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Selective serotonin reuptake inhibitors (SSRIs) modulate serotonergic neurotransmission
by blocking reuptake of serotonin from the extracellular space. Up to now, it remains
unclear how SSRIs achieve their antidepressant effect. However, task-based and resting
state functional magnetic resonance imaging studies, have demonstrated connectivity
changes between brain regions. Here, we use positron emission tomography (PET) to
quantify SSRI’s main target, the serotonin transporter (SERT), and assess treatment-
induced molecular changes in the interregional relation of SERT binding potential (BPND).
Nineteen out-patients with major depressive disorder (MDD) and 19 healthy controls
(HC) were included in this study. Patients underwent three PET measurements with the
radioligand [11C]DASB: (1) at baseline, (2) after a first SSRI dose; and (3) following at least
3 weeks of daily intake. Controls were measured once with PET. Correlation analyses
were restricted to brain regions repeatedly implicated in MDD pathophysiology. After
3 weeks of daily SSRI administration a significant increase in SERT BPND correlations
of anterior cingulate cortex and insula with the amygdala, midbrain, hippocampus,
pallidum and putamen (p < 0.05; false discovery rate, FDR corrected) was revealed. No
significant differences were found when comparing MDD patients and HC at baseline.
These findings are in line with the clinical observation that treatment response to SSRIs
is often achieved only after a latency of several weeks. The elevated associations in
interregional SERT associations may be more closely connected to clinical outcomes
than regional SERT occupancy measures and could reflect a change in the regional
interaction of serotonergic neurotransmission during antidepressant treatment.

Keywords: positron emission tomography, serotonin transporter, depression, SSRI, antidepressants,
connectivity, network analysis

INTRODUCTION

The world health organization has estimated some 350 million people of all ages to suffer
from major depressive disorder (MDD), which is associated with general disability and
increased mortality (World Health Organization, 2015). For the treatment of MDD, selective
serotonin reuptake inhibitors (SSRIs) have become the most commonly prescribed substance class
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(Kraft et al., 2007; Farnia et al., 2015). Their mechanism of action
is based on their ability to bind the serotonin transporter (SERT),
hereby inhibiting serotonin (5-HT) reuptake, thus causing an
elevation in 5-HT levels in the extracellular space. However,
beyond this neurochemical effect, it remains unclear how SSRIs
lead to an improvement of depressive symptoms, in particular as
symptom improvement occurs after a latency period of several
weeks and because not all patients respond to initial treatment
(Esposito and Goodnick, 2003; Kraft et al., 2007; Holsboer, 2008;
Lynch et al., 2011). In addition, the SERT is involved in the
pathophysiology of depression, as demonstrated by molecular
imaging studies showing reduced brain SERT binding in MDD
(Gryglewski et al., 2014).

In recent years, brain network analyses using magnetic
resonance imaging (MRI) have evolved as an innovative
approach for the characterization of complex structural and
functional connections between brain areas (Bassett et al., 2008;
Bullmore and Sporns, 2009; Murphy et al., 2009; Weissenbacher
et al., 2009; Rubinov and Sporns, 2010). Noteworthy is
also the impressive increase of resting-state fMRI (rs-fMRI)
studies in the last decade, i.e., the evaluation of spontaneous
low-frequency brain activations in absence of a specific task
(Biswal et al., 1995, 2010). These approaches have already
proven to be valuable contributions in the investigation of
psychiatric disorders, as previous studies investigating MDD
and SSRI treatment were able to show alterations in structural
and functional brain networks between the pregenual anterior
cingulate cortex and the amygdala, thalamus and striatum
(Greicius et al., 2007; Anand et al., 2009; Lui et al., 2011;
Zhu et al., 2012; Connolly et al., 2013; Wang et al., 2014,
2015).

Positron emission tomography (PET) studies commonly
directly quantify differences in binding of molecular targets in
certain brain regions, e.g., by comparing patients and healthy
control subjects. Hence, the in vivo quantification of selected
proteins may enable the identification of biological correlates
underlying psychiatric disorders.

