screening of dipole-dipole and charge-charge interactions, and

thus their relative contributions to the colloidal stability, will be

comparable. Also, the presence of counter-ions can not be

expected to result in a trend due to hydrophobic patch sizes

when there is no such trend without counter-ions. Counter ions of

higher valency can potentially have a pronounced effect on the

interactions between charged particles in solution, [36] and even

for mono-valent counter ions the protein-ion binding strength can

vary considerably depending on the type of ion. [37–39] However,

the experimental solubility data [22,32] (setA and setB) analyzed

here demonstrates that even in the presence of substantial ionic

concentrations protein net-charges and dipole moments remain

the two properties that dominate protein-protein interactions in

solution. The fact that a model for the estimation of relative

protein solubilities including the dipole moment of a single protein

as descriptor gives poorer results when proteins are included that

are known to occur as dimers in solution further confirms that the

dipole-moment is a viable descriptor.

One might argue that the sizes of the error-bars shown here

could obfuscate correlations between descriptors of the charge

distribution and colloidal interactions. However, given the fact

that the production of the current results required approximately

30 years of CPU time on the nodes of a state of the art computer

cluster, further reduction of the errors is difficult to achieve, and,

more importantly, this can not be expected to change the main

conclusion, namely that the variations of net-charges and dipole

moments result in clearer and comparable trends, and in more

pronounced differences than a variation of the charge distribution.

The fact that, for the PPs considered here, the variation of

DGminwith net-charge is comparable to its variation with the

dipole-moment is an important and non-trivial result. In a number

of recent studies it was suggested that the protein dipole moment

Table 3. Models for protein solubilities based on molecular
descriptors.

model Regression Coefficients r2 P

c1 c2 c3

setA

LR(q/p) 20.329 4.339 91.09 0.63 5.82e204

LR(q/nSAP) 992.9 2.396 31.30 0.33 4.91e202

LR(q/SAPmax) 7.819 1.714 37.35 0.31 6.37e202

CCSol 0.43

setB

LR(q/p) 22.671 57.43 226.3 0.62 2.58e204

LR(q/nSAP) 21317.5 14.29 51.68 0.41 1.16e202

LR(q/SAPmax) 28.403 18.02 33.51 0.29 5.13e202

CCSol 0.16

Results from three different linear regression models for protein solubilities,
combining the protein net-charge (q) with one of the three descriptors dipole-
moment (p), normalized SAP-score (nSAP), or largest SAP value (SAPmax), and
from the CCSol web-server. Included are the coefficients of the linear regression
models (Eq.3), the correlations between experimental and calculated solubility
(r2), and the P-value (probability that the observed correlation is coincidental).
Data are given for two protein sets: 18 proteins from EColi-K12 (setA), and 20
mutations of RNAseSA (setB).
doi:10.1371/journal.pone.0059797.t003

Descriptors for Protein Aggregation

PLOS ONE | www.plosone.org 6 April 2013 | Volume 8 | Issue 4 | e59797



can be instrumental for protein-protein interactions in concen-

trated solutions, [18–20,40,41] Our study corroborates these

findings, suggesting that the comparable impact of net-charge and

dipole moment on colloidal interactions is a general feature of

proteins. To our knowledge, the dipole moment has, so far, not

been considered as a part of a model for the prediction of protein

aggregation propensities, in the spirit of the DI. This might be due

to the fact that many existing models were designed to asses effects

connected with amyloidosis rather than interactions between

globular proteins. [5,42,43] Amyloidosis typically involves aggre-

gation of unfolded peptides, which do not have a well defined

dipole moment, compared to globular proteins as used in bio-

pharmaceutical formulations.

One advantage of considering the dipole moment rather than

hydrophobicity in the engineering of proteins through mutations

of single residues to reduce colloidal attraction is that, in this case,

fewer mutations might be required. This can facilitate formulation

development and reduce issues due to immunogenicity. Mutations

designed to reduce hydrophobicity typically target hydrophobic,

and thus neutral, residues, and can increase the net-charge by one

elementary charge unit. Reduction of the dipole moment is most

effectively achieved by replacing a charged surface residue by

a residue with the opposite charge, and can thereby increase the

net-charge by two elementary charge units. The analysis we

performed with cytokines and IgG antibodies (Table 2) suggests

that in most cases the dipole moment can be reduced considerably

with a single mutation. A comparison of panel C and D in Figure 2

suggests that, for a protein with a wildtype featuring a medium to

large dipole moment, such a single mutation can have a pro-

nounced effect on the stability, usually larger than the effect

achievable by merely increasing the net-charge by one or two

elementary charge units.

