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Abstract

The 2D Wavelet-Transform Modulus Maxima (WTMM) method was used to detect microcalcifications (MC) in human breast
tissue seen in mammograms and to characterize the fractal geometry of benign and malignant MC clusters. This was done
in the context of a preliminary analysis of a small dataset, via a novel way to partition the wavelet-transform space-scale
skeleton. For the first time, the estimated 3D fractal structure of a breast lesion was inferred by pairing the information from
two separate 2D projected mammographic views of the same breast, i.e. the cranial-caudal (CC) and mediolateral-oblique
(MLO) views. As a novelty, we define the ‘‘CC-MLO fractal dimension plot’’, where a ‘‘fractal zone’’ and ‘‘Euclidean zones’’
(non-fractal) are defined. 118 images (59 cases, 25 malignant and 34 benign) obtained from a digital databank of
mammograms with known radiologist diagnostics were analyzed to determine which cases would be plotted in the fractal
zone and which cases would fall in the Euclidean zones. 92% of malignant breast lesions studied (23 out of 25 cases) were in
the fractal zone while 88% of the benign lesions were in the Euclidean zones (30 out of 34 cases). Furthermore, a Bayesian
statistical analysis shows that, with 95% credibility, the probability that fractal breast lesions are malignant is between 74%
and 98%. Alternatively, with 95% credibility, the probability that Euclidean breast lesions are benign is between 76% and
96%. These results support the notion that the fractal structure of malignant tumors is more likely to be associated with an
invasive behavior into the surrounding tissue compared to the less invasive, Euclidean structure of benign tumors. Finally,
based on indirect 3D reconstructions from the 2D views, we conjecture that all breast tumors considered in this study,
benign and malignant, fractal or Euclidean, restrict their growth to 2-dimensional manifolds within the breast tissue.
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Introduction

Breast cancer is the most common cancer worldwide according

to the World Health Organization (WHO) and the second leading

cause of cancer related death among women in the United States.

Despite the recent advances in the medical field, the breast cancer

rate has continued to increase over the last 30 years. Cancer is

easiest to treat when it is found in the early stages of development,

making it critical for women to have regular screenings as

recommended by the American Cancer Society (ACS). Mammo-

grams are currently one of the most accepted screening processes

and are widely recognized to play a vital role in diagnosing the

disease. However, the radiological interpretation of mammograms

is a difficult task, especially since the mammographic appearance

of normal tissue is highly variable. Even though mammograms are

typically read by two expert radiologists or a combination of a

radiologist with a computer aided detection/diagnosis (CAD)

method, a recent study suggests that a minimum of three

independent experts combined with a consensus should be used,

especially for non-cancer cases [1]. Criticism of the use of

screening mammography due to over-diagnosis led some re-

searchers to show that one in three breast cancers identified by

mammography would not cause symptoms in a patient’s lifetime

[2]. Others argue that advanced breast cancer incidence does not

support a substantial role for screening in the decrease in mortality

[3]. The recent decline in breast cancer mortality would not be
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due to population-based screening programs, but rather to

improved treatments of the sick [4,5].

This growing wave of criticism of breast cancer screening

programs has been synchronous to a similar movement criticizing

the increasing use of CAD methods. We hypothesize that this is

not a coincidence. Indeed, it has been fifteen years since the U.S.

Food and Drug Administration approved usage of CAD methods.

From 2001 to 2006, CAD prevalence increased from 3.6% to

60.5% and has since increased to about 75% [6]. However, CAD

methods are not offering the expected performance [7]. CAD use

in screening mammography is associated with decreased specificity

[8]. This leads to increased recall rates of healthy women [6,9,10]

and can cause false-positives on up to 70% of normal cases [11],

resulting in an increase of unnecessary stress on women. In a study

that compared the effectiveness of a single reader + CAD vs. two

independent readers, the results showed that the recall rate for

single reader + CAD was higher [12]. And finally, another

limitation of existing CAD methods is the inability of the software

to rate the significance of the findings [13], similar to the Breast

Imaging-Reporting and Data-System (BI-RADS) assessment score

[14] given by the radiologist at the time of the mammogram

interpretation.

Despite these potentially worrisome signals, the consensus is that

the benefits of screening mammography clearly outweigh the

disadvantages. In fact, the use of screening mammography is not

expected to diminish, but rather to increase. The American

Cancer Society (ACS) recommendation is for women age 40+ to

have a mammogram every year and to continue to do so for as

long as they are in good health. In England, for example, the

extension of the breast screening program, from women aged 50–

70 to 47–73 is expected to be completed in 2016 [15]. Taken

together, this information combined with the results surveyed

above indicates that novel computational techniques must be

developed, not only to obtain better quantitative mammography

reports, but also to better understand the onset and progression of

the disease itself.