However, even if conditions or groups of subjects may differ
in certain characteristics, conducting comparisons of a molecular
target solely on a regional level may in some cases not be the
appropriate method to capture significant differences (Vanicek
et al., 2014) as it does not detect systemic or interregional changes
to neurotransmitter networks. The assessment of variations
within one neurotransmitter system, reflected for example
by interregional changes in protein concentration, seems a
promising approach. With this in mind, the acquisition of
interregional associations has recently been extended to the
field of molecular imaging with PET. For instance, studies
of the serotonin-1A (5-HT1A) receptor and SERT evaluated
relationships between brain regions (Hahn et al., 2010; Bose et al.,
2011; Hahn et al., 2014). Moreover, these associations of 5-HT1A
and SERTwere markedly different in patients (Hahn et al., 2014),
changed after SSRI treatment (Hahn et al., 2010) and predicted
SSRI treatment response (Lanzenberger et al., 2012).

The mentioned studies focused on specific interactions of the
raphe nuclei in the midbrain with serotonergic projection areas.
Therefore, we aimed to establish a method for the detection

of molecular interregional relationships. These relationships
may underline the aforementioned dysregulations proposed in
connectivity, reflected by an altered SERT distribution across
brain regions in MDD. Thus, unlike the comparison of protein
densities in regions of interest (ROIs) and between different
conditions or subject groups, we expect general interregional
changes that may be associated with the reported alterations
in neural circuits in psychiatric disorders, as well as the
impact of treatment procedures. Similar approaches analyzing
interregional metabolic relations already have been realized
previously using PET and [18F]-fluorodeoxyglucose ([18F] FDG;
Horwitz et al., 1984; Metter et al., 1984; McIntosh and Gonzalez-
Lima, 1993; Schreckenberger et al., 1998). It could be shown
that correlations of glucose metabolism between anatomically
delineated areas may reflect brain functions associated with
a variety of cognitive processes. Here we aim to adapt this
analysis to investigate associations between regions relating to
neurotransmitter properties.

Previous studies have already reported the considerable
reduction of SERT availability during SSRI treatment, expectedly
caused by the antidepressant’s occupation of the SERT
(Lanzenberger et al., 2012; Baldinger et al., 2014). In the
present study we have investigated the serotonergic circuits of
patients suffering from MDD at baseline and during treatment
with SSRIs. We compared correlations in SERT availability
between brain regions relevant in depression. That is, despite
the absolute decrease of SERT availability during SSRI treatment,
we are merely interested in the relative changes between brain
regions. We hypothesized that healthy subjects and patients
suffering from MDD differ in the interregional relation of SERT
availability between regions relevant to MDD pathophysiology.
Secondly, we expected a significant change in the interregional
relation of SERT availability after SSRI treatment in the MDD
group.

MATERIALS AND METHODS

Subjects
Data from 19 subjects (13 female, age range 27–54 years of age,
42.26 ± 7.84) suffering from MDD which has been included in
previous publications was analyzed (Lanzenberger et al., 2012;
Baldinger et al., 2014; Hahn et al., 2014). In addition, data of
19 healthy controls (HC; 6 female, age range 27–54, 37.58± 8.28,
mean ± SD) were analyzed for comparison. The groups differ
in gender distribution (p = 0.023), but not in age (p = 0.082).
However, since the latter result is marginal significant, we
controlled for both, age and gender in the analyses to exclude
any possible influence of these variables on the overall outcome.
Psychiatric disorders were assessed using a Structured Clinical
Interview (SCID) for DSM-IV diagnose and a 17-item Hamilton
Depression Rating Scale (HAM-D). Prior to PET measurements
the patients underwent neurological and physical examinations,
consisting of an electrocardiogram, a routine blood examination,
a urine drug test and, in women, a urine pregnancy test.
Exclusion criteria were drug abuse, medication intake preceding
the PET measurements within a period of 3 months (4 months
for fluoxetine) and a HAM-D score of <16 in MDD patients.
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All subjects provided written informed consent after briefing and
complete description of the study. The study was approved by
the Ethics Committee of the Medical University of Vienna and
performed according to the Declaration of Helsinki.

