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Summary

Background: Inertial measurement unit (IMU) sensor-based techniques are becoming more popular in horses as a tool for objective locomotor

assessment.

Objectives: To describe, evaluate and validate a method of stride detection and quantification at walk and trot using distal limb mounted IMU sensors.

Study design: Prospective validation study comparing IMU sensors and motion capture with force plate data.

Methods: A total of seven Warmblood horses equipped with metacarpal/metatarsal IMU sensors and reflective markers for motion capture were hand

walked and trotted over a force plate. Using four custom built algorithms hoof-on/hoof-off timing over the force plate were calculated for each trial

from the IMU data. Accuracy of the computed parameters was calculated as the mean difference in milliseconds between the IMU or motion capture

generated data and the data from the force plate, precision as the s.d. of these differences and percentage of error with accuracy of the calculated

parameter as a percentage of the force plate stance duration.

Results: Accuracy, precision and percentage of error of the best performing IMU algorithm for stance duration at walk were 28.5, 31.6 ms and 3.7% for

the forelimbs and �5.5, 20.1 ms and �0.8% for the hindlimbs, respectively. At trot the best performing algorithm achieved accuracy, precision and

percentage of error of �27.6/8.8 ms/�8.4% for the forelimbs and 6.3/33.5 ms/9.1% for the hindlimbs.

Main limitations: The described algorithms have not been assessed on different surfaces.

Conclusions: Inertial measurement unit technology can be used to determine temporal kinematic stride variables at walk and trot justifying its use in

gait and performance analysis. However, precision of the method may not be sufficient to detect all possible lameness-related changes. These data

seem promising enough to warrant further research to evaluate whether this approach will be useful for appraising the majority of clinically relevant

gait changes encountered in practice.
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Introduction

Many gait events can be effectively evaluated through subjective visual

lameness appraisal by an experienced clinician [1]. However, although it

has been shown that experienced clinicians are more repeatable and have
a higher interobserver agreement in detection of gait asymmetries when

compared with inexperienced observers [2], even the most experienced
clinicians are reliant on the limitations of the human visual perception of

motion [3]. Inertial measurement unit (IMU) sensor-based technology for
objective gait analysis in horses has been under constant development.

These systems often rely on sensors mounted in the midline of the horse
(e.g. pelvis and head) that make use of a signal decomposition routine [4]

to describe and record motion in the vertical plane. This method provides
reliable and objective quantification of head and pelvis movement

asymmetry which is related to changes in weightbearing and propulsion

due to lameness. Quantification of limb kinematics or spatial and temporal
stride variables might be a useful addition to the current technology,

providing extra information that might be related to specific gait changes
due to lameness. To achieve this, characterisation of the gait and motion

patterns of each individual limb, which are known to influence trunk and
head motion symmetry [5,6], is necessary.

The accurate and precise detection of the stride, i.e. the accurate
detection of hoof-on/off events, is a crucial prerequisite for the proper

determination of temporal and spatial stride characteristics and the
currently used IMU-based systems can only achieve this partially. Since

these sensors are commonly mounted on the upper body of the horse

they can only obtain limited information regarding limb gait events like
hoof-on/off at trot [7] or at walk [8], thereby severely limiting their

application for detection of limb kinematics.
The purpose of this study was to describe, evaluate and validate a new

method of stride detection and characterisation using limb mounted IMU
sensors at walk and trot. It was hypothesised that the use of IMU sensors

with a higher G range than usual and using multi-level algorithms would
enable accurate and precise detection of hoof-on and hoof-off gait events

that would be comparable to the performance of motion capture as the
other alternative to the use of a force plate, the use of which principally is

limited to laboratory situations.

Materials and methods

Horses

A total of seven Warmblood horses (six mares and one gelding) with a

body mass range of 506–608 kg (mean 564.4 kg), height at the withers
range 1.58–1.75 m (mean 1.65 m) and age range of 5–21 years (mean

7.5 years) were used for this study. All subjects had no history of lameness
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and no lameness was observed during visual examination at walk and trot
on a straight line prior to data collection.

