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Large model structural uncertainty in global
projections of urban heat waves
Zhonghua Zheng 1, Lei Zhao 1,2✉ & Keith W. Oleson 3

Urban heat waves (UHWs) are strongly associated with socioeconomic impacts. Here, we

use an urban climate emulator combined with large ensemble global climate simulations to

show that, at the urban scale a large proportion of the variability results from the model

structural uncertainty in projecting UHWs in the coming decades under climate change.

Omission of this uncertainty would considerably underestimate the risk of UHW. Results

show that, for cities in four high-stake regions – the Great Lakes of North America, Southern

Europe, Central India, and North China – a virtually unlikely (0.01% probability) UHW pro-

jected by single-model ensembles is estimated by our model with probabilities of 23.73%,

4.24%, 1.56%, and 14.76% respectively in 2061–2070 under a high-emission scenario. Our

findings suggest that for urban-scale extremes, policymakers and stakeholders will have to

plan for larger uncertainties than what a single model predicts if decisions are informed based

on urban climate simulations.
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Heat waves (HWs) – extremely high-temperature events –
are among the most damaging climate extremes to
human1–5 and natural systems6–9 globally. In the absence

of effective adaptation or mitigation, extreme heat stress asso-
ciated with climate change would cause a substantial increase in
human mortality and morbidity1,2,10, energy demand11,12 and
civil conflicts13,14, and a large reduction in agricultural yield15–18,
livestock production19, and workplace productivity20. In recent
decades, HWs have been recognized as the deadliest environ-
mental extreme in the United States (U.S.)21,22. These risks are
further compounded in urban areas by the unique urban climates
combined with concentrated population and assets23. Climate
models agree on the projection of increasing severity, frequency,
and duration of HWs at regional to global scales over this century
under rising greenhouse gas emissions24–27. At a given grid cell or
region, climate models do not necessarily agree with each other,
but if all land grid cells are aggregated together, models agree
remarkably28. These projections, however, are incapable of
representing the HW signals for cities because: 1) the state-of-the-
art Earth system models (ESMs) that participate in the Coupled
Model Intercomparison Project (CMIP)29,30 almost universally
lack urban representation; and 2) the complex synergistic nature
between urban heat islands and HWs23,31 precludes the urban
HW signal to be reduced to a simple anomaly on top of the
traditional regional background climate projections by ESMs.
Cities, as exposure hotspots for humans and infrastructure and
fundamental foci of sustainable development and climate adap-
tation, need local-scale climate extreme projections that are spe-
cific to urban areas. Moreover, a multi-model urban framework is
essential for managing the risks associated with the climate
extremes, because urban planning and decision-making for
enhanced resilience to extremes rely primarily on probabilistic
estimates32,33 which could only be obtained from the multi-
model projections34–36.

A robust modeling framework to address uncertainty in local-
or regional-scale climate change should include the roles of
internal variability (natural variability of the climate system
resulting from nonlinear dynamical processes intrinsic to the
atmosphere), structural uncertainty (uncertainty from choices in
the climate model parameters, representation of unresolved
physics and model design, and their effects on the climate sen-
sitivity), and scenario uncertainty (uncertainty in prescribing
future scenarios)37. Quantitative attribution of the uncertainty is
particularly critical for assessing climate extremes, as the uncer-
tainties in modeling the climate extremes are usually much larger
than in modeling the mean climates. This uncertainty analysis has
been done for the non-urban surfaces at regional scales using
multi-modeled grid cell means28,38. For local-scale urban climate
extremes, the role of internal variability can be addressed by
rerunning the simulations a large number of times using a single
urbanized climate model with small atmospheric initial condition
perturbations39. However, quantification of the model structural
uncertainty has never been achieved39 because of the aforemen-
tioned near-universal lack of urban representation in ESMs. Nor
could existing downscaling techniques (both dynamic and sta-
tistical) from a small number of global climate models or
observational-based methods account for the full uncertainties
associated with the extreme projections in cities on the global
scale. This has been a critical research gap, as the structural
uncertainty, in addition to scenario uncertainty, is expected to be
the dominant source of uncertainty at the time horizons of
multiple decades or longer40.

Here in this work, we use a newly-developed urban climate
emulator framework41 to assess the inter-model variability in
projections of local urban heat waves (UHWs) for the global
urban areas in a future high-emission scenario, and to quantify

the relative contributions of uncertainties from internal variability
and model structural variability associated with the projections.
The emulator framework combines process-based Earth system
modeling using the U.S. National Center for Atmospheric
Research’s Community Earth System Model (CESM)42 and the
data-driven machine learning approach (see Methods). The
internal variability is assessed based on the CESM Large
Ensemble (CESM-LE)43 simulations, whereas the model struc-
tural uncertainty is characterized based on the emulated multi-
model projections. Note that the various CMIP5 ESMs that force
the emulator likely have different choices for various climate
model parameters, therefore the “structural uncertainty” eval-
uated in this study lumps together the uncertainties due to the
model/parameterization design and due to the choices of para-
meters in the ESM. This study does not separate out the structural
uncertainty and the climate model parametric uncertainty.

