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Simple Summary: Disease of the heart muscle (cardiomyopathy) is very common in the domestic cat
and may result in several severe outcomes. These include formation of a thrombus in the left atrium
which migrates to the hindlimb cutting off the blood supply, a condition called aortic thromboem-
bolism. Affected cats present with hindlimb paralysis and extreme pain, often requiring euthanasia
on humane grounds. Several factors are known to predispose to thrombus formation, including
damage to the inner cellular lining of the atrium which exposes proteins that initiates thrombosis. We
studied the expression of one such protein called von Willebrand Factor in the left atrium of cats with
and without cardiomyopathies and at different stages of disease severity. We found that expression
increased in cats with advance disease. Obtaining a greater understanding of the role this protein has
in thrombus formation may allow development of novel antithrombotic agents to help prevent this
devastating consequence of feline cardiomyopathy.

Abstract: Aortic thromboembolism (ATE) occurs in cats with cardiomyopathy and often results in
euthanasia due to poor prognosis. However, the underlying predisposing mechanisms leading to
left atrial (LA) thrombus formation are not fully characterised. von Willebrand Factor (vWF) is a
marker of endothelium and shows increased expression following endothelial injury. In people
with poor LA function and LA remodelling, vWF has been implicated in the development of LA
thrombosis. In this study we have shown (1) the expression of endocardial vWF protein detected
using immunohistofluorescence was elevated in cats with cardiomyopathy, LA enlargement (LAE)
and clinical signs compared to cats with subclinical cardiomyopathy and control cats; (2) vWF was
present at the periphery of microthrombi and macrothrombi within the LA where they come into
contact with the LA endocardium and (3) vWF was integral to the structure of the macrothrombi
retrieved from the atria. These results provide evidence for damage of the endocardial endothelium in
the remodelled LA and support a role for endocardial vWF as a pro-thrombotic substrate potentially
contributing to the development of ATE in cats with underlying cardiomyopathy and LAE. Results
from this naturally occurring feline model may inform research into human thrombogenesis.

Keywords: von Willebrand factor; cardiomyopathy; endocardium; left atrial enlargement; immuno-
histochemistry; aortic thromboembolism

1. Introduction

Feline aortic thromboembolism (ATE) is a severe complication that can occur in
11.6–21% of cats with myocardial disease [1–6]. It happens when a thrombus usually
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originating in the left atrium (LA) or left atrial appendage (LAA) dislodges and obstructs a
branching artery of the aorta. Common clinical signs frequently relate to the pelvic limbs
and include severe pain, paraparesis, paraplegia, absence or reduced strength of femoral
pulses, and cyanotic paws. ATE in cats carries a poor prognosis, with over 60% of affected
cats being euthanised on presentation at first opinion practices [7].

Virchow’s triad describes three factors that contribute to venous thrombosis: blood
stasis, endothelial injury, and hypercoagulability [8]. Abnormal findings associated with
Virchow’s triad have been reported in cats with a variety of cardiomyopathies, which
provides insights into the potential pathogenesis of feline ATE. For instance, development
of spontaneous echo contrast (SEC) in the LA of cats with cardiomyopathy is associated
with decreased LAA blood velocity and blood stasis [9]. A hypercoagulable state has been
suggested in cats with HCM [10] and histopathologic evidence of LA endothelial damage
has been observed in cats with CHF [11]. A further indication of endothelial dysfunction in
cats with ATE is that plasma arginine, the precursor to nitric oxide critical for endothelial
health, is lower in these cats than in than cats with cardiomyopathy alone [12]. However,
the contribution of endothelial injury in the left atrial endocardium to the development of
ATE has not been studied at the sub-cellular level in cats with cardiomyopathy at different
stages of their disease process and only to a limited extent in humans with heart disease.

vWF is synthesised in endothelial cells and megakaryocytes and is an adhesive protein
that plays an important role in thrombosis through the formation of multimers [13,14].
Endothelial vWF is either secreted into the plasma constitutively, stored in rod-shaped
specialised compartments called Weibel-Palade bodies within the endothelial cells, or
deposited in the subendothelium [15]. vWF of platelet origin is stored in alpha-granules
within the platelet and is released upon activation. The main functions of vWF are to aid
binding of platelets to exposed subendothelium and to assist in platelet aggregation via the
glycoprotein Ib receptor on platelets [16,17]. The majority of plasma vWF originates from
the endothelium, and in human patients the plasma concentration of vWF increases in
various thrombogenic diseases reflecting endothelial injury [18]. Similarly, in cats with ATE
and cardiomyopathy, the elevation in circulatory vWF has been suggested to be associated
with endothelial damage [10].

In human patients with atrial distension due to a variety of cardiac conditions, expres-
sion of circulating and LA endocardial vWF protein is increased and associated with the
severity of LA blood stasis and atrial remodelling and has been suggested as a predisposing
factor for thrombogenesis [19–23].

Previous studies have also confirmed the pathogenic role of vWF in both arterial and
venous thrombosis. High haemodynamic forces present in the systemic arterial system
result in platelets binding to vWF through integrin αIIbβ3 for the initiation of aggrega-
tion [13,24], while patients with vWF deficiency as a result of von Willebrand disease are
partly protected against arterial thrombosis [25]. vWF also contributes to thrombosis in
veins, through formation of an extracellular scaffold with platelets, leukocytes, and fibrin
to trap erythrocytes [26]. Mice deficient in vWF were protected from induced deep vein
thrombosis [26]. Although fibrin is the best studied factor involved in trapping red blood
cells (RBCs) in slow blood velocity environments [27–30], a recent in vitro study showed
that vWF can bind to RBCs directly and the degree of binding is increased when blood
stasis is present [31].

Currently, there is limited information regarding the contribution of endocardial vWF
to thrombosis in cats with myocardial disease. However, given the pro-thrombotic action
of vWF in both rodent models and human patients described above, it is likely that vWF
also plays an important role in the development of LA thrombosis in cats. The aim of this
study was to investigate the expression of vWF in the LA of cats at different clinical stages
of myocardial disease.
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2. Materials and Methods
2.1. Study Population

Cats with clinical signs related to cardiomyopathy were enrolled based on their clinical
presentation of ATE, CHF or both. The control cats and those with preclinical cardiomy-
opathy (without clinical signs of disease) were recruited from referral and first opinion
cases euthanised for a variety of reasons. Cardiomyopathy was confirmed based on charac-
teristic cardiac structural changes on gross and histopathology using criteria previously
described [32,33] (see supplementary material Table S1 for histopathological diagnostic
criteria for feline cardiomyopathies) in addition to complete or point of care (POC) echocar-
diographic examination [34–36] (see Table S2 for echocardiographic diagnostic criteria for
feline cardiomyopathies). Briefly for full echocardiographic examinations, all measure-
ments were taken over three different cardiac cycles and averaged. Measurements taken
included left atrium to aortic ratio (LA/Ao), maximal left ventricular freewall thickness in
diastole (LVFWd), maximal interventricular septum thickness in diastole (IVSd), presence
of systolic anterior motion of the mitral valve (SAM), presence of spontaneous echo contrast
(SEC), and presence of a formed thrombus in the LA. SAM was defined as anterior motion
of either septal or both mitral valve leaflets during systole toward the LVOT using the right
parasternal long axis five chamber view on review of 2D cineloops [37]. All echocardio-
graphic examinations were performed by a veterinary cardiology diplomate or resident
under direct supervision (see supplementary material Table S5 for echocardiographic views
used [38,39]). POC examinations were performed in the emergency setting by a veterinary
ECC diplomate or resident in training and facilitated measurement of LA/Ao as described
above and a subjective assessment of left ventricular wall thickness in diastole.

Cats were divided into four groups: (1) Control group: cats without structural and
histopathological cardiac changes, (2) Subclinical group: cats with subclinical cardiomy-
opathy (some cats had mild LAE), (3) CHF group: cats with CHF attributable to cardiomy-
opathy with LAE, (4) ATE group: cats with ATE attributable to cardiomyopathy with LAE,
irrespective of whether presenting with concurrent CHF.

Inclusion and exclusion criteria are listed in Table 1.

Table 1. Inclusion and exclusion criteria for case selection of cats by pathological examination.

Inclusion Criteria

Control Subclinical

Cats that died of non-cardiac disease with
no cardiac related abnormalities detected
by clinical exam, gross and
histopathology ± complete or POC
echocardiography.

Cats that showed no clinical signs of heart disease.
Cardiomyopathy confirmed on gross and

histopathology + complete or POC
echocardiography.

CHF ATE

Cats that showed clinical signs of CHF.
Cardiomyopathy and LAE confirmed on
gross pathology and histopathology +
complete or POC echocardiography.

Cats that showed clinical signs compatible with
ATE (irrespective of CHF).

Cardiomyopathy and LAE confirmed on gross
pathology and histopathology + complete or POC

echocardiography.

Exclusion Criteria

For all cats with cardiomyopathy

Documented chronic renal disease with hypertension, hyperthyroidism, and other uncontrolled
systemic diseases that may induce structural cardiac changes.

See supplementary material Tables S1 and S2 for diagnostic criteria for cardiomyopathies by histopathology and echocardiography.

Diagnosis of ATE was based on clinical signs including acute fore/hind limb(s) paresis
or plegia, loss of palpable femoral pulses, cold limbs, and cyanotic nail beds in association
with myocardial disease identified by cardiac imaging [40]. CHF was diagnosed based on
radiographic evidence of cardiogenic pulmonary oedema, ultrasonographical evidence of
pleural effusion in association with cardiomyopathy, and left or bi-atrial enlargement. Cats
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with cardiomyopathy identified by cardiac imaging and gross and histopathology but show-
ing no clinical signs of heart disease were determined to have subclinical cardiomyopathy.

2.2. Sample Collection

The heart was harvested within 30 min of euthanasia and flushed with slowly running
tap water and each chamber was further gently flushed using a 20 mL syringe to ensure
all blood was removed to facilitate optimal fixation in 10% buffered formalin. The LA
samples were collected from the LA free wall. Where a formed thrombus in the LA was
identified, it was carefully removed and placed into 10% buffered formalin, while an in
situ thrombus in the LAA was harvested without being removed from the LAA. After
gross pathological examination, sections of the left atrial free wall and cross-sections of the
ventricles at the heart base, midwall, and apex were embedded in paraffin wax in a routine
manner for preparation of slides for haematoxylin and eosin and Masson’s trichrome
staining for histopathological examination. The LA sample blocks were used to prepare
slides for immunostaining.

2.3. Fluorescent Immunostaining

After dewaxing, rehydration, antigen retrieval with citric acid (pH6) at 95 ◦C for
10 min, and blocking with 10% goat serum, slides were incubated with primary antibodies
(1:500 Rabbit polyclonal IgG against vWF, Sigma, Gillingham UK; 1:25 Mouse monoclonal
IgG1 against CD41 platelet marker integrin αIIb, clone B-9, Santa Cruz, CA, USA) at 4 ◦C
overnight. An hour-long incubation of slides with 1% Bovine serum albumin/Tris-buffered
saline (TBS) suspended 4′,6-diamidino-2-phenylindole (DAPI) (1:100 nuclei stain, Sigma)
and secondary antibodies (conjugated with Cyanide Dyes, Cy2 1:100, Cy3 1:500, Jackson
ImmunoResearch, Ely, UK) was completed at room temperature. IgG isotype control (1:400
Rabbit polyclonal IgG, Abcam, Cambridge, UK) was used to replace primary antibody
against vWF to ensure specific binding. For assessment of nonspecific binding of secondary
antibodies, reagent control was carried out by omitting all primary antibodies.

2.4. Image Analysis

All the slides were examined under a Leica DMRA2 microscope (Leica, Wetzlar, Germany)
connected to a monochrome camera (AxioCam, Oberkochen, Germany) and 3 images
covering the entire length of the LA endocardium were taken. The green fluorescence
shown in grey scale from endocardial endothelium was selected free-hand and measured
using ImageJ (https://imagej.net/Welcome, accessed on 28 February 2018). The three
measurements were then averaged to give a final number representing the detected fluo-
rescence of the endocardial sample. Exposure time was fixed for channels that detected
fluorescence from DAPI and vWF for all slides. All the slides were coded so the observer
(WCC) was fully blinded when analysing the images and the order in which they were
viewed was randomised by a second person (DJC). The fluorescent signals from both IgG
isotype control and reagent control were graphed for reference.

A Leica DM4000B with DFC550 colour microscopy camera (Leica, Wetzlar, Germany)
was used for light microscopy. The microscopes and cameras were controlled using the
Leica Application Suite Version 4.12 (Leica, Wetzlar, Germany).

2.5. Statistical Analysis

All statistical analyses were performed on GraphPad (version 8) (GraphPad, San Diego,
CA, USA). Histogram and Shapiro-Wilk test were used for inspection of data distribution
and normality. ANOVA test with Tukey post-hoc test and Chi-squared test with Yate
correction were used to assess the difference in age and sex. Kruskal-Wallis test with
Dunn’s multiple comparison test was used to compare the fluorescent intensity of labelled
vWF between groups. Difference with a p-Value < 0.05 was considered significant.

https://imagej.net/Welcome
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3. Results
3.1. Animals

LA free wall samples from 39 cats were used for quantification of endocardial vWF.
Thrombi were also retrieved from the LA of 3 (out of the total 39 cats) for immunohisto-
logical investigation. The LAA thrombus in situ was acquired from an extra cat that was
collected later in the timeline thus not included in the quantification of endocardial vWF
(Cat ATE 12 in supplementary material Tables S3 and S4). The inclusion and exclusion
criteria for the 4 separate groups of cats are shown in Table 1. The cats in the control
group were generally younger but this was not statistically significant (p = 0.137). Male
cats were overrepresented in cats with cardiomyopathy (p = 0.009). Further demographic
information about the cats used in the study are given in Table 2.

Table 2. Demographics of the cats enrolled.

Group Number of Cats Median Age
(Range) (Years)

Gender
Male:Female Breed (Number of Cats)

Control 11 2.0
(0.2–7.5) 4:7 DSH (11)

Subclinical 9 7.5
(2.5–11.0) 6:3

DSH (6)
DLH (1)
BSH (1)

Bengal (1)

CHF 8 7.5
(2.0–17.3) 6:2

DSH (6)
BSH (1)

Siamese (1)

ATE 11 7
(1.8–11.0) 11:0

DSH (7)
DLH (1)
BSH (2)

Siamese (1)

See supplementary material Tables S3 and S4 for details of clinical presentation, cardiac
imaging and histopathological diagnosis for each cat used in this study. One cat in the CHF
group (Cat CHF 7 in Tables S3 and S4) had been given clopidogrel prior to presentation.

3.2. Localisation of vWF Protein in the Left Atrial Samples

In all cats, vWF could be observed to a variable degree in the vascular endothelium
(Figure 1A,C). In the majority of cats with cardiomyopathy and clinical signs (groups ATE
and CHF), microthrombi, defined as thrombi only visible on microscopic examination,
were identified on the vascular endothelium and occasionally on the endocardium. Con-
versely, microthrombi were rarely seen in the control and subclinical groups. Identifiable
components of these microthrombi using immunohistofluorescence were vWF (green),
platelets (reddish orange), RBC (mild autofluorescence), and leucocytes (blue) (Figure 1).
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Figure 1. Localisation of vWF in the LA samples. (A) vWF localised to the endothelium of a vessel (wide arrow) in a control 
cat where there was minimal immunostaining of vWF at the left atrial endocardium. 100× magnification. (B) In this mi-
crothrombus from a cardiomyopathic cat with clinical signs, vWF appeared to form a scaffold outside (open arrows) and 
within the microthrombus. Red blood cells (RBC) were relatively fluorescence-lucent (thick arrow). vWF also localised to 
the leucocytes, (closed arrow heads) and platelets (PLTs) within the microthrombus. Some leucocytes did not immunostain 
for vWF (open arrow heads). Endocardial endothelial