The fractal dimension is a tool that has been used extensively

in all sciences. While standard geometry is limited to the study of

so-called Euclidean objects like smooth curves, circles, and cubes,

Fractal geometry can be seen as a generalization of Euclidean

geometry, where the study of objects exhibiting a geometrical

structure that cannot be described with Euclidean tools such as

area, perimeter, and volume, becomes naturally characterized,

quantitatively, via the fractal dimension. Standard Euclidean

geometrical objects have an integer fractal dimension (D = 1, 2, 3

for a line, circle and cube respectively), while most (tree-like or

filamentary) fractal objects have a non-integer fractal dimension

[16].

The link between the fractal nature of malignant growth and

pathology in general has been well established [17–20]. For

example, specific applications of fractal concepts were used to

quantitatively characterize skin lesions [21–23], the tumor

vasculature and the tissue architecture at the cellular level [24–

26], as well as the epithelia/stroma interface [27,28]. The

application of fractal concepts specifically to the analysis of breast

cancer from the study of digitized mammograms is widespread.

For example, fractal-based models of (normal) breast tissue

background are used to find calcifications by taking the difference

between the original mammographic image and the modeled

image [29–31]. To assess the actual fractal structure of the

periphery of the tumor itself, some use the radiologist-identified

boundary of masses using different techniques to show that this

manually drawn contour is more likely to be smooth (Euclidean)

for benign tumors and more spiculated (fractal) for malignant

tumors [32–34]. In an early study of 25 mammographic cases (10

benign and 15 malignant) investigating the potential utility of the

fractal dimension of clusters of microcalcifications as a discrimi-

natory quantifier, 14 out of 15 malignant cases were able to be

separated using the fractal dimension [35]. Another study using

fractal models with neural networks to detect microcalcifications

attempted to quantitatively characterize the clustering of the

segmented calcification spots via the fractal dimension. However,

the fractal dimension was insufficient to discriminate between

actual microcalcification clusters from sets of noise spots, when

considering one mammographic view at a time [36].

Since clusters of microcalcifications are one of the most

important and often the only indicator for malignant tumors,

the reconstruction of the three-dimensional (3D) structure of these

clusters from the two mammographic views, cranial-caudal (CC)

and mediolateral-oblique (MLO), is critically important. An early

attempt at developing a 3D visualization software putting

additional diagnostic information at the radiologists disposal was

presented fifteen years ago [37]. More recently a joint analysis of

two views of the same breast was presented, where the novelty of

the scheme includes a two-step matching process: spatial and

feature matching. The authors show that the proposed method has

advantages of a lower false positive rate compared to the one on a

single view [38]. Taken together, this shows that very little has

been done in order to quantitatively combine the information

obtained from both views, even though it appears to be logical and

beneficial from the research. Overall, however, a reliable

quantitative assessment methodology in the form of a computer-

aided diagnostic system integrating the fractal structure from both

mammographic views is lacking. This is what we are proposing in

this manuscript, with very promising results.

We propose that the 2D Wavelet Transform Modulus Maxima

(WTMM) method [39] has the ability to become a powerful tool in

interpreting mammograms. The 2D WTMM method has proven

to be successful in almost all fields of applied science, including

geology [40], astrophysics [41–43], surface science [44], cellular

biology [45–51] and orthopedic medicine [52]. The method was

originally developed as a multifractal formalism to analyze highly

complex 1D signals [53,54], 2D surfaces [40,55,56] and 3D

surfaces [57]. In particular, the 1D WTMM method was

successfully applied to demonstrate the multifractality in physio-

logic dynamics and its breakdown with disease [58–62]. A

preliminary approach demonstrating the potential of the 2D

WTMM method to detect microcalcifications and to quantita-

tively assess and discriminate between fatty vs. dense tissue was

first presented in 2001 [63].

The results presented in this paper were obtained by using the

WTMM method on screening mammograms that were taken

from an online databank. They demonstrate how this tool could be

used as a possible Computer-Aided Detection method as well as a

Computer-Aided Diagnostic method. After all images were

analyzed using this method, the fractal information independently

obtained from each of the two mammographic views of the same

breast was combined to indirectly infer a 3D estimate of the

geometrical structure of the breast tumor. A statistical analysis was

performed on all data, which provided us with information on the

critical differences between the organization of both benign and

malignant tumors. Importantly, both views of the same breast (CC

and MLO) were analyzed independently in terms of microcalci-

fication detection and fractal dimension estimation. The differ-

ences in fractal dimension between benign vs. malignant MC

clusters were very significant when using population-based

statistics. However, in order to develop a diagnostic scheme that

would provide high accuracy categorization on a case-by-case
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basis, the fractal dimension of the cluster of microcalcifications

from both views was integrated into a two-coordinate score that

was used to plot each case in the ‘‘CC-MLO fractal dimension

plot’’. In this plot we have defined a ‘‘fractal zone’’ consisting

almost exclusively of malignant cases and ‘‘Euclidean zones’’ (non-

fractal) consisting almost exclusively of benign cases. Therefore, as

a potential diagnostic tool, this methodology could be used to assist

radiologists by calculating an assessment based on a particular

case’s position in the CC-MLO fractal dimension plot, and

whether or not it is inside or outside the fractal zone. It can do this

with high accuracy and in a manner that is independent of the

density of the background tissue. Furthermore, the fractal vs.