Study Design and Treatment
In this longitudinal study design, patients underwent three PET
measurements: first at baseline, second within 6 h after the
administration of an oral SSRI dose, and the third measurement
after a minimum of 3 weeks (mean time ± SD, 24.73 ± 3.3 days)
of daily oral SSRI treatment. The study medication was
citalopram (R, S-citalopram, 20 mg/day, nine subjects; Lundbeck
A/S, Denmark) or escitalopram (S-citalopram, 10 mg/day,
10 subjects), which constitute frequently prescribed SSRIs that
are administered to millions of patients. SERT binding potential
(BPND) at baseline, after first and after at least 3 weeks of daily
SSRI intake in patients is shown in Figure 1. HC were measured
once at baseline (Figure 1).

Positron Emission Tomography
PET measurements were performed using a GE Advance
full-ring scanner (General Electric Medical Systems, Milwaukee,
WI, USA) in 3D mode at the Department of Biomedical Imaging
and Image-guided Therapy, Division of Nuclear Medicine of the
Medical University of Vienna. For tissue attenuation correction
a transmission scan of 5 min was carried out with 68GE rod
sources. PET scans started as [11C]DASB was administered as a
bolus injection and total acquisition time was 90 min, split into
15× 1 min and 15× 5 min time frames (30 time frames in total).
Images were measured in kBq/ccm. Reconstruction occurred
in 35 transaxial section volumes (128 × 128) with an iterative
filtered backprojection algorithm (FORE-ITER) with a spatial
resolution of 4.36mm full-width at half maximum (FWHM) next
to the center of the field of view (Lanzenberger et al., 2012).

Serotonin Transporter Quantification
PET images were between-frame motion-corrected and summed
images were spatially normalized to a [11C]DASB specific
template in stereotactic Montreal Institute (MNI) space using
SPM8 (Wellcome Trust Centre for Neuroimaging, London,
UK1). The multilinear reference tissue model (MRTM2; Ichise
et al., 2003) implemented in PMOD image analysis software,
version 3.509 (PMOD Technologies Ltd., Zurich, Switzerland2)
was used for the SERT BPND quantification, with cerebellar gray
matter as the reference region and thalamus as the receptor-rich
region. SERT availability is quantified by the BPND. This
binding potential compared to the nondisplaceable uptake, is
defined as (VT−VND)/VND (unitless). VT and VND denote the
volume of distribution in the tissue and in the nondisplaceable
compartment, respectively (Innis et al., 2007).

Regions of Interest
ROIs highly relevant in depression and SSRI treatment were
selected based on both, published literature and acceptable signal

1http://www.fil.ion.ucl.ac.uk/spm
2http://www.pmod.com

to noise ratio (SNR) for SERT quantification. These ROIs mainly
comprised subcortical regions, i.e., thalamus (Anand et al.,
2005; Lui et al., 2011), putamen (Tao et al., 2013; Meng et al.,
2014), caudate nucleus (Kim et al., 2008; Pizzagalli et al., 2009),
globus pallidum (Anand et al., 2005), midbrain including dorsal
and median raphe nuclei (Lanzenberger et al., 2012; Pandya
et al., 2012), hippocampus (Lui et al., 2011; Sheline, 2011), and
amygdala (Drevets et al., 2002; Veer et al., 2010; Lui et al., 2011;
Gong and He, 2015), as well as cortical regions, i.e., the anterior
cingulate cortex (ACC; Anand et al., 2005; Sheline et al., 2010;
Lui et al., 2011; Pizzagalli, 2011; Gong and He, 2015) and the
insula (Veer et al., 2010; Jin et al., 2011; Lui et al., 2011; Connolly
et al., 2013; Tao et al., 2013). Except the midbrain, all regions
were delineated using the Harvard-Oxford probabilistic atlas and
averaged for both hemispheres.