Data collection

All subjects were instrumented with one IMU sensor (Promove-mini)a on

each limb. Each sensor (mass 20 g) was firmly attached to the lateral aspect
of each metacarpal/metatarsal bone using a custom made holster (Fig 1).

Additionally, IMUs were attached to the right front and hind hooves for data

collection for another, unrelated study. The sensors were set to a sampling
rate of 200 Hz, with the low g accelerometer set at �16 g and the high g
accelerometer set at�200 g. Data was stored using the internal memory of
each sensor (2 Gb microSD). Synchronisation between all sensors was

guaranteed with an error of less than 100 ns. Reflective markers (12.5 mm
Ø, spherical passive marker)b were glued proximally and distally to each of

the limb mounted IMUs and three additional markers attached to each right
hoof (lateral heel, lateral toe area and lateral coronet). Motion capture data

was recorded at 200 Hz using 6 infrared cameras (ProReflex 240)b,

positioned along the y axis of a force plate (Z4852C)c. The force plate was
covered with a 5 mm rubber mat. The analogue force plate signal was fed in

to an A/D converterb, processed at 1 kHz with 12 bit resolution and sampled
by themotion capture software (QTM)b at 200 Hz ensuring that the sampling

moments between measurements of the two systems have a fixed and
known timing relationship. Speed over the force plate was measured using

two pairs of photoelectric sensors spaced 2 m apart, centred over the force
plate. All trials were videorecorded using standard equipment for

retrospective analysis of the collected data. Prior to data collection, all
instruments were calibrated according tomanufacturers’ instructions.

All subjects were fitted with the instruments and were led over the force

plate by an experienced handler in walk and trot for 5 min as a warm-up
exercise before the data collection. A minimum of five valid force plate

impacts of the right front hoof and right hind hoof were collected at walk
and trot from all subjects. In order to collect five valid measurements for

each limb, an average of 25 trials were needed for trot and 19 for walk. A
trial was considered to be valid if the impact of the hoof was located within

the force plate measuring limits; only one limb was in contact with the
plate at a time, if the horse was trotting straight at a constant pace and

within a preset speed range of 0.8–1.4 m/s at walk and 1.7–2.7 m/s at trot.

Kinematic analysis

All collected data was processed and analysed in custom written scripts

using Matlab (r2015a)d. The IMU collected data was frame synchronised

with the motion capture system by evaluating the cross correlation

function between the metacarpal/metatarsal angular velocity measured by
the IMU and the motion capture system. A threshold of 30 N was used for

the force plate calculations. The hoof-on event was determined as the
moment when the load along the vertical axis (z) passed 30 N and hoof-off

as the first moment after hoof-on, when the force along the z axis dropped
below 30 N. Detailed information on the synchronisation method used is

provided as Supplementary Item 1.

Inertial measurement unit event detection algorithm

A total of four algorithms were used to calculate the hoof-on/off events.

Algorithm 1 is a novel algorithm based on direct inertial measures
(acceleration and rate of turn), requiring very low computing power and

suitable for running in a real-time configuration. Algorithm 2 is an
implementation of a previously described algorithm [8]. A post-processing

routine based on the vector magnitude of the acceleration signal
(acceleration magnitude peak) calculated by the IMU accelerometer was

developed as an attempt to increase the accuracy and precision of

algorithms 1 and 2. This routine was applied to algorithms 1 and 2
resulting in two new algorithms, 3 and 4, respectively. A detailed

description of the IMU algorithms is provided as Supplementary Item 2.

Motion capture event detection algorithm

Using the data from heel and toe reflective markers, an algorithm was
designed to detect the toe/heel-on/off events. The algorithm is based on

direct kinematic data collected by the motion capture cameras [9]. A

detailed description of the motion capture algorithms is provided as
Supplementary Item 3.