We find that the model structural uncertainty contributes
substantially to the variability of multi-model projections of local-
scale UHWs in the next several decades under climate change.
Omission of the structural uncertainty would lead to a large
underestimation of the risk of UHWs. We find that, for cities in
four high-stake regions - the Great Lakes region of North
America, Southern Europe, Central India, and North China - a
gray swan UHW event with 0.01% likelihood projected by the
CESM ensembles is estimated at the likelihood of 23.73%, 4.24%,
1.56%, and 14.76% respectively in 2061–2070 under a high-
emission scenario by our model.

Results and discussion
The urban climate emulator is built based on daily output from
fully coupled simulations using the CESM. It incorporates all the
atmospheric forcing fields that drive the urban land model in the
coupled CESM as inputs and then outputs the urban daily tem-
peratures. The urban model embedded in the CESM has been
evaluated against both in situ and remote sensing observations
over cities across the globe in previous studies44–50. It was further
evaluated against PRISM (Parameter-elevation Relationships on
Independent Slopes Model) observation-based climate data
(http://www.prism.oregonstate.edu/) and the mesoscale dynamic
downscaling results from ref. 51 over selected cities in the U.S.41

Trained on fully coupled simulation outputs, the emulator is able
to capture the dynamic land-atmosphere interactions in a CESM
simulation statistically, including the feedback between urban
ambient temperature and the anthropogenic energy use52,
because the impacts of these feedbacks have been preserved in the
forcing and the urban response training sets (see Methods). We
employ the tree-based XGBoost53 to fit separate emulators for
the present day (defined as 2006–2015) and future projected
climate (2061–2070). The emulators are then applied to 17 ESMs
that participated in the CMIP529 to generate global multi-model
projections of local urban daily maximum (Tmax) and minimum
temperatures (Tmin) under the Representative Concentration
Pathway (RCP) 8.5 scenario. In this way, the emulator essentially
functions by driving the urban model in CESM with atmospheric
forcings from various ESMs in the CMIP5 in a statistical way
instead of a numerical way (see Methods). Note that we use the
same ten years of CESM simulations (2006–2015) to train the
emulator for the present day, but thirty years (2051–2081) of data
to train the emulator for the future period (2061–2070). This
strategy aims to minimize the extrapolation errors associated with
the machine learning when the emulator is applied to other
CMIP5 ESMs (see Methods). We use a definition that has been
shown to be related to the human mortality risk1,5 to calculate
UHWs for the present day (2006–2015) and future projected
climate (2061–2070). Note that the “present-day” climate here is
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technically a projection of “present-day” conditions because we
are using the RCP 8.5 scenario only, rather than historical
simulations. This is a reasonable assumption since the climate has
largely followed the RCP 8.5 path in reality (instead of other paths
such as RCP 4.5 and RCP 2.6). We document the results based on
both Tmax (i.e., daytime) and Tmin (i.e., nighttime). Because their
spatiotemporal patterns and thus conclusions are largely con-
sistent with each other, we focus the discussion on the Tmax
results in the main text. Results of Tmin are presented in
the Supplementary Information.

Future urban heat waves. We show that the traditional projec-
tions from ESMs substantially underestimate the risks of UHWs
in almost every aspect including intensity (average Tmax during
the UHWs), frequency (average number of UHW events per
year), duration (average number of days per UHW event) and
total days (duration multiplied by frequency in days per year)
(Fig. 1), due primarily to the neglect of urban physics. These
positive anomalies relative to the background non-urban signals
are not spatially uniform, confirming that the local-scale UHW
projections cannot be simply reproduced by the traditional CMIP
multi-model HW projections. Here, the “background non-urban”
HW signals are based on the gridcell mean temperatures (i.e., the
same as traditional climate projections), whereas the “urban” HW
signals are based on the urban subgrid temperatures. According
to the multi-model ensemble mean results, the increase in UHW
intensity by 2061–2070 is underestimated by 1–2.6 K for 9.2% of
the global urban areas compared to the traditional projections
(Fig. 1a). These changes in UHW intensity are significantly larger
than the average difference between the urban and background
warming (−0.6 to 0.6 K)41. This indicates a more substantial
underestimation of the projected risks in extreme conditions than
in normal conditions by the traditional models for cities in a
future warmer climate. The regions of large anomalies of change
in UHW intensity generally colocate with those in frequency,
duration and total days (Fig. 1), indicating further compounded
underestimation of UHW-induced risk. In particular, the eastern
U.S. and India are noteworthy as they are hotspots with large
anomalies in all four aspects. Given massive urbanization
expected to happen in India in the next few decades54, the

underestimation of UHWs using traditional climate projections
would put their city dwellers and infrastructure at a large risk.