Statistical Analysis
To test for normality of the BPND values, a Shapiro-Wilk-Test
was conducted, which was significant for two variables (data not
shown) and due to a sample size of <20, all correlations were
calculated using Spearman’s rank correlation.

Molecular relation is here defined as correlation of the
SERT density between brain regions, similar to ‘‘functional
connectivity’’ in fMRI. However, functional connectivity refers
to the temporal coupling of brain regions, whereas for
neurotransmitter PET no time sequences are correlated,
but molecular density quantities per region pair over the
entire group/condition. Correlation matrices were created by
calculating Spearman’s rank correlation coefficient (rho; ρ) for
each ROI pair over all subjects. To exclude the influence of
potentially confounders, the variables age and gender were
included as covariables into the partial correlation. This was done
separately for each group and time point, i.e., PET 1 (at baseline),
PET 2 (6 h after first treatment) and PET 3 (after at least 3 weeks
of treatment), respectively. 3D volume images were generated
using the Brain Net Viewer3 (Xia et al., 2013).

For the assessment of statistically significant differences in
correlations, a 10,000-fold permutation test was performed. For
the longitudinal analysis we assured that the measurements from
every subject were separated into different conditions (i.e., time
points) for each permutation, hence each subject was only
assigned once to each condition. For overall comparison the
resulting correlation matrices were transformed with Fisher’s
r-to-z-transformation. A false discovery rate (FDR) correction
with p < 0.05 was conducted, based on the number of
correlations, using the Benjamini-Hochberg method for multiple
comparison.

RESULTS

Changes in Interregional Molecular
Relation with Treatment in MDD Patients
Interregional SERT correlation matrices for each group and
time point can be seen in Figure 2. Derived from the
permutation tests, differences in interregional correlations of

3www.nitrc.org/projects/bnv
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FIGURE 1 | Serotonin transporter (SERT) availability in healthy controls (HC; N = 19) and in patients with major depressive disorder (MDD; N = 19)
during treatment with selective serotonin reuptake inhibitor (SSRI). Positron emission tomography (PET) 1 shows the condition at baseline, PET 2 6 h after a
single oral intake of SSRI and PET 3 after at least 3 weeks of daily SSRI treatment. The decrease in SERT availability indicates SERT occupancy by SSRIs during
therapy, which is especially visible in brain stem, subcortical regions and the cingulate cortex. The color table indicates SERT availability from low (blue) to high (red)
measured in binding potential (BPND). Crosshair marks the corresponding location in sagittal, coronal and axial view (from left to right).
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FIGURE 2 | Interregional SERT correlation matrices between nine regions of interest (ROIs). The upper left map shows the correlation (Spearman’s ρ) of
SERT binding in HC. The upper right map displays the condition of depressive patients at baseline (PET 1; unmedicated), the lower left and lower right maps show
the SERT availability after 6 h (PET 2) and after 3 weeks of oral SSRI treatment (PET 3), respectively. ACC, anterior cingulate cortex; the color table indicates the
molecular interregional relation between regions, given in Spearman’s rho (ρ).

SERT BPND were observed in several region pairs between
PET 1 and PET 2 only at p < 0.05 uncorrected. Here,
an increase was present in the molecular association of the
pallidum, putamen, insula, ACC, midbrain, hippocampus and
amygdala (see Table 1, Figure 3), however, without reaching
significance after correcting for multiple comparison. For
all of the ROI pairs associated with the ACC and insula
at PET 1 vs. PET 2, except for amygdala-pallidum, the
strength of correlations further increased at PET 1 vs. PET
3, such that changes seen in this comparison were significant
after correction for multiple comparisons (p < 0.05; FDR
corrected). Furthermore, additional significant and corrected
correlations emerged. A significant increase in molecular
relation was predominantly observed for correlations involving
the ACC and insula in conjunction with the amygdala,
midbrain, hippocampus, pallidum and putamen (see Table 2,
Figures 3, 4).