Data analysis

Using the force plate as the gold standard reference for stride

characterisation timing, accuracy of the computed parameters (i.e. hoof-
on/off, toe-on/off, heel-on/off) was calculated as the difference in

milliseconds between the IMU or motion capture generated data and the

data from the force plate and precision as the s.d. of the accuracy. A
positive accuracy indicates an overestimation (i.e. IMU or motion capture

detection of event later than force plate) of the parameter calculated by
the IMU or motion capture system and a negative accuracy indicates an

underestimation of that parameter (i.e. IMU or motion capture detection of
event before force plate). Performance of the algorithms was judged based

on primarily demonstrating the best precision (closest to zero) combined
with the best accuracy (closest to zero).

For further comparison of the algorithms’ performance, the accuracy of
IMU stance duration was determined as described above for hoof-on/off,

with the force plate calculated stance duration as a reference and with

stance duration defined as the time between hoof-on and the subsequent
hoof-off. Combination of algorithms for stance duration calculation were

also evaluated and tested to identify the combination that obtained the
best overall accuracy and precision. For the motion capture data, stance

duration was calculated for both limbs and gaits, based on four possible
combinations (i.e. toe-on toe-off; toe-on heel-off; heel-on heel-off and heel-

on toe-off). Accuracy and precision of motion capture stance duration were
calculated as described above for the IMU. The percentage of error in stance

duration was calculated with the accuracy as a percentage of the force plate

measured stance duration. If any of the IMU or motion capture algorithms
failed to perform detection of an event (e.g. hoof-on/off), the calculation of

that specific event for that trial was not included in the final calculations. This
was verified in a number of trials in our experiment for algorithms 1, 3 and

algorithm combination (n = 2; n = 3, respectively) and in eight events for the
motion capture detection. However, the remaining calculated parameters

not related to that specific event for that trial were kept.
Open software (R version 3.2.3)e was used for statistical analysis using

the package ‘nlme’ (version 3.1–121) for linear mixed effects model and
‘BlandAltmanLeh’ (version 0.1.0) for calculation of IMU and motion capture

stance duration limits of agreement. For statistical comparison of the 4

different IMU algorithms and the algorithm combination, the calculated
square root transformed absolute accuracy for the stance duration was

used as the outcome variable. Horse Id was used as random effect to
account for the correlated observations within horse; explanatory variables

Fig 1: Reflective motion capture markers and inertial measurement unit (IMU)

sensors attached to a horse in standardised locations. The IMU sensors were

attached to the right lateral metatarsal and metacarpal bones, one reflective

marker was placed above and beneath each sensor. Also, three markers were

attached to the right fore- and right hind hooves (heel, lateral toe and lateral

coronet), but only the lateral heel and lateral toe markers were used for the

motion capture detection algorithm in the current study.
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are algorithm, gait, limb and the interaction between limb and algorithm. A

constant variance function (varIdent) for algorithms was added to the
model to take the different variances between algorithms into account.

Model adequacy (normality and constancy of variance) was confirmed
using visualisation of the scatter plot residuals vs. fitted values and

explanatory variables respectively and QQ-plots. The Akaike’s information
criterion was used to select the best model.

Results

A total of 150 stance phases were collected; 77 for the front limb (37 for
walk; 40 at trot) and 73 for the hindlimb (36 at walk and 37 at trot). Visual

assessment of the force plate ground reaction forces data showed the
typical patterns for each specific gait and three measurements were

excluded from the final analysis due to abnormal ground reaction force

curves.

Inertial measurement unit-based determination of

hoof-on/hoof-off events compared with force plate

data (descriptive statistics)

The four different tested algorithms performed differently for both limbs
and gaits as demonstrated in Table 1. Algorithm 3 had the best

performance for hoof-on, at walk in the front limb (accuracy: 0.3 ms;
precision: 11.5 ms). For the hoof-on detection algorithm 2 had an overall

negative accuracy that after the acceleration magnitude peak post-
processing routine (algorithm 4) becomes closer to zero in the front limb

and in the hindlimb becomes positive; however, precision hardly changes.
The hoof-off detection for most algorithms shows a negative accuracy.

Algorithm 1, after the post-processing acceleration magnitude peak routine

(algorithm 3), for hoof-off detection, shows an improvement in accuracy for
both front and hindlimb at walk and trot. When comparing within the same

algorithm, the hoof-off and hoof-on moments, the latter had better
accuracy and precision than the former.