Our multi-model results demonstrate the inter-model robust-
ness of the increasing severity of UHWs over certain regions
under climate change (Fig. 2 and Supplementary Fig. 6). CMIP
models generally agree better in the projections of UHW intensity
and frequency compared to duration and total days (Supplemen-
tary Fig. 1), as is also indicated by a greater spatial extent in the
stippling shown in Fig. 2a, b than in Fig. 2c, d. This indicates that
the structural uncertainty has a larger impact on the temporal
distribution of daily temperature than on the magnitude. Models
project similar magnitudes as well as the frequency of
temperature extremes, but do not necessarily agree on which
days of the year a heat wave event occurs. Note that the tropical
(near-equator) region (15∘S~15∘N) is projected to have the most
substantial increases in UHW frequency, duration, and total days
by 2070. This is because the minimal seasonal variations in this
region means that UHWs can occur at any time of the year (see
Methods). Particularly susceptible to extreme warming (high-
intensity increase) with high degree of inter-model agreement
(high SNR) are four “hotspot” regions noteworthy: the Great
Lakes region of North America, Southern Europe, Central India,
and North China (Supplementary Fig. 2). Models agree, with high
inter-model confidence, on the projection of substantial increases
in the UHW intensity and frequency for cities in these regions in
the next few decades under RCP 8.5 scenario (Fig. 2a, b),
indicating large exposure of these cities to high extreme-heat
risks. Specifically, the UHW intensity for cities in these regions is
projected to increase by 2.2, 1.9, 1.4 and 2.0 K on average for the
Great Lakes region of North America, Southern Europe, Central
India, and North China respectively.

Contribution of structural uncertainty. Previous research has
demonstrated a dominant role of the internal variability in the
projections of hot extremes on the local and regional scales over
the next few decades28. We show here that for urban areas, there
is a large part of the uncertainties that result from the structural
uncertainty. We define a structural uncertainty fraction (SUF) as
the model structural uncertainty divided by the sum of internal
variability plus model structural uncertainty to measure the

Fig. 1 Difference of the multi-model ensemble mean change of the local urban heat waves and the background regional heat waves in 2061–2070
relative to 2006–2015 under RCP 8.5. a intensity (K); b frequency (events per year); c duration (days per event); and d total days (days per year). Results
are derived from the 17 selected Earth system models and the first member of the CESM-LE runs. Colors indicate grid cells that have urban land; and there
are in total 4439 such grid cells. Dark gray and light gray indicate grid cells without urban land. Each colored point represents a decadal mean urban-minus-
background difference in 2061–2070 relative to 2006–2015 within a 0.9∘ (lat.) × 1.25∘ (lon.) model grid cell.
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contribution of structural uncertainty. Based on the CESM-LE
simulations and our emulated multi-model results, we find that
the model structural uncertainty contributes more than 50% of
the total variability by 2061–2070 for most of the global urban
areas (Fig. 3 and Supplementary Fig. 7). The SUF with respect to
projections in UHW frequency, duration and total days
(Fig. 3b–d) are even larger than that in UHW intensity (Fig. 3a).
These results indicate that for decision-making in the context of
urban heat extremes based on climate modeled results, policy-
makers and local practitioners might have to deal with the
implications of large uncertainties in heat extremes on the local
scale associated with the model structural spread. It is particularly
important to account for this uncertainty where projections of
future UHW frequency, duration and total days are concerned
(Fig. 3b–d). Under the assumption that the structural uncertainty
is primarily due to the existing climate model deficiencies, this
part of the uncertainty driven by the multi-model spread of

atmospheric forcings could potentially be narrowed in the future
development of ESMs with better-constrained climate model
parameters and improved representations of physical and che-
mical processes. However, the progress of climate modeling
convergence, despite the increased detail in representation of
processes, may continue to remain slow38.

The role of the model structural uncertainty in global UHW
projections assessed in this study is essentially associated with
larger-scale model structural design and parameter choices in
various ESMs (such as radiative transfer, cloud microphysics,
topography, dynamic land use land cover change, biogeochemical
cycles, ocean model and atmospheric chemistry) rather than
associated with the urban land scheme, because our emulator
strategy uses various ESMs to drive a single urban model. In other
words, the current emulator based on a wide number of ESMs
characterizes the uncertainty in UHW projections due to larger-
scale influences. Urban land (canopy) models generally represent

Fig. 2 Global multi-model ensemble projections of urban heat wave changes in 2061–2070 relative to 2006–2015. a intensity (K), b frequency (events
per year), c duration (days per event), and d total days (days per year). Results are based on 17 selected Earth system models and the first member of the
CESM-LE runs. Stippling indicates substantial change (intensity > 1.5 K) with high inter-model robustness (SNR > 2.0).