Differences in Interregional Molecular
Relations between Healthy Controls and
Patients at Baseline
The comparison ofMDD at baseline and HC revealed differences
in relations only at p < 0.05 uncorrected. Involved regions are
the hippocampus, insula, thalamus, midbrain and pallidum (see
Table 3). After correction for multiple comparison, there was no
significant interregional correlation left.

DISCUSSION

Patients with Major Depressive Disorder
during Treatment
In the current study we compared correlations in SERT
availability between brain regions relevant in depression.
Correlations of the ACC and insula with amygdala, midbrain,
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TABLE 1 | Treatment-induced changes in the interregional molecular
relation of serotonin transporter (SERT) availability in patients with major
depressive disorder (MDD).

Before treatment compared to first treatment (PET 1–PET 2)

ACC Midbrain (+0.45), pallidum (+0.61), putamen (+0.34)
Hippocampus Amygdala (+0.20), insula (+0.37), pallidum (+0.47)
Insula Pallidum (+0.56)

Changes are based on baseline Positron emission tomography (PET 1) compared

to SERT availability after a single oral dose of a selective serotonin reuptake inhibitor

(SSRI; PET 2) (values in parenthesis are differences in Spearman’s ρ; p < 0.05,

uncorrected).

hippocampus, pallidum and putamen increased significantly
after 3 weeks of SSRI treatment. These results suggest that an
interregional rearrangement of SERT availability may contribute
to SSRI treatment effects in MDD patients. The fact that a
portion of these elevations tend to be present already after
6 h of treatment, may reflect a stabilization of these relations
after continuation of SSRI treatment. These results parallel the
chronological pattern seen in clinical improvement of MDD
symptoms, which often requires several weeks of treatment,
whereas only subtle changes can be detected in the initial phase
(Taylor et al., 2006).

A number of fMRI studies investigated the influence of
SSRIs on activity and functional connectivity. Reduced neural
activation in the amygdala was found with fMRI when MDD
patients were exposed to emotional, i.e., fearful and sad faces,
following 8 weeks of antidepressant treatment (Sheline et al.,

FIGURE 3 | Treatment-induced changes in the relation of SERT
availability in depressive patients after administration of SSRI in two
different treatment conditions (PET 2, PET 3) compared to baseline
(PET 1). The lower triangle denotes significant increases in relations after a
single oral SSRI dose in depressive patients (p < 0.05; uncorrected). The
upper triangle shows significant increases after 3 weeks of treatment
(p < 0.05; uncorrected). Framed squares indicate changes which remain
significant after FDR correction for multiple comparison at p < 0.05. ACC,
anterior cingulate cortex; the color table indicates changes in correlation
coefficients (∆ρ).

TABLE 2 | Treatment-induced changes in the interregional molecular
relation of SERT in patients with MDD, based on the comparison of
baseline (PET 1) to the SERT availability after 3 weeks of daily
administered selective serotonin reuptake inhibitor (SSRI) treatment
(PET 3).

Before treatment compared to ongoing treatment (PET 1–PET 3)

ACC Amygdala (+0.49)∗, hippocampus (+0.24)∗, midbrain (+0.67)∗,
pallidum (+0.71)∗, putamen (+0.49)∗

Insula Amygdala (+0.47)∗, hippocampus (+0.43)∗, midbrain (+0.51)∗,
pallidum (+0.61)∗, putamen (+0.36)∗

Hippocampus Amygdala (+0.24), putamen (+0.23)

Putamen Amygdala (+0.36)

Differences marked with an asterisk are significant after FDR correction (values in

parenthesis are differences in Spearman’s rho; p < 0.05, uncorrected).