Euclidean distinction between malignant vs. benign tumors, could

lead to a better understanding of the biophysical processes that

drive tumor growth.

Results

Detection of MC Clusters and Calculation of their Fractal
Dimension

As described in detail in the Methods section and in Figure 1,

the wavelet transform (WT) acts as a mathematical microscope to

characterize spatial image information over a continuous range of

size scales. It is the gradient vector of the image smoothed by

dilated versions of a Gaussian filter [39,64]. At each size scale, the

wavelet transform modulus maxima (WTMM) are defined by the

positions where the modulus of the WT is locally maximal. These

WTMM are automatically organized as maxima chains at the

considered scale. Along each of these chains, further local maxima

are found, i.e., the WTMM maxima (WTMMM). This process is

repeated for all size scales and the WTMMM from each scale are

then linked to form the WT skeleton. As shown in Figures 2 and 3,

the ability to consider (vertical) space-scale WTMMM lines in the

WT skeleton individually is key, since it allows us to objectively

discriminate between lines pointing to the tissue background from

those pointing to the microcalcifications by considering how the

WT modulus varies as a function of the scale parameter along

each space-scale line. In Figures 2D and 3D, each space-scale line

obtained from the WT skeleton is represented by plotting the

evolution of the WT modulus, M (see Eq. (6) in the Methods

section), as a function of the scale parameter, a, in a log-log plot.

This relationship between M and a is characterized by a power-

law behavior via the equation:

M~ Kah ð1Þ

where K is a pre-factor and h is the Hölder exponent quantifying

the strength of the singularity to which the space-scale line is

pointing to. In log-log plots shown in Figures 2D and 3D, the slope

of the curves therefore corresponds to h. By considering two types

of information characterizing the behavior of a space-scale line,

namely the strength of the modulus at the smallest scale, which is

given by the log of the pre-factor, log(K), as well as the slope (in a

logarithmic representation) of the modulus variation across scales,

h, a classification procedure is setup which results in two sets of

space-scale lines that clearly segregate MC from background

tissue. Isolated MC can be seen as Dirac-like singularities through

the optics of the WT, for which h is theoretically known to be 21

[39]. However, while clustered MC may not appear as isolated

Dirac-like singularities, the edge that they form is still easily

detectable through the space-scale lines, with a value of h , 0

(discontinuity). This means that for both isolated and clustered

MC, we can expect the space-scale lines to behave as Eq (1) with

h#0, which contrasts from the healthy background tissue, for

which h,1/3 for fatty breast tissue and h,2/3 for dense breast

tissue [63]. However, relying only on h may not be sufficient,

which is why the strength of the WT modulus at the lowest scale,

which quantifies the contrast between MC and background, is also

needed. For the sample case presented in Fig. 2, the plot in

Fig. 2D shows that neither log(K) nor h, taken individually, would

have been sufficient to segregate between MC and background.

However, for the sample case presented in Fig. 3, the plot in

Fig. 3D shows that log(K) alone was sufficient. A more detailed

discussion of both cases follows.

In Fig. 2 the background breast tissue is dense, which makes the

contrast between background and MC weak (i.e. causing a low

value for the WT modulus of red curves at the smallest scale in

Fig. 2D). However, the roughness fluctuations of dense breast

tissue are characterized by a relatively high smoothness level,

which translates to blue curves with a large slope (i.e., a high h
value, ,2/3) for scales 10#a#200 pixels as compared to the red

curves with negative slopes for scales a $ 10 pixels that correspond

to WTMMM lines that point to MC at small scale (aR0+)

(Fig. 2D) [63]. In Fig. 3, the background breast tissue is fatty,

which is characterized by a higher roughness level (i.e. a lower h
value ,1/3, although still positive) [63], that reduces the

discriminatory power of h. However, for MC embedded into fatty

tissue, the contrast is high, which translates to a high value of

log(K). Therefore, applying a threshold on both parameters, h and

log(K), is key to segregating MC from their background regardless

of the density (fatty or dense) of the composition of the breast

tissue. Given the exploratory nature of this study, the thresholds on

h and log(K) were allowed to vary from one image to another and

they were set manually. However, the variability of these

thresholds is rather small (data not shown), which shows great

potential for a future automation of this processing step.

Once this segregation is done, the so-called singularity spectrum

(see Methods section) can then be calculated separately for each

subset, which then allows us to consider the fractal dimension D
(Eq. (16)) of the lesion, characterizing its architecture.