Fig. 3 Relative contribution of the model structural variability in urban heat wave projections in 2061–2070 relative to 2006–2015 under RCP 8.5. a
intensity; b frequency; c duration; and d total days. Each colored point represents a decadal mean structural uncertainty fraction (SUF) defined as σCMIP

σCMIPþσCESM
within a 0.9∘ (lat.) × 1.25∘ (lon.) model grid cell. σCMIP denotes the standard deviation across multi-model projections and σCESM denotes the standard
deviation across multi-member projections.
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less internal dynamics and feedbacks than the whole ESMs do,
and thus would not drift far from one another if driven by an
identical atmospheric forcing55,56. This is also evidenced by a
comparison between two different urban land models over
Contiguous U.S. urban areas in a recent study41, which
demonstrates markedly similar urban warming projections by
forcing the two different urban land schemes (CLMU and WRF-
Single Layer Urban Canopy Model) with the same atmospheric
forcing. The magnitude of the uncertainty from large-scale
climatology that the emulator addresses is much larger than the
uncertainty introduced by different urban land parameterizations.
The major variability in urban temperature projections is from
the diverse larger-scale climate forcings projected by various
ESMs (see Methods). We nevertheless acknowledge that it is
advantageous to develop emulators from multiple urban land
models that might be available in other ESMs in future to further
assess the uncertainty associated with urban models.

Gray swan urban heat waves. An increasing number of record-
breaking heat extremes has been observed recently over many
cities globally57–61, which raises the question of whether the
probability of heat extremes on local scales is largely under-
estimated by the ESMs in a changing climate. We argue that this
underestimation is likely for cities because of the lack of sampling
a sufficiently wide uncertainty range. To illustrate the effect of
accounting for the structural uncertainty on UHW projections,
we calculate the probability density functions (PDFs) of the 10-
year mean increase in UHW intensity (2061–2070 relative to
2006–2015) based on the emulated multi-model and CESM-LE
urban results (see Methods). Results demonstrate a possible
underestimation of heat extreme risks in cities if not accounting
for the model structural spread (Fig. 4), as shown in illustrative

examples using the aforementioned four hotspot regions (Sup-
plementary Fig. 2). The PDFs generated from multi-model urban
projections cover much larger spectra than from the CESM multi-
member projections which sample the internal variability only.
This indicates that the probability of extreme increase in UHW
intensity (higher tail in the PDFs) would potentially be mis-
represented from single-model ensembles. As has been largely
recognized, one of the major benefits of multi-model climate
projections is the capability of capturing and quantifying all
aspects of model uncertainties62. The above discussion demon-
strates that the emulated multi-model results are unique in being
able to account for the uncertainty associated with the model
structural spread in local urban projections41.

The underestimation of the urban extreme-heat risks shown
above can be understood in the context of a “gray swan” event63.
Unlike black swans, gray swans indicate the high-impact events
that are not completely unanticipated. Here we define the “urban
heat gray swans” as the heat extremes in cities that are virtually
unpredictable based on historical observations or existing models
but can be better foreseen and prepared for based on our model.
We quantify the likelihood/probability associated with some
urban heat gray swans to illustrate how plausible these events are
in a changing climate. According to our results based on Tmax, a
seemingly unlikely urban heat gray swan event with 0.01%
probability at any given year estimated by the CESM ensemble
mean PDF is actually predicted, by the CMIP ensemble mean
PDF, at the probabilities of 23.73%, 4.24%, 1.56% and 14.76% for
cities in the four hotspot regions identified above (Great Lakes
region of North America, Southern Europe, Central India, and
North China), respectively. These results amount to that the once
in 10,000 years urban heat gray swan event estimated previously
using a single model are likely 4-, 24-, 64- and 7-year events. This

Fig. 4 Probability distribution of changes in urban heat wave intensity by 2061–2070. The thick lines mark the CMIP5 multi-model mean (thick violet
lines) and CESM-LE multi-member mean (thick cyan lines). The thin red lines mark individual models of CMIP5; the thin blue lines mark individual CESM-
LE members. The red and blue shading denote the 5th to 95th percentile across CMIP5 models and across CESM members respectively for each small bin.
The changes are derived from land grid points in a Great Lakes region (36.15–49.5∘N, 95–75∘W), b Southern Europe (40–50∘N, 15–30∘E), c Central India
(18–25∘N, 75–87∘E), and d North China (32–45∘N, 110–123∘E) between the 2006–2015 and 2061–2070.
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underestimation is even more concerning for cities in Central
India (Fig. 4c) and North China (Fig. 4d), because the largest
urban population growth is predominantly projected to concen-
trate in South and South East Asia and Africa by 210054.