2001; Fu et al., 2004; Harmer and Cowen, 2013). Further
effect of SSRI treatment could also be seen in the striatum
and cortical regions, such as the pregenual anterior cingulate
cortex (Fu et al., 2004). Furthermore, when investigating
the functional connectivity in response to affective facial
expressions, Chen et al. (2008) found a significantly increased
coupling between the amygdala and the cingulate cortex,
thalamus and striatum, in association with SSRI treatment.
Using a similar paradigm with affective stimuli, treatment with
venlafaxine (5-HT–norepinephrine reuptake inhibitor) affected
the activation of the left insula already after 2 weeks of
treatment (Davidson et al., 2003). To explore the presence of
biomarkers to predict treatment outcomes with SSRIs, Miller
et al. (2013) exposed unmedicatedMDD patients to an emotional
word processing fMRI task, following an 8 weeks treatment
with escitalopram. They reported an association between lower
activation prior to treatment in response to negative words in
midbrain, dorsolateral prefrontal cortex (PFC), insula, middle
frontal cortex, premotor cortex, ACC, thalamus as well as
caudate, and preferable treatment outcomes.

Although the present study could not reveal significant
correlations in all of the aforementioned regions, at least a
tendency for the most of these was also found in SERT
associations. Of those, the ACC and insula were involved in all
of the significant correlations. Interestingly, a number of these
correlations appear already after 6 h, although not significant at
this point. Using rs-fMRI and seed based connectivity analysis,
McCabe and Mishor (2011) investigated the effect of citalopram
on human brain circuits and selected several seed regions,
including the right amygdala and the subgenual cingulate cortex.
Although they were not able to show any differences in mood
compared to a placebo group, they revealed a reduced functional
connectivity between the amygdala and the ventral medial PFC,
when using the amygdala as seed region (McCabe and Mishor,
2011). Due to the low SNR in the cortical areas in our study
using this PET radioligand, the PFC had to be excluded from
the analysis. Further, it was also demonstrated that the resting
state functional connectivity between the left dorsal nexus (dorsal
medial PFC) and the left hippocampus was reduced after SSRI
treatment (McCabe et al., 2011).

Moreover, not only the functional connectivity, but also
changes in the regional glucose consumption are of interest. In a
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FIGURE 4 | Brain network indicating an increase in SERT relations of
depressive patients after 3 weeks of SSRI treatment compared to
baseline (FDR corrected). The brain image was created with the BrainNet
Viewer (http://www.nitrc.org/projects/bnv).

PET study assessing the total glucosemetabolismwith [18F] FDG,
a general shift in glucose metabolism was observed with SSRI
treatment, namely, an increased glucose metabolism in cortical
areas, such as the dorsolateral, ventrolateral, medial prefrontal
and parietal cortex, as well as in the dorsal ACC. On the other
hand, the left insular cortex, hippocampus and parahippocampal
regions showed a decreased consumption after an SSRI treatment
period of 6 weeks (Kennedy et al., 2001). These shifts underline
the possibility of a ‘‘normalization’’ effect in brain regions due to
SSRI treatment that may also be driven by the alterations in SERT
densities across regions.

Our current findings suggest that the therapeutic effect
of SSRI treatment is mediated by rebalancing SERT in
cortical and subcortical areas. In this study interregional
changes occurred among the insula and ACC, in association
with the midbrain, amygdala, hippocampus, pallidum and
putamen. In the light of the present results, we propose that
the changes in SERT relations may contribute to a better
understanding of the delayed antidepressant effects during SSRI
treatment, which may be reflected and influenced by a delayed
adjustment of the relationship between interregional SERT
densities.

TABLE 3 | Differences in interregional molecular relation of SERT
availability between healthy subjects and patient suffering from MDD
(values in parenthesis are differences in Spearman’s rho; p < 0.05,
uncorrected).