We restricted the analysis of DDSM cases (see Methods section)

to images having a radiologist encircled region that was larger than

2562 pixels for both views (CC and MLO) and also to make sure

that the distribution of patient ages was comparable (i.e. 56.7+/

211.4 years old for the benign cases and 65.5+/212.4 years old

for the malignant cases). This resulted in an analyzed sample with

a total of 59 cases (118 images), 34 of which are benign (68 images)

and 25 of which are malignant (50 images). The histograms of

fractal dimension values obtained are presented in Figure 4. Note

that blending the CC and MLO fractal dimensions together in

these distributions would not guarantee an unbiased statistical

analysis, which is why the fractal dimension values for the CC and

MLO results were analyzed independently. Figure 4 demonstrates

that benign MC clusters have a strong preference for Euclidean

dimensions that are either close to D = 1 or to D = 2 and that there

is a very clear zone of avoidance in the fractal range, i.e., for 1,

D,2, with an actual gap in the benign histograms for the bin

centered at D = 1.5 for both views. For the malignant cases, it is

the opposite: Euclidean zones are avoided and the data are very

clearly centered in the fractal range for both views, with the peak

of the histograms at D = 1.5. A statistical comparison between

benign vs. malignant MC clusters was performed using the

Wilcoxon rank-sum test, which yielded p-values of 0.009 for CC

comparisons and 0.014 for MLO comparisons for the benign vs.

malignant fractal dimension distributions. These are statistically

significant differences.

Fractal Breast Tumors Are Malignant and Euclidean Tumors Are Benign
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The CC-MLO Fractal Dimension Plot and the Fractal Zone
The significance of the difference between benign and

malignant is quite interesting. However, it is still only based on

statistics of populations. The histograms in Figure 4 show that,

when each view is taken independently (CC or MLO), it is still

possible, though unlikely, for a malignant lesion to have a

Euclidean dimension, and vice-versa, for benign lesions to have a

(non-integer) fractal dimension. However, in order to work

towards a potential CAD method that would be able to diagnose

breast lesions individually instead of via the population statistics,

we combined the information to indirectly infer the 3D structure

of the tumor embedded into the breast tissue. This is presented in

a novel plot called the ‘‘CC-MLO fractal dimension plot’’ shown

in Figure 5, where red dots represent malignant cases and green

dots represent benign cases. The square centered at (1.5, 1.5)

represents those cases for which both CC and MLO views have a

fractal dimension that is within 1.2,D,1.8. Note that only

malignant cases are found in this internal square. However, having

one of the two views with a score that is close to D = 1.5 should

‘‘compensate’’ for its other view being outside of the [1.2, 1.8] 6
[1.2, 1.8] square, i.e., as one view approaches D = 1.5, the farther

from 1.5 the other can be. Further justification is presented below

and in Fig. 6. That is how the triangular regions that decay

linearly as a function of distance from the internal square were

defined. Therefore, the central square, combined with the four

triangular regions extending from it are what we define as the

‘‘fractal zone’’. Of the 59 cases considered in this study, 92% of

malignant breast lesions studied (23 out of 25) were in the fractal

zone while 88% of the benign lesions were in the Euclidean zones

(30 out of 34).

Figure 1. The 2D WTMM Method. (A) Sample simulated fractional Brownian motion image BH = 0.5(x) [39]. (B) The gradient of the image in (A) is
obtained as the modulus of the wavelet-transformed using Eq. (6). (C) Maxima chains in blue are defined as positions where the WT modulus is locally
maximal (i.e., the WTMM). Along these WTMM chains in (C), further local maxima are found in red, i.e. the WTMMM. This is repeated as several
different scales, three of which are shown in (D), (E), and (F). The WTMMM are then connected vertically through scales to define the WT skeleton
shown in (G). Gray-scale coding is from black (min) to white (max).
doi:10.1371/journal.pone.0107580.g001

Figure 2. Sample 2D WTMM analysis of a malignant breast lesion. (A) Original image obtained from the DDSM database, where (B) shows
the zoomed in image of the radiologist encircled suspicious region. By selecting appropriate values for the slope h of the WT modulus as a function of
scale in a logarithmic representation, and the log of the pre-factor, log(K) in (D) (also see Eq. (1) in the main text that describes this relationship), the
WTMMM (blue) from the tissue background in (C) are distinguished from the WTMMM (red) that belong to the MC in (E). From here the WT skeleton
can be calculated from the WTMMM that belong to the lesion from those that belong to the background tissue. The corresponding WTMM chains at
the smallest scale are shown in (F) and (G) for the background and lesion, respectively.
doi:10.1371/journal.pone.0107580.g002
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Bayesian analysis
The inferences from a Bayesian analysis are richer and more

informative than null hypothesis significance testing. In particular,

there is no reliance on p-values. But also, Bayesian models are

designed to be appropriate to the data structure without having to

make approximation assumptions typical in null hypothesis

significance testing [65]. The results reported above obviously

show that the vast majority of malignant breast lesions are fractal,

and that the vast majority of benign breast lesions are Euclidean.