Urban climate extremes often have very consequential socio-
economic implications, especially in future warmer climates.
Plausible record-breaking heat extremes may not be predictable
by extrapolating the sparse historical extremes in currently short
urban historical records. Robust assessments of the risks
associated with the UHWs under climate change have been
limited by the near-universal absence of urban representation in
the state-of-the-art ESMs. This limitation is overcome in our
machine learning-enabled multi-model projections anchored in
process-based simulations. We demonstrate a substantial con-
tribution of the model structural uncertainty in projecting the
local-scale urban climate extremes. Continuing model develop-
ment including choosing better-constrained climate model
parameters and representing more comprehensive dynamic
processes in greater detail could potentially reduce this part of
uncertainty. We note here that the emulator framework in this
study is based on a single urban model – CLMU – simply because
of the lack of other ESMs in CMIP5 that have an urban
representation. It is important to include urban parameterizations
in future development of various ESMs to more robustly assess
the modeling uncertainty, especially those associated with the
choices of urban land model parameters and design. We stress the
critical need for both multi-model and urban-specific information
(which traditional CMIP projections misrepresent) for projecting
local urban climate extremes. Our findings indicate that the
single-model (e.g., CESM) urban projections or dynamic down-
scaling from a small number of climate models substantially
undersample the full uncertainty and thus underestimate the
likelihood of urban heat extremes. The results suggest that
policymakers and stakeholders will have to plan for larger
uncertainties (risks) than what a single model usually predicts. It
would be risky to just act on single-modeled signals; instead, local
urban actions and adaptation decisions should plan for a wide
range of possibilities which could be derived from the multi-
model urban projections. For cities where major exposures
(population and infrastructure) are expected to occur, our
emulated urban results provide essential probabilistic information
for estimating the likelihood of future extremes for decision-
making in the context of risk management and preparedness and
adaptation to climate-driven hazards.

Methods
CESM and large ensemble. The Community Earth System Model (CESM)42,
hosted at the National Center for Atmospheric Research (NCAR), is a fully coupled
Earth system model that provides state-of-the-art dynamic simulations of the
Earth’s climate states. It consists of seven components including Atmosphere, Sea-
ice, Land, River, Ocean, Land-ice, and a Coupler that exchanges fluxes between the
components. The land-atmosphere interactions are represented in its land com-
ponent - the Community Land Model (CLM)64. As a sub-model embedded in
CLM, the urban land scheme (CLMU) provides a physically-based urban repre-
sentation and parameterization. More details on the biophysics and hydrology
represented in CLMU can be found in ref. 65. A global urban surface dataset
prescribing the thermal (e.g., heat capacity and thermal conductivity), radiative
(e.g., albedo and emissivity), and morphological (e.g., building height to street
width ratio, roof areal fraction, average building height, and pervious ground
fraction) characteristics of urban facets for each grid cell that has an urban land
unit (i.e., urban subgrid) is provided by ref. 66. The urban spatial extent is derived
from a global population density dataset at 1 km spatial resolution. The urban
property data is compiled by synthesizing a variety of datasets including satellite
products, a global database of tall buildings, local building codes data and other
municipal documentation, and validated against imagery from Google Earth66.
With the urban surface dataset and the prognostic forcing data provided by the
Atmosphere component of the CESM, the CLMU produces various energy, mass
and momentum flux and state variables for each urban land unit in the grid cells
globally.

The CLMU captures the dynamic feedback between the anthropogenic heat due
to space heating and air conditioning (HAC) and the ambient environment using
an embedded building energy scheme. The impact of this feedback can be
important for local urban temperatures, especially under climate change52. The
CLMU’s building energy scheme dynamically models the building HAC energy use
and associated wasteheat in urban areas65. Specifically, the internal boundary
conditions for roofs and walls are determined by an approximation of internal
building temperature held between prescribed maximum and minimum
temperatures. Building interior maximum and minimum thermostat settings are
also prescribed in the global urban surface dataset provided by ref. 66. The amount
of energy required to be added to increase the interior building temperature to the
minimum temperature and the amount of energy required to be removed from the
building interior to reduce the interior building temperature to the maximum
temperature are respectively designated as the space heating and air conditioning
fluxes. The heat removed by air conditioning is added as wasteheat (sensible heat)
to the canyon floor. Wasteheat from inefficiencies in the heating and air
conditioning equipment and from energy lost in the conversion of primary energy
sources to end-use energy is also added as sensible heat to the canyon floor.

We utilized the simulations from the CESM Large Ensemble Project (CESM-
LE)43 (http://www.cesm.ucar.edu/projects/community-projects/LENS/) to
constitute the training data and to quantify the role of internal variability in urban
heat wave projections. The CESM-LE dataset includes 40 ensemble members of
climate simulations conducted at the resolution of 0.9∘ latitude × 1.25∘ longitude.
These ensemble members were run with slightly different atmospheric initial
conditions (small random perturbations of the order of 10−13) but identical model
configuration and climate scenarios. In this study, we utilized 32 members of the
CESM-LE ensemble simulations under the Representative Concentration Pathways
(RCP) 8.5 scenario.