Motion capture-based determination of hoof-on/off

events comparedwith force plate (descriptive statistics)

The performance of our motion capture-based detection is summarised in

Table 2 and a descriptive comparison with the IMU algorithms is illustrated

in Figure 2. The hoof-on event defined as heel-on measured by the motion

capture system showed the best overall performance, except at walk for
the hindlimbs where the toe-on moment appears to be the most accurate

and precise method for this purpose. The hoof-off moment defined as the
toe-off measured by the motion capture system shows the best overall

accuracy and precision combination. Similar to the IMU-based
determination of hoof-on/off events, the hoof-on detection has a better

overall performance when compared with hoof-off detection. However, the

IMU approach performed overall better for hoof-off detection.

Inertial measurement unit stance duration accuracy,

precision, limits of agreement and model estimates

The stance duration calculation performance of the IMU algorithms and the
algorithm combination is resumed in Table 3 and illustrated in Figure 3.

Bland-Altman limits of agreement can be found in Table 3, Figure 4 and
model estimates are resumed in Supplementary Item 4.

When taking the algorithm combination as a reference and with a 95%
confidence interval (CI), our model shows that for the front limbs, the

difference in predicted absolute accuracy of the algorithm combination
(reference) is not significantly different from algorithm 1 (P = 0.7), but the

differences between algorithm 2 (P<0.05), algorithm 3 (P = 0.05) and

algorithm 4 (P<0.05) are significant. For the hindlimbs, the difference in
predicted absolute accuracy of the algorithm combination (reference) with

algorithms 1, 2 and 4 is significant (P<0.05), but this difference is not
significant for algorithm 3 (P = 0.7). A significantly higher (further away

from zero) estimated absolute stance duration accuracy (5.45, 95% CI:
4.67–6.23) was also observed for trot when compared with walk (P<0.001).
Also, a significantly lower (closer to zero) estimated absolute accuracy
(3.69, 95% CI: 2.59–4.80) was observed for the hindlimbs when compared

with the front limbs (P = 0.02).

Motion capture stance duration accuracy, precision,

limits of agreement and percentage of error

(descriptive statistics)

The stance duration calculation performance (accuracy, precision,
percentage of error and limits of agreement) of the algorithms and their

combinations is resumed in Supplementary Item 5) and illustrated in

Figure 3 for the algorithm combination. Using stance duration defined by
heel-on/toe-off moments, we achieved the best overall performance for

stance duration calculation. The best performance was achieved for the
front limbs at walk (accuracy: �22.0 ms, precision: 21.6 ms, percentage of

error: 3.1%) and at trot (accuracy: �27.2 ms, precision: 19.7 ms,
percentage of error: 8.0%).

Discussion

Our study addressed four different challenges related to stride detection
and calculation of stride parameters based on IMU sensors placed on the

lower limbs. 1) Different functional and kinematic properties between front
and back limb [10,11], 2) different kinematic features between walk and trot

[12], 3) detection of hoof events, based on sensors placed on an adjacent

body segment, and 4) interindividual variations in limb kinematics [13].
We limited ourselves to collect data from the right limbs since all

quadrupedal vertebrates exhibit bilateral movement symmetry between
limb pairs (i.e. front pair and hind pair) [14], reducing the number of force

plate trials demanded for each subject. We have assumed that the IMU
represented the absolute 3D motion of the cannon bone, deliberately

ignoring the artefact caused by skin displacement since previous research
demonstrated that this effect is minimal in the equine lower limb [15].

Stance duration accuracy was used as the reference parameter for
comparison of the four algorithms and the algorithm combinations since

the parameter intrinsically depends on both the hoof-on/off moments, can

be easily and with great reliability calculated using a force plate and motion
capture [9,16] and is known to be significantly influenced by lameness [17].

A lower percentage of error in IMU stance duration calculation is
observed for walk (3.7 and 1.9%) when compared with trot (8.4 and 9.1%).