Obviously the protein model and simulation protocol used here

have their limitations. The relatively small size and the purely

convex geometry of the PP model limits the maximum hydro-

phobicity considered to patches with a size of approximately 5 Å

radius. This, however, is in part accounted for by the range of net-

charges and dipole-moments considered here which were chosen

so as to be appropriate for proteins comparable in size to PPs. Also

purely hydrophobic patches much larger then those considered

here are unlikely to occur on real proteins since even the most

hydrophobic residues, such as phenyl alanins are necessarily

flanked by backbone atoms, i.e., hydrogen bond donors and

acceptors. This is also confirmed by results obtained with SAP

values where typically a cut-off radius of 5 Å is used. [16] For

a larger protein with several different domains, such as an

immunoglobuline, two or more surface patches on different

domains could align, leading to cooperative effects that are difficult

to predict and assess. Therefore, when dealing with large flexible

proteins, our results should be interpreted with some caution, until

more experimental evidence is available. The lack of protein

flexibility is a principal limitation for which there is no easy

remedy. However, it is basis of many simple protein models [11–

13] and is unlikely to change the principle conclusion regarding

the relative influence of the descriptors considered here.

Experimental results in a number of recent publications appear

to suggest that protein aggregation propensities can vary

significantly with the presence and/or size of hydrophobic patches

on proteins. [16,44,45] This picture appeals to our chemical

intuition, and the fact that, for the model system used here,

hydrophobic interactions seem to play a comparatively small role

seems counter-intuitive. There is, however, a possible explanation

for this seeming discrepancy. The size of hydrophobic patches

typically found on proteins might be too small to result in

a pronounced effect of hydrophobic interactions on colloidal

interactions. Thus, the reduced aggregation rates caused by the

removal of hydrophobic patches seen in some experiments might

be a consequence of a combination of increased net-charge and

increased conformational rather than colloidal stability. It has, in

fact, been shown that the removal of hydrophobic patches, guided

by calculation of SAP values, can, indeed, increase the thermal,

i.e., conformational stability of the proteins. [16] If this gets

confirmed by further experimental and theoretical work a change

of strategy for the estimation of aggregation propensities in-silico

might be due. A descriptor for hydrophobicity, like the SAP [16]

might, to some extent, correlate with conformational/thermal

stability, but there are other algorithms that were specifically

designed to estimate thermal stabilities, [46] and applying such

algorithms in a concerted fashion together with descriptors for

colloidal stabilities might result in a more reliable prediction. The

protein model used here cannot account for conformational

changes. Due to its simplicity it does not allow for effects other

than colloidal interactions by design, but this is its very strength. It

can be used to assess the influence of varying a particular

parameter while leaving other parameters constant. Thereby it

provides a clear guideline to assist the development of improved

models for the estimation of aggregation propensities. A compa-

rable result would be difficult to achieve with a purely experi-

mental setup.

This leaves the question which type of stability, colloidal or

conformational, dominates the overall stability of protein solutions,

which is an active field of research, and beyond the scope of this

work. It has been demonstrated in a number of cases that within

different regimes of solution conditions either colloidal or

conformational stability can be rate limiting [8,9,47,48] and

guidelines have been proposed to discriminate between these

regimes. [47].

The results presented here suggest that for the in-silico pre-

screening of protein aggregation propensities the most promising

route is a combination of the two descriptors net-charge and

dipole moment for colloidal stability, and a third descriptor that

measures conformational stability. According to our results the

inclusion of the dipole moment in a combined descriptor will be

more effective than the inclusion of SAP values when colloidal

stability is rate limiting. This conclusion is confirmed by an

analysis of two literature data sets for protein solubilities we

performed.

Especially for large proteins for which experimental structures

are not available such as immunoglobulins, accurate determina-

tion of net-charge and dipole-moment is not trivial, both in-vitro

and in-silico [28,29,49–51] Thus, for the development of

improved algorithms for predicting colloidal interactions and

protein aggregation in-silico approaches for the estimation of

protein net-charges and dipole moments need to be improved and

thoroughly tested. A conclusion regarding the optimization of

colloidal repulsion through protein engineering is straight forward:

Although the accuracy of in-silico calculations of protein charges

and dipole moments might be limited trends can be predicted with

some confidence, i.e., it is easy to predict in which direction

a particular mutation will change dipole-moment and net-charge.

Therefore, when attempting to increase colloidal repulsion

between proteins by mutations a replacement of a residue that

leads to increased net-charge and reduced dipole moment is not

only the most promising strategy, but also is the identification of

a good candidate for such a mutation straight forward and easy to

implement. Since variations in colloidal interactions achievable by

variations of net-charge or dipole moment are comparable in

magnitude a variation of both through point directed mutagenesis
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can be expected to have a pronounced effect, in some cases

through a single mutation.