Urban daily temperature emulator
Emulator. We develop an urban daily temperature emulator, using the framework
described in ref. 41, that maps the atmospheric forcing meteorology to the subgrid
urban responses. The emulator framework provides a globally consistent and
coherent method to characterize the uncertainty in urban warming due to large-
scale climate variability. Detailed information on this urban climate emulator
framework can be found in ref. 41. The previous emulator function used in the
framework was based on the multiple linear regression. Here in this study, we use a
higher-capacity nonlinear model to fit the emulator function in order to better
capture the daily-scale variability. The urban daily temperature emulator is a
location-dependent (grid cell) non-parametric model based on the atmospheric
forcings and time. It incorporates the daily atmospheric forcing fields from the
atmospheric component of the ESM and the month-of-year indicator as the
emulator inputs, and then outputs the daily maximum temperature (Tmax) and
daily minimum temperature (Tmin). Specifically, the daily temperature Tmax or
Tmin for a particular grid cell that has urban land unit, Tlat,lon, is emulated as

T lat;lon ¼ f lat;lonðAF;mÞ ð1Þ

where Tlat,lon denotes the urban daily maximum or minimum temperature; AF is
the vector of atmospheric forcings from the atmospheric component of the ESM; m
is a 12-dimension vector of the month-of-year indicator; lat and lon are the latitude
and longitude specifying the geospatial information of the grid cell; flat,lon denotes
the location-dependent emulator function. The AF matrix contains all the atmo-
spheric forcing fields that drive the CLM in a coupled CESM simulation including
net shortwave radiation, net longwave radiation and precipitation (liquid and solid)
at the surface, and atmospheric temperature, pressure, specific humidity, and wind
speed (zonal and meridional) at the forcing height. These forcing variables are
consistently available in other CMIP5 ESMs. The emulator function (flat,lon) is a
unique nonlinear model for each grid cell that has an urban land unit. Therefore,
the impacts of urban surface form on its specific response to forcing meteorology
are implicitly embedded in these location-specific functions (flat,lon). We employ the
XGBoost53 (a scalable tree boosting method) to fit the emulator function flat,lon for
2006–2015 and 2061–2070 separately. Therefore, the fitted functions flat,lon are a set
of decision trees which map daily atmospheric forcing fields to urban temperatures
at given grid cells. One of the salient features of the XGBoost is that the tree-based
approaches are inherently able to capture the interactions among the predicting
variables. Therefore, the nonlinear interactive effects between the forcing variables
and their seasonality are represented in the XGBoost models.

We employed a Bayesian Optimization with 5-fold cross validation67 to search
for an optimal combination of three key hyperparameters of XGBoost including
the number of gradient boosted trees (n_estimators), the maximum tree depth for
base learners (max_depth), and the boosting learning rate (learning_rate). Because
our entire global daily dataset is huge and thus expensive for multifold cross
validation, we randomly sampled 0.1% of the entire training dataset of all the grid
cells that have an urban land unit for both 2006–2015 and 2051–2080 which
comprises more than 100,000 data samples for the search. The search space
consists of n_estimators (ranging from 10 to 600), max_depth (from 3 to 7) and
learning_rate (from 0.01 to 1). Based on the average out-of-sample performance of
the 5-fold cross validation after 128 iterations, the best combination from our
search space is 576 (for n_estimators), 6 (for max_depth), and 0.088 (for
learning_rate).
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Because the XGBoost-based emulator takes all the input variables that the
CLMU needs in the coupled CESM to solve the equations, the emulator is
essentially a statistical “solver” of the system of equations in the CLMU. The
difference is that the emulator “solves” the equations for the output variables
“statistically” instead of “numerically”. In this sense, the emulator functions are not
empirical relationships between the predicted variable (e.g., weather stations) and
some large-scale atmospheric state variables (e.g., GCM or reanalysis data) as
traditional statistical downscaling techniques seek. Instead, the emulator tries to
reproduce the dynamically modeled urban variables by the CLMU. Traditional
statistical downscaling has long been limited by the omission of climate feedbacks
and the relatively arbitrary choice of incomplete predictors that remains the subject
of debate68,69. In contrast, the emulator method in this study is trained on fully
coupled climate simulation results and ingests a complete set of variables required
for the CLMU dynamic simulations that have preserved the resulting impacts of
the dynamic interactions and climate feedbacks. Therefore, the emulator captures
the physical mechanisms and climate system feedbacks represented in the physical
model (including the aforementioned feedback between urban temperature and
HAC use65). See ref. 41 for more discussion on the implications and limitations of
this urban climate emulator framework.

Training data. We utilize the fully coupled CESM-LE simulations as the training
sets to build the urban daily temperature emulator. We randomly sample 10% of
the 2006–2015 simulation outputs and 3.3% of the 2051–2080 from each member
of the CESM-LE simulations within each grid cell that has an urban land unit to
train the emulator for 2006–2015 and for 2061–2070 respectively. Each member
then contributes to the training dataset with the same weight. With this strategy, we
ensure a sufficiently large size of training data (>3 times of using only one CESM-
LE member data). Note that we selected a much longer period (30 years) of data to
train the emulator for the future period (2061–2070). This attempts to avoid
extrapolation for the inference stage when the emulator is applied to other CMIP5
ESMs. With a longer period of training data, the emulator could “see” a much
wider range of the features (forcing fields) and label (urban temperature). Sup-
plementary Fig. 3 demonstrates that the training set well captures the ranges of the
atmospheric forcing fields in CMIP5 models.