This can be attributed to the shorter stance duration at trot, since the

TABLE 1: Tabular representation of the descriptive statistics for

Inertial measurement unit (IMU) hoof-on and hoof-off detection vs.

the ‘gold standard’ force plate (FP)

Algorithm

Hoof-on Hoof-off

Accuracy

(ms)

Precision

(ms)

Accuracy

(ms)

Precision

(ms)

Walk Front 1 10.9 27.2 28.8 26.0

2 �71.0 31.1 �45.2 51.5

3 0.3 11.5 14.2 31.0

4 �58.8 46.1 �40.5 53.2

Hind 1 14.1 8.1 �42.7 12.9

2 �18.3 13.5 �15.1 21.2

3 2.0 11.5 �5.4 14.3

4 0.1 14.8 �9.8 26.6

Trot Front 1 �3.8 23.9 28.8 17.5

2 �99.2 58.0 �26.8 19.2

3 7.9 6.7 �3.7 35.4

4 �82.6 61.8 �19.7 7.5

Hind 1 16.3 10.1 17.6 29.1

2 �10.8 12.5 �17.9 46.7

3 11.3 9.1 �2.3 46.9

4 11.3 9.1 �19.9 32.7

n = 7 horses. Accuracy, mean difference in milliseconds between IMU

and FP; precision, the s.d. of the accuracy between IMU and FP.

Accuracy and precision are deemed better if closer to zero.
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overall precision of the algorithms is comparable for both gaits. The

combination of different algorithms demonstrated to be a successful
method to improve the overall performance of our IMU calculations, as has

been demonstrated previously [9]. Our implementation of the previously
described algorithm (algorithm 2) showed comparable performances to

the initially reported algorithm, proving a good reproducibility of this

approach [8].
During hoof impact there is a pronounced acceleration peak that can be

measured at the level of the hoof [18,19] and also of the metacarpal bone
[8,20]. Previous research demonstrated that an attenuation of up to 87% of

the initial impact vibrations can be expected at the level of the third
metacarpal bone [21], with most of the attenuation happening at the

interface between the hoof wall and distal phalanx. The signal will thus be
measured at the level of the cannon bone after a time lapse, when

compared with the first registration of the impact peak by the force plate

[20]. This attenuation and retardation effect can help explain the positive

IMU accuracy observed in some instances for the detection of the hoof-on

moment in the algorithms dependent on the acceleration magnitude peak
feature (i.e. algorithms 3 and 4). The algorithms dependent on this

acceleration feature were able to effectuate significant improvement.
However, this presumes that the primary algorithms were capable of

performing successful initial processing. Failure of the primary algorithm

may result in inappropriate AMP detection, as a local acceleration peak not
related to hoof-on/off may be selected resulting in poor event detection.

When evaluating the accuracy of the hoof events calculated by the
motion capture system, it becomes clear that the heel-on moment is the

closest event to force plate hoof-on and toe-off is the closest event to
force plate hoof-off. Also, our IMU approach demonstrated a better overall

accuracy in detecting the hoof-off moment. We suggest that this can be
explained by the fact that the motion capture detection algorithm is more

affected by hoof conformation and variation in foot placement [22], since

the algorithm depends on how the toe/heel are elevated from the ground

TABLE 2: Descriptive statistics for motion capture determined hoof-on and hoof-off detection vs. force plate (FP) measured stance duration

events

Toe-on Heel-on Toe-off Heel-off

Accuracy (ms) Precision (ms) Accuracy (ms) Precision (ms) Accuracy (ms) Precision (ms) Accuracy (ms) Precision (ms)

Walk Front 4.0 51.9 �5.1 13.0 �27.1 20.7 �132.1 18.3

Hind 18.4 8.1 �15.8 17.4 �57.7 39.1 �136.4 16.9

Trot Front 15.5 12.4 3.9 8.3 �23.2 17.0 �75.8 10.0

Hind 14.5 7.4 5.6 10.0 �27.0 25.8 �78.0 7.8

Accuracy, mean difference in milliseconds (ms) between the motion capture calculated and the FP measured stance duration; precision, s.d. of the mean

difference between the motion capture calculated and FP measured stance duration (accuracy). Accuracy and precision are deemed better if closer to

zero.