Healthy subjects compared to patients with major depressive disorder
at baseline (PET 1)

Hippocampus Thalamus (−0.23)
Pallidum Insula (−0.59), midbrain (0.34)

Patients with Depression vs. Healthy
Control
We compared the SERT interregional relations in depressed
patients at baseline with those of HC. A recent meta-analysis
revealed reduced SERT availability in MDD and highlighted
the impact of symptom heterogeneity, which might provide
an explanation for contradictory results, when investigating
the SERT in MDD patients (Gryglewski et al., 2014; Spies
et al., 2015). In our comparison a tendency towards decreased
SERT correlations in MDD was observed mainly for pallidum,
insula and ACC. Although these are not significant after FDR
correction, they contribute to our insight on differences in
SERT binding in depression on a network level. Interestingly,
the relations pallidum-insula and pallidum-ACC are among
those elevations occurring after 3 weeks of SSRI treatment.
Veer et al. (2010) reported a decreased functional connectivity
of the amygdala and left insula with other regions in a
whole brain network in depressed subjects. This finding may
reflect the impaired ability of depressed patients to regulate
negative emotions, a process in which the amygdala has shown
substantial involvement (Johnstone et al., 2007; Veer et al., 2010).
Further fMRI studies reported the involvement of the amygdala,
pallidostriatum, medial thalamus and insula during the exposure
of negative vs. neutral stimuli in patients with depressed subjects
compared to HC (Anand et al., 2005), as well as frontal gyri, ACC
and thalamus (Teasdale et al., 1999). It is known that the insula,
ACC, temporal pole and amygdala comprise regions which are
involved in emotional perception and regulation (Pessoa, 2008),
as well as the medial thalamus and hypothalamus (Alexander
et al., 1990; Phillips et al., 2003).

Limitations
One limitation of this study is that we did not differentiate
between first and recurrent depressive episodes in the MDD
patient group. It has been previously proposed that repeated
occurrences of episodes may impact on functional connectivity
patterns (Veer et al., 2010) and thus deteriorate the clinical
picture. However, a recent study investigating the antidepressant
efficacy of pre-adult onset compared to adult-onset MDD
also did not find differences regarding response, remission or
tolerability of antidepressant drugs (Sung et al., 2013). The
consideration of the overall treatment response or differentiation
of SSRI medication type (R,S-citalopram vs. S-citalopram) might
also affect the present findings. Another concern worthy to
be mentioned is the relatively low number of subjects. As a
consequence, the limited sample size may cause increases in false
negative results, which should be improved in future studies.
Nevertheless, the reported results withstood correction for
multiple comparisons using the Benjamini-Hochberg method,
which adequately controls for false positive findings.

Therefore, a sample size with a minimum of subjects per
group is required to maintain statistical power in the application
of the permutation test procedure. Thus, the results presented
here were not further differentiated by treatment response
outcomes, leading to even smaller group sizes. However, a less
heterogenic but more extensive patient group could contribute
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to highlight these differences even more clearly. Further, the
consideration of all brain regions, including cortical regions, in
this analysis would have allowed to form more global statement
in terms of interregional effects on SERT binding. The low SNR
due to the sparse SERT density in the most cortical regions
although, urge to focus on those regions that show a high
binding. However, according to the design of the present study,
no evidence can be provided if the elevated correlation of BPND
between regions results from an overall decrease of interregional
differences due to SERT occupancy. The observation of elevated
correlations of BPND between regions may be attributed to
this effect, given preserved inter-individual differences in BPND.
Finally, the outcomes on interregional relations presented here
were determined on group level. Future studies investigating
changes in interregional relations based on dynamic PET will
enlighten if changes occur also in single subjects.

Conclusion
In the present study we were able to detect changes in
interregional correlations of SERT BPND with SSRI treatment
in MDD patients, towards a significant increased rearrangement
of SERT availability. This finding underlines the concept of
interregional changes, rather than mere focal modifications,
induced by SSRIs. Our results hereby contribute to a better
understanding of SSRI treatment effects.
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