Methods and Analysis

The PMF, the free energy as a function of the distance between

the centers of mass of two PPs, was calculated through MD

simulations using the simulation package Gromacs. [52] Unless

mentioned explicitly default parameters were used. Two PPs were

assigned charges corresponding to a particular topology, posi-

tioned with a given center-to-center distance in a rectangular

simulation box of dimensions 42|42|80A3 with the line

connecting the two centers of mass aligned along the z-axes.

The system was solvated with about 4300 TIP3P [53] water

molecules. During the MD simulations the central atoms of both

PPs were frozen in the directions perpendicular to the z-axes. The

length of the simulation cell in the z-dimension, was chosen so that

electrostatic long range interactions between proteins in neigh-

boring cells in this direction due to periodic boundary conditions

and Ewald summation are small. Thus the system, effectively,

corresponds to two isolated molecules in water, and three body

interactions are ignored. This is an approximation that is

commonly made when calculating potentials of mean force

between two molecules in solution. [15,54].

For the integration of the equations of motion a leap-frog

algorithm with a time step of one femto second was used. The

temperature was maintained at 300 K using a Nose-Hoover

thermostat [55] with a coupling time constant of 0.4 pico seconds.

A Berendsen barostat [56] with a coupling time constant of

0.5 pico seconds was used to maintain the pressure at one atm.

Here the pressure was controlled by varying only the box

dimensions perpendicular to the z-axes in order to avoid

interference with the calculation of the forces and distances

between PPs. A Particle Mesh Ewald algorithm [57] was used to

account for electrostatic long range interactions. The cut-off radius

for Van der Waals interactions and the real-space part of the

Ewald sum was set to 1.2 nm. During an MD simulation spanning

one nano second the distance between the PPs was constrained to

the initial value with a harmonic potential acting on the two

central atoms, and the force and distance between the two PPs

were recorded. This procedure was repeated multiple times for

distances varying from 15.5 Å up to 28.0 Å in steps of 0.5 Å. The

entire protocol was then repeated at least fourteen times, starting

from different initial rotations of the PPs. The latter were

produced by generating a large number of conformations with

the two PPs randomly rotated around their centers of mass. Only

conformations that differed from all other conformations by

a minimum difference corresponding to a rotation of one PP

through an angle of 90 degrees were kept. In each case the output

of the last 500 pico seconds of each MD run was used in the

subsequent analysis, while the first 500 pico seconds were

discarded as equilibration time. The weighted histogram analysis

method [58] (WHAM) as implemented in the Gromacs tool

g_wham was used to calculate the PMF for each topology based

on the recorded inter particle forces. [58] This program was also

used to estimate error-bars through boot-strapping. [59] If for any

topology the calculated error-bars of the free energy of adsorption,

i.e., the error at the minimum at contact distance, exceeded 5 kJ/

mol new starting orientations were generated and more MD

simulations performed until the error bar fell below this threshold.

Two exceptions (PP18 and PP19 in Table 1) were particularly slow

to converge, and here larger error bars were accepted as these do

not change any of the conclusions.

For the calculation of descriptors for the proteins in setA and

setB a structure for each protein was downloaded from the PDB.

[60] If more than one structure was available the X-ray structure

with the best resolution (the lowest R-value) was chosen. The

mutants of setB were generated using the pdb2 pqr software. [61]

Of the original large set of EColi proteins [22] only those proteins

were retained which i) have a solved structure in the PDB, ii) have

a molecular weight between 15 and 25 kDa, iii) are known to

occur as monomers in solution (an information taken from the

Uniprot database. [62]) resulting in setA as a small representative

test set. For each structure five models were generated by

calculating coordinates for any missing atoms or residues with

Modeller [63], using default settings. For SetA the C and N-

terminal tags present in the proteins used in the experiments [22]

were not included when generating the homology models. Since

their structures are essentially unknown we expect the tags, if

modeled, to introduce more noise than signal to the resulting

numbers for charge and dipole. pdb2 pqr [61] and propka [64]

were used for the protonation of the resulting structures and for

assigning partial charges from the Amber99 force field [26]. For

the calculation of solvent accessible surface areas surface_racer

[65] was used, and protein net-charges, dipole moments, and SAP-

values were calculated using in-house awk scripts.

Supporting Information

Figure S1 Distribution of relative surface charges on
a sample of 55 cytokine proteins with partial charges
and VdW radii from the Amber99 force field.

(EPS)

Figure S2 Statistics of linear regression models dis-
cussed in the text. Output of the summary command in R.

(EPS)
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