However, the condition of interest is how breast lesions in the

fractal zone can indicate malignancy, and how breast lesions in the

Euclidean zone can indicate benignancy.

Bayesian inference derives the posterior probability as a

consequence of two antecedents, a prior probability and a

likelihood function derived from a probability model for the data

to be observed. In this application, the model is based on historical

radiology assessment scores using the BI-RADS system [14,66,67].

A detailed description of this probability model as well as the

mathematical model behind Bayes analysis is presented in the

Methods section. Bayesian inference then becomes a computation

of the posterior probability according to Bayes’ rule. The

interpretable output of this Bayesian analysis is the so-called

95% highest density interval (HDI), which is analogous to the 95%

confidence interval in frequentist statistics. The 95% HDI from

the resulting posterior distribution indicates that the percentage of

breast lesions in the fractal zone that are malignant is between

74.2% and 97.5%. Alternatively, in terms of controlling for false

positives, which is a major concern, as discussed in the

Introduction, the percentage of breast lesions in the Euclidean

zone that are benign is between 75.7% and 96.2%.

Figure 3. Sample 2D WTMM analysis of a second malignant breast lesion. Same analysis as presented in Figure 2, but on a different case.
doi:10.1371/journal.pone.0107580.g003

Figure 4. Histograms of fractal dimension values. The frequency distributions of fractal dimensions, D (Eq. (16)) calculated for benign CC and
MLO views (top) are drastically different than those calculated for the cancer CC and MLO views (bottom).
doi:10.1371/journal.pone.0107580.g004
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Additional statistical analysis
The Bayesian analysis presented above takes into account the

limited size of the dataset and the robust statistical conclusions that

are drawn from this analysis are indeed significant. Nevertheless,

an additional statistical analysis was performed in order to further

validate the significance of our results. Instead of constructing a

statistical estimator and evaluating its frequency properties, a

statistical model was developed by constructing a joint probability

distribution and by checking it against the observational data, as

suggested in [68]. A ‘‘coin toss’’ experiment was performed

100,000 times (see Methods section) to arrive at a discrete

probability distribution, which showed that the model was an

adequate representation of the data, as demonstrated by the red

bars being at neither end of the distributions in Figures 7A and 7B.

Indeed, the probability that the number of malignant cases (out of

the 27 fractal cases) is less than 23, is ,46%. Alternatively, the

probability that the number of benign cases (out of the 32

Euclidean cases) is less than 30, is ,74%. Both percentages (46%

and 74%) being close to 50% is further validation that our results

are not outliers in the model (e.g. ,5% or .95%). Therefore, we

can safely say that the model is an adequate fit for the data.

Interpretation of the 3D Geometrical Structure
Even though two different 2D views of a 3D object are

insufficient to fully characterize its 3D geometry, it can nonetheless

give a robust estimate. The cases outside of the fractal zone can be

categorized in two Euclidean subsets: 1) LINES, i.e. those that are

approximately in the (DCC = 1, DMLO = 1) area, which are

therefore seen a one-dimensional objects from both views

(Fig. 6A); or 2) SHEETS, i.e. those that are either in the

(DCC = 1, DMLO = 2) or (DCC = 2, DMLO = 1) areas, which are

seen as a full two-dimensional object in one view, but as a one-

dimensional object from the other view and also those that are in

the (DCC = 2, DMLO = 2) area, which are seen as a full two-

dimensional object from both views (Fig. 6B). Although simplistic,

these case models represent a good estimate of what the 3D

Euclidean structure of a benign lesion may look-like.

For the cases that fall in the fractal zone, those malignant lesions

that are in the [1.2,1.8]6[1.2,1.8] square have a fractal signature

that is seen from both views, whereas those that are in the

triangular areas would represent fractal clusters that grow onto a

2D plane, i.e. seen as a fractal from one view, but seen either as a

line (bottom or left triangular regions) or a plane (top or right

triangular regions) from the other view (Fig. 6C). Interestingly, a

diffusion-limited aggregate [69] embedded in 3D space and for

which 2,D,3 will have a 2D projection with D = 2 [70]. Since no

malignant lesions are found in the (DCC = 2, DMLO = 2) area of the

CC-MLO fractal dimension plot, we can safely hypothesize that

all tumors are essentially limited to a 2-dimensional fractal

structure (within the 3-dimensional breast tissue), for which 1,

D,2 [71,72]. This therefore leads us to conjecture that all breast

tumors considered in this study, benign and malignant, fractal or

Euclidean, would grow on 2-dimensional manifolds.

Conclusion & Discussion

Early detection and characterization of breast lesions are critical

for the treatment and survival of the patient. Thus, the

methodology presented here offers a way to accurately classify

benign and malignant tumors based on their invasiveness

determined by the geometrical structure obtained using this

Figure 5. The CC-MLO fractal dimension plot. Each case analyzed
is plotted with the fractal dimension obtained from the MLO view as a
function of the fractal dimension obtained from the CC view. A
polygonal region is outlined, the inside of which is defined as the
‘‘fractal zone’’ while the outside is defined as the ‘‘Euclidean zone’’. The
dots represent malignant (red) and benign (green) cases.
doi:10.1371/journal.pone.0107580.g005

Figure 6. Inferring the 3D geometrical structure of breast lesions based on projection angles. Simulations of random point distribution
models are shown to describe how different types of objects, namely a line (A), a surface (B), and a fractal cluster (simulated diffusion-limited
aggregate, C) can have only a limited number of possible fractal dimension as a function of the projection angle.
doi:10.1371/journal.pone.0107580.g006
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methodology. By considering the organization of tumors via CAD

systems, current mammographic practice may be improved by

increasing accuracy, and potentially decreasing recall rates and

costs. The inferred 3-dimensional geometry of the breast lesions

based on the analysis of the mammographic images using the 2D

WTMM methodology allows us to explore the invasiveness of the

breast tumors and provide an interpretation of the severity of the

lesion. By considering where each case falls on the CC-MLO

fractal dimension plot, a score similar to the BIRADs assessment

score [14] may be assigned to each case. Not only does this tool

have the potential as a CAD, but it may also provide insight into

the underlying mechanisms that drive the overall growth and

structure at the time of the screening mammogram. In this

context, further analyses will help prove or disprove our conjecture

that all MC clusters are restricted to growth on 2D manifolds

within the 3D environment of the breast tissue.

Since the structure of the tumors are different, with benign

lesions likely being smooth Euclidean objects and malignant

lesions being branching objects (and possibly, for both cases, being

restricted to growing along 2D manifolds within the 3D breast

tissue environment), there may be a link to the cellular

mechanisms at the lower levels in the system that drive the

organization at the much larger scale of mammograms. There has

been research done on the shape of cells and also the vascular

structure feeding tumors [17,73]. Studies such as these have shown

the fractal structure of cancer at these levels, implying the global

shape of the breast tumors may be driven by the interactions of

smaller scale agents and their environment.

The nature of this study is exploratory. Future analyses on

larger sets will allow the investigation of the automation of the

selection process for the thresholds on h and on log(K). The

delineation of the boundary between the fractal zone and the

Euclidean zones in the CC-MLO fractal dimension plot, which

was defined somewhat qualitatively, should also be explored.

However, even though the size of the dataset investigated in this

study is indeed limited, the robust statistical conclusions that are

drawn from the analysis did take into account this limited sample

size. Finally, the mathematical and computational approaches, as

well as the results presented herein are novel and show great

promise towards the establishment of a new paradigm in

mammographic breast lesion detection and assessment.

Methods

Data
The images that were analyzed were obtained from the Digital

Database for Screening Mammography (DDSM) at the University

of South Florida [74,75]. The databank contains over 2,600

studies made up of normal, benign, benign without call back and

malignant mammograms all categorized by an expert radiologist.

Each study has two images of each breast, consisting of a

mediolateral-oblique (MLO) view and cranio-caudal (CC) view

with any suspicious region circled by a radiologist. The suspicious

region could contain a mass and/or microcalcifications (MC), but

only the cases that were classified as having exactly one tumor

composed of only microcalcifications in the benign and malignant

categories were looked at in this particular study.

In addition to only considering tumors consisting of MC, any

mammographic images that contained artifacts inside the radiol-

ogist’s encircled region were discarded due to the impact it has on

the analysis. These artifacts could include scratches, hair,

deodorant, patient movement, scanner artifacts (rollers slipped),

pacemaker, breast implants, skin markers (for scars, moles, and

nipples, as well as marked lumps of breast pain), metallic foreign

bodies, and fingerprints. Some (but not all) of these effects were

recorded under notes in the DDSM website. More information on

the extra care required to make efficient use of the DDSM as well

as a general discussion on the next-generation open-access digital

mammography library can be found in [76]. We thus considered a

total of 59 cases corresponding to 118 images of size greater than

2562 pixels, 34 of which are benign (68 images) and 25 of which

are malignant (50 images).

2D WTMM Method
Most of the existing CAD methods, whether specifically

designed for (2D) mammograms [32,33,77–91] or more recently,

for (3D) breast tomosynthesis [92–97], have been elaborated on

the prerequisite that the background roughness fluctuations of

normal breast texture are statistically homogeneous and uncorre-

lated, which precludes their ability to adequately characterize

background tissue. The majority of the fractal methods used to

examine and classify mammographic breast lesions rely on the

estimate of the Hurst exponent (or its various mathematical

Figure 7. Density histograms of malignant/benign cases out of
fractal/Euclidean cases. (A) Histogram of potential malignant cases
out of 27 fractal cases given the posterior distribution p(M|F) (see
Methods section). The red bar represents our testing data set of 23
malignant cases out of 27 total fractal cases. The probability of arriving
at less than or equal to 23 cases is ,46%. (B) Histogram of potential
benign cases out of 32 Euclidean cases given the posterior distribution
p(B|E). The red bar represents our testing data set of 30 benign cases
out of a total of 32 Euclidean cases. The probability of arriving at less
than or equal to 30 cases is ,74%. Since 23 malignant cases (A) and 30
benign cases (B) are not towards either end of these distributions
resulting from 100,000 ‘‘coin-toss’’ iterations, we can safely say that the
respective models are an adequate fit for the data.
doi:10.1371/journal.pone.0107580.g007
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equivalents), which globally characterizes the self-similar proper-

ties of the landscape in question. However, the 2D WTMM

method takes in account that the function defining the image may

be multifractal, therefore requiring the use of the Hölder exponent

(Eq. (1)) to characterize the local regularity at a particular point

[39,40,55,56,63].

The 2D WTMM method [39] requires us to define a smoothing

function q(x,y) in two dimensions that is a well-localized isotropic

function around the origin. In this application, we use the

Gaussian function and define the wavelets as [64]

y1(x,y) ~
Lq(x,y)

Lx
and y2(x,y) ~

Lq(x,y)

Ly
ð2Þ

The wavelet transform with respect to y1 and y2 is

Ty½f �(b,a)~
Ty1
½f �~a{2

Ð
d2xy1(a{1(x{b))f (x)

Ty2
½f �~a{2

Ð
d2xy2(a{1(x{b))f (x)

 !
ð3Þ

~Ty½f �(b,a)~+fTq½f �(b,a)g ð4Þ

from which we can extract the modulus and argument of the WT:

Ty½f �(b,a)~(My½f �(b,a),Ay½f �(b,a)): ð5Þ

where

My½f �(b,a)~½(Ty1
½f �(b,a))2zTy2

½f �(b,a))2�
1
2 ð6Þ

Ay f½ � b,að Þ~Arg Ty1
f½ � b,að ÞziTy2

f½ � b,að Þ
� �

ð7Þ

The wavelet transform modulus maxima are defined as the

locations b where My½f �(b,a) is locally maximum in the direction

of the argument Ay½f �(b,a) at a given scaleaw0. The WTMM lie

on connected chains and are thus called maxima chains (Fig. 1)

[39,40,55,56]. Additional algorithmic details can be found in the

Appendix of reference [43]. One can then find the maxima along

these WTMM chains. The WTMM maxima, or WTMMM are

defined as the points along the maxima chains where the

My½f �(b,a) is locally maximum. The WTMMM are linked

through scales to form the space-scale skeleton (Fig. 1G). 1G)

point to in the limit a R 0+. Along these space-scale vertical lines

the WTMMM behave as a power-law ,ah(x) (Eq. (1)) from which

one can extract the local Hölder exponent h(x). The multifractal

formalism amounts to characterize the relative contributions of

each Hölder exponent value via the estimate of the so-called D(h)

singularity spectrum defined as the fractal dimension of the set of

points x where h(x) = h. To compute D(h) we therefore use

wavelets to partition the surface by defining the partition function

directly from the WTMMM in the skeleton [39]:

Z(q,a)~
X
L[L(a)( sup

(x,a0)[L,a0ƒa)y

My½f �(x,a0))q ð8Þ

where L(a) is the set of all vertical space-scale lines in the skeleton

that exist at the given scale a.0 and which contain maxima at any

scale a0ƒa and q[R. One can then define the exponent t(q) from

the power-law behavior of the partition function:

Z(q,a)*at(q),a?0z ð9Þ

and the D(h) singularity spectrum of f can be determined from the

Legendre transform of the partition function scaling exponent [39]

D(h)~minq(qh{t(q)) ð10Þ

In practice, to avoid instabilities in the estimation of the

singularity spectrum D(h) through the Legendre transform

[98,99], we use h and D(h) as mean quantities defined in a

canonical ensemble, i.e. with respect to their Boltzmann weights

computed from the WTMMM :

Wy½f �(q,L,a)~

sup My½f �(x,a0)
�� ��q��

(x,a0)[L,a0ƒa

Z(q,a)
ð11Þ

Then one computes the expectation values:

h(q,a)~
X
L[L(a)

ln (x,a0)[L,a0 ,a sup My½f �(x,a0)Wy½f �(q,L,a)
���� ð12Þ

and

D(q,a)~
X
L[L(a)

Wy½f �(q,L,a) ln (Wy½f �(q,L,a)) ð13Þ

from which one derives

h(q)~
dt(q)

dq
~ lim

a?0z
h(q,a)= ln a ð14Þ

D(q)~ lim
a?0z

D(q,a)= ln a ð15Þ

and thus the singularity spectrum D(h) as a curve parameterized

by q.

Homogeneous monofractal functions with singularities of

unique Hölder exponent H are characterized by a linear t(q)
curve of slope H. A nonlinear t(q) is the signature of

nonhomogeneous multifractal functions, meaning that the Hölder

exponent is a fluctuating quantity [39,98,99] that depends on x.

Then the corresponding singularity spectrum has a characteristic

single-humped shape. Note that for both mono- and multifractal

functions

D(q~0)~{t(q~0)~DF ð16Þ

where DF (noted simply D throughout the text) is the fractal

dimension of the support of singularities of f.

Statistical Tests
The Wilcoxon rank-sum test is a non-parametric statistical

hypothesis test that is used as an alternative to Student’s t-test
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when the population cannot be assumed to be normally

distributed. It was used here to calculate the p-values comparing

the CC and MLO fractal dimensions and benign and malignant

cases images since the benign data followed a bimodal distribution

(Fig. 4). The calculations were done using the Wilcox test in R.

Bayesian Statistics
Bayes theorem states that

p(h G)j
posterior

~
p(G h)j

likelihood
�

p(h)

prior
=

p(G)

evidence
ð17Þ

where the prior, p(h), represents the strength of our belief in

malignant lesions (p(M)) or benign lesions (p(B)) out of those that

have been diagnosed by a radiologist. The posterior, p(h G)j ,

represents the strength of our belief, having accounted for the

geometrical evidence, G, where G represents the position of the

lesion in the fractal dimension plot, either fractal (F) or Euclidean

(E). The quotient of the likelihood over the evidence, p(G h)=p(G)j ,

represents the support the evidence, G, provides for h. Since the

prior reflects uncertainty in the parameter valueh, p(h)was based

on a Beta distribution with a specified mean and standard

deviation. The Beta distribution is as follows:

f (h; a,b)~
C(azb)

C(a)C(b)
ha{1(1{h)b{1 ð18Þ

The Probability Model. To estimate the mean of the Beta

distribution for malignant cases, p(M), the prevalence of

mammograms with a BI-RADS assessment score of 3, 4, and 5

were used as determined by the radiologists diagnostics multiplied

by the historical probability of mammograms receiving those

assessment scores result in malignant MC clusters respectively.

One out of the 59 cases considered in this study received an

assessment score of 3, 47 out of 59 received a 4, and 11 out of 59

received a 5. Based on historical data [14,66,67], the probability of

malignant lesions given an assessment score of 3 is 2%, an

assessment score of 4 is 26.5% (taken as the midpoint of the

reported interval of [23%–30%], and an assessment score of 5 is

95%. Therefore the Beta distribution for p(M) was chosen with a

mean of

1 � 0:02z47 � 0:265z11 � 0:95

1z47z11
~0:3885

and the Beta distribution for p(B) with a mean of 1–

0.3885 = 0.6115. However, since there isn’t much certainty

regarding these values, the Beta distribution for p(M) and p(B)
were assigned a relatively large standard deviation of 0.25. This

resulted in a Beta distribution for p(M) with parameters (a,b) =

(1.09241,1.71223) and p(B) with parameters (a,b) = (1.71223,

1.09241). The likelihoodp(F M)j , where F represents breast lesions

characterized as being in the fractal zone (and E likewise

represents those in the Euclidean zone), is based on the 23 of

the 25 malignant cases that were in the fractal zone; this likelihood

is the probability that the data could be generated with parameter

values h. Similarly, the likelihood p(E B)j is based on the 30 out of

34 benign cases that were in the Euclidean zone. To arrive at the

posterior distributions p(M F )j and p(B E)j , the R routine

‘‘BernBeta.R’’ was used, as defined in [65].

The resulting posterior distribution for p(M F )j was a Beta

distribution with parameters(a~24:0924,b~3:71223). Based on

this distribution, the resulting 95% highest density interval

was(0:742,0:975). The posterior distribution for p(B E)j was a

Beta distribution with parameters(a~32:7122,b~5:09241).
Based on this distribution, the resulting 95% highest density

interval was(0:757,0:962). The highest density interval spans 95%

of the posterior distribution such that every point inside the

interval is deemed more credible. In other words, given the prior

and the likelihood, observing the parameter value for the

percentage of breast lesions characterized in the fractal zone that

are malignant, there is a 95% probability that this parameter is

between 0.742 and 0.975. Similarly, for the percentage of breast

lesions characterized in the Euclidean zone that are benign, there

is a 95% probability that this parameter is between 0.757 and

0.962.

Statistical ‘‘coin toss’’ experiment
A random sample was taken from the posterior distribution,

which gives a sample probability of a malignant case given fractal

characterization, and similarly a benign case given Euclidean

characterization. This probability was used to conduct the ‘‘coin

toss’’ 27 times, which is the total number of cases in the fractal

zone (23 malignant and 4 benign) and 32 times, which is the total

number of cases in the Euclidean zones (30 benign and 2

malignant), all based on the posterior distribution. This random

sampling was performed 100,000 times to arrive at a discrete

probability distribution, i.e. a histogram, as shown in Fig. 7.
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