Validation. The whole framework including the urban modeling in the CESM and
the emulator itself has been thoroughly evaluated in ref. 41. Specifically, the urban
simulation by the CLMU was evaluated against both the gridded ground-based
observation dataset PRISM (http://www.prism.oregonstate.edu/) and the meso-
scale dynamic modeling data over the contiguous U.S.51 as well as over European70

and Australian71 cities41. Results demonstrated the credibility and robustness of
our emulator method. In addition, the CLMU has also been widely evaluated
against both in situ and remote sensing observations over various sites across the
globe in previous studies44–50.

Here, we further evaluated the statistical robustness of the urban daily
temperature emulator by cross-member validation using the data of 32 CESM-LE
members under RCP 8.5 that were excluded from the training of the emulator.
Results show that our emulator accurately predicts the local urban Tmax across the
globe. The out-of-sample global average root-mean-square-error (RMSE) of the
urban Tmax across the tested ensemble members (Supplementary Fig. 4) are 0.73 K
(for 2006–2015) and 0.74 K (for 2061–2070). The “error” here is defined as the
difference between the daily values dynamically modeled by the CESM ensemble
member and the ones by the emulator using atmospheric forcings from the same
CESM ensemble member. The RMSE also indicates the additional component of
the error (uncertainty) that the emulator introduces to the analysis, because the
emulator “approximates” what the actual CLMU would produce in a coupled
model system. These numbers are much smaller than the standard deviation (~3.1
K) of the urban Tmax across the CESM-LE ensemble members. The RMSE tends to
be smaller at the equatorial and tropical regions, and relatively larger at the mid to
high latitudes. In particular, the central and eastern U.S. appear to have the largest
errors (Supplementary Fig. 4). We also compared the emulated CESM multi-
member mean urban daily warming (2061–2070 minus 2006–2015) with the
CESM directly modeled multi-member result (Supplementary Fig. 5); the
difference between the two is markedly smaller than the emulated multi-model
mean change in UHW intensity (Fig. 4a). These results above confirm the
robustness of the emulator with unseen atmospheric forcing data.

Multi-model projections. The CESM-modeled atmospheric forcing fields that
were used to train the emulator can be consistently extracted from other ESMs in
CMIP5. These CMIP5 RCP simulations have been tuned and constrained to
reproduce reasonably well the observed climate records29. We applied the emulator
to all other available ESMs in CMIP5 to produce multi-model global urban Tmax
and Tmin projections over 2006–2015 and 2061–2070 under RCP 8.5. We included
all the ESMs that have their archive of outputs on a daily basis available, and
excluded the results available from the same models yet just at a lower spatial
resolution. In the end, a total of 17 ESMs were selected under RCP8.5 (Supple-
mentary Table 1). The first ensemble member simulation of each selected ESM
was used.

It is reasonable to argue that the atmospheric forcings from other CMIP5 ESMs
might not be consistent with the CESM, because those models do not have urban

representation in their simulations. However, because ESMs are normally run at a
relatively coarse spatial resolution (e.g., 0.9∘ latitude × 1.25∘ longitude) and the
urban land units occupy very small fractions in the grid cells, the atmospheric
forcings from the coupled simulations with or without urban representation are
nearly identical. The CESM runs with the urban land unit replaced by the bare soil
in the grid cell (a common configuration of other CMIP5 ESMs without an urban
representation to fold the urban areas in as bare soil) but otherwise identical to the
CESM-LE RCP 8.5 setup show indiscernible differences in their atmospheric
forcings (<0.3% including all forcing fields used in the emulator) from the original
CESM-LE simulations41.

Direct application of the emulator requires the grids of all other ESMs to align
exactly with the CESM grid, because the emulator function, as described above, is
location-dependent. Therefore, we regridded the needed atmospheric forcing fields
of all 17 ESMs from their native grids to the CESM grid based on the Earth System
Modeling Framework (ESMF) regridding using a Python package “xESMF”72 with
the “patch” interpolation method73,74. These regridded atmospheric forcings
accompanied by the encoded month-of-year indicator were fed as inputs to the
emulator to generate 17 global projections of urban Tmax and Tmin. The final multi-
model analyses were then based on these 17 emulated projections plus the original
CESM-LE dynamic simulations.

Heat wave definition and calculation. There are multiple ways to define a heat
wave (HW) event75–77, each of which has its own merits and disadvantages for
different communities78. Here we use a “relative” definition of HWs that has been
shown to be closely related to human mortality risk1. Within each grid cell, we
define an HW event as three or more consecutive days with Tmax (or Tmin for the
nighttime case) higher than the 98th percentile of Tmax (Tmin) for the 2006–2015
period at the same grid cell. Using this definition, we calculated the urban HWs
(urban subgrid) and the background HWs (whole grid cell) for each of the grid
cells that has an urban land unit for the present day (2006–2015) and a future
climate (2061–2070) under RCP 8.5. Note that we technically use a projection of
“present-day” condition based on the RCP 8.5 scenario rather than historical
simulations. We then assessed the changes in HW intensity (the average of daily
maximum temperature during the HWs), frequency (number of HW events per
year), duration (average total days per HW event), and total days (total number of
HW days per year) between 2061–2070 and 2006–2015.

Inter-model robustness. We use the “signal-to-noise” ratio (SNR) as a measure of
the inter-model robustness to illustrate how different ESMs agree on the projec-
tions of urban HWs. The SNR is calculated as the ratio of the multi-model
ensemble mean to the inter-models variability as

SNRlat;lon ¼ μlat;lon
σ lat;lon

ð2Þ

where μ denotes the multi-model ensemble means (i.e., means of HW intensity,
frequency, duration, and total days); σ denotes the inter-model variability calcu-
lated as the standard deviation of the multi-model values; and the “lat,lon” pair
denotes each grid cell that has an urban land unit in the CLM. The reciprocal of
SNR is the multi-model variability normalized by the mean, therefore SNR also
indicates the multi-model spread. A smaller SNR implies higher model spread or
smaller signal change such as multi-model mean change of HW intensity, fre-
quency, duration and total days. We quantified the SNR for each grid cell that has
an urban land unit to assess the inter-model agreement. We use SNR > 2.0 to
indicate “high” inter-model agreement in the multi-model urban HW projections.
Note that this threshold is somewhat subjective and for illustration purpose only.
Different thresholds can be chosen for different applications of urban extreme
events research, tightening or relaxing the tolerance in model disagreement.

Internal variability and model structural uncertainty. The discrepancy between
multi-member simulations and between multi-model projections are associated
with internal variability and model structural variability respectively. The internal
variability refers to the natural variability of the climate system, which comes from
the nonlinear dynamical processes intrinsic to the Earth-Atmosphere system. The
role of this unpredictable internal variability is usually estimated by running the
same ESM a number of times with slightly perturbed initial conditions but
otherwise identical model configuration. Here we use the CESM-LE simulations to
quantify the internal variability associated with the UHW projections.

On the other hand, the model structural uncertainty refers to the uncertainty
introduced by the choices of model design (and climate model parameters in this
study) and their effects on the climate sensitivity, which is unlikely to be
represented by perturbing the initial conditions using a single model no matter
how wide a range of the initial conditions is chosen. The underlying reason is that
it is fundamentally impractical to describe all the climate processes accurately
within a single ESM, no matter how complex the model itself. Different ESMs
could be designed and tuned for different specific applications and therefore have
their own choices of what processes to include and at what level of complexity. The
multi-model ensembles try to tackle this issue by combining a set of model
simulations from structurally independent models. It usually exhibits the better
skill, higher reliability, and consistency of the model forecast79,80. Here we use the
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emulated multi-model urban temperatures to compute the multi-model ensemble
mean urban HW projection and to estimate the model structural uncertainty
associated with the projection. We compare the estimated internal variability and
the model structural uncertainty to characterize their relative contributions. The
uncertainty due to the climate model parameters and due to the model structural
design respectively are not separated out in this study.

One aspect of the structural uncertainty not addressed by this study is that
associated with the choice of design and parameters of the urban land schemes. It is
advantageous to develop emulators from multiple urban models to better assess the
uncertainty associated with the urban land models. Nevertheless, the magnitude of
the model structural uncertainty estimated in this study is reasonable, because the
urban parameterizations, unlike ESMs, do not have many internal dynamics, and
as such cannot drift far from each other if forced by identical atmospheric
forcing55,56. Therefore, the major variability is from the diverse large-scale
atmospheric forcings that are produced by different ESMs. The multi-model
structural spread presented here is likely an upper bound encompassing the
potential variability resulting from different urban parameterizations.

PDFs of increase in UHW intensity. We aggregated the changes of UHW
intensity between 2061–2070 and 2006–2015 for the four hotspot regions (i.e., the
Great Lakes region of North America, Southern Europe, Central India, and North
China), and estimated their spatial probability density functions (PDFs) using a
non-parametric method (Gaussian kernels) for both CESM-LE multi-member
simulations and our emulated CMIP5 multi-model results. The Python package
“SciPy”81 was used to determine the kernel density for the PDF estimation.

Data availability
All data used in this study is available at the UCAR/NCAR Climate Data Gateway via
https://doi.org/10.5065/d6j101d1 and the CMIP5 Archive via https://esgf-node.llnl.gov/
projects/cmip5/. The output data from the emulator are available in the public repository
“Illinois Data Bank” via https://doi.org/10.13012/B2IDB-6081052_V1. Source data are
provided with this paper.

Code availability
Scripts and instruction82 to develop and apply the urban climate emulator, and analyze
the urban heat waves are available at https://doi.org/10.5281/zenodo.3872519 or https://
github.com/zzheng93/code_uhws.
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