Motion capture, Walk, Front limb IMU, Walk, Front limb

Motion capture, Walk, hindlimb IMU, Walk, hindlimb

IMU, Trot, Front limb

IMU, Trot, hindlimb

Motion capture, Trot, Front limb

Motion capture, Trot, hindlimb

Heel-off
Heel-on
Toe-off
Toe-on

Heel-off
Heel-on
Toe-off
Toe-on

Heel-off
Heel-on
Toe-off
Toe-on

Heel-off
Heel-on
Toe-off
Toe-on

Hoof-off

Hoof-on

Hoof-off

Hoof-on

Hoof-off

Hoof-on

Hoof-off

Hoof-on

–150 –100 –50 0 50 100 –150 –100 –50 0 50 100

–150 –100 –50 0 50 100 –150 –100 –50 0 50 100

–150 –100 –50 0 50 100 –150 –100 –50 0 50 100

–150 –100 –50 0 50 100 –150 –100 –50 0 50 100

Accuracy (ms) Accuracy (ms)

Accuracy (ms) Accuracy (ms)

Accuracy (ms) Accuracy (ms)

Accuracy (ms) Accuracy (ms)

Fig 2: Horizontal box plot of motion capture-based detection accuracy (left) and inertial movement unit (algorithm combination as described in Table 3) based detection

accuracy (right). A positive accuracy indicates an over estimation of the detected event [i.e. inertial measurement unit (IMU) or motion capture detection of event later

than force plate] and a negative accuracy indicates an under estimation of the event (i.e. IMU or motion capture detection of event before force plate). Box represents

the interquartile range, whiskers represent 75th percentile + 1.5 *interquartile range (IQR) and 25th percentile �1.5 *IQR, respectively. Notch represents the 95%

confidence interval of the median.
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TABLE 3: Descriptive statistics of stance duration of the different Inertial measurement unit (IMU) algorithms vs. ‘gold standard’ force plate

(FP)

Algorithm Accuracy (ms) Precision (ms) Lower limits of agreement Upper limits of agreement Error (%)

Walk Front 1 17.9 35.7 �52.1 87.9 2.3

2 25.8 51.2 �74.5 126.2 3.4

3 13.9 31.49 �47.8 75.6 1.8

4 18.3 60.3 �99.8 136.5 2.4

Combination (3 + 1) 28.5 31.6 �33.5 90.4 3.7

Hind 1 �56.8 12.5 �81.1 �32.3 �7.4

2 3.2 23.6 �43.1 49.5 0.5

3 �7.4 17.8 �42.3 27.4 �1

4 �9.8 29.9 �68.5 48.8 �1.2

Combination (4 + 3) �5.5 20.1 �44.8 33.8 �0.8

Trot Front 1 32.6 28.1 �22.4 87.6 10.2

2 72.4 55.7 �36.8 181.6 21.9

3 �11.6 34.6 �79.4 56.2 �3.8

4 62.9 64.0 �62.5 188.3 18.8

Combination (3 + 4) �27.6 8.8 �44.8 �10.4 �8.4

Hind 1 1.3 34.4 �66.1 68.8 1.3

2 �7.1 50.1 �105.3 91.1 �2.2

3 �13.6 48.9 �109.4 82.3 �4.2

4 �31.2 31.6 �93.1 30.8 �10.6

Combination (3 + 1) 6.3 33.5 �59.4 72.0 3

n = 7 horses. Accuracy, mean difference in milliseconds (ms) between IMU and FP stance duration; precision, the s.d. of the accuracy; error, the relative

mean difference between IMU and FP stance duration (accuracy) as a percentage of the FP stance duration. Accuracy, precision and error are deemed

better if closer to zero.

IMU stance duration accuracy, Algorithm combination

Motion capture based stance duration
accuracy (Walk, Front Limb)

Motion capture based stance duration
accuracy (Trot, Front Limb)

Motion capture based stance duration
accuracy (Trot, hindlimb)

Motion capture based stance duration
accuracy (Walk, hindlimb)

Walk front

Walk hind

Trot front

Trot hind

Toe-on - toe-off

Toe-on - heel-off

Heel-on - toe-off

Heel-on - heel-off

Toe-on - toe-off

Toe-on - heel-off

Heel-on - toe-off

Heel-on - heel-off

Toe-on - toe-off

Toe-on - heel-off

Heel-on - toe-off

Heel-on - heel-off

Toe-on - toe-off

Toe-on - heel-off

Heel-on - toe-off

Heel-on - heel-off

–200 –150 –100 –50 0 50 100

Accuracy (ms)

Accuracy (ms)

Accuracy (ms)

Accuracy (ms)

Accuracy (ms)

–200 –150 –100 –50 0 50 100

–200 –150 –100 –50 0 50 100 –200 –150 –100 –50 0 50 100

–200 –150 –100 –50 0 50 100

Fig 3: Horizontal box plot of the accuracy of stance duration. Top left, accuracy with inertial measurement unit (IMU) sensors with algorithm combination as described in

Table 3. Remaining plots represent the stance duration calculated using the motion capture data and based on toe/heel-on/off moments and possible combinations

thereof. Positive accuracy indicates over estimation of the detected event (i.e. IMU or motion capture detection of the event later than force plate) and negative accuracy

indicates under estimation of the event (i.e. IMU or motion capture detection of the event before force plate). Accuracy is higher closer to zero. The box represents the

interquartile range, whiskers represent 75th percentile + 1.5 *interquartile range (IQR) and 25th percentile �1.5 *IQR, respectively. Notch represents the 95% confidence

interval of the median.
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and this can be affected by hoof conformation, whereas the IMU measures

the actual limb movement resulting from the hoof-off event. Recent
research reported that there was a high degree of variation in foot

placement in horses [22,23] and this is thus more likely to affect our
described motion capture algorithm than the IMU method.

Our motion capture algorithm also shows a promising accuracy and
precision for determining the hoof events (i.e. heel/toe-on/off), although

further development of this technique is needed in order to achieve
further improvements. Motion capture technology has been previously

used, based on different algorithmic approaches [9,16] for the

determination of stance duration but to the authors’ knowledge, not for
the differentiation of the toe/heel events and this might provide

important insights when evaluating balance, rolling and conformation of
the hoof. These observations stress the value of using both techniques in

conjunction (IMU and motion capture) for biomechanical research and
clinical applications in horses. However, the advantages of the IMU

system (most importantly its low cost and versatility), make the IMU the
best single alternative for daily use in practice.

Previous research demonstrated that in lame horses the stance duration,
as a proportion of stride duration, increases significantly (3% in the

forelimbs and 2% in the hindlimbs) in the lame limb [24,25], as does

absolute stance duration [26]. These reported changes in stance duration
are small and might in certain cases fall below the limits of detection of the

techniques here proposed, as reflected in the wide limits of agreement
observed (Fig 4). However, further research into the actual effects of

lameness on the calculated parameters is needed to assess this, since most
research so far was either performed on a treadmill forcing the horse to a

constant speed, or by using stationary force plates permitting evaluation of
single individual strides only and thus susceptible to effects of intertrial

variation.

Conclusions

This study shows that IMU sensors placed on the lower limbs of horses

can be used for the accurate and fairly precise stride detection and

characterisation in horses at walk and trot. The quantitative establishment

of temporal and spatial gait variables, such as stride duration and stance

time, based on IMU technology that offers the great advantages of easy
applicability in the field and relatively low costs, then becomes possible.

Although stance duration calculation using our proposed IMU-based
approach is quite accurate, it is less precise, as reflected in the wide limits

of agreement observed. Further research is needed in order to investigate
to what extent the proposed algorithmic approaches are capable of

detecting kinematic changes due to lameness and other abnormal gaits
(e.g. ataxia). Nevertheless, the presented approach can serve as an easy

method of determining the necessary gait events (i.e. hoof-on/off),

justifying further development of this modern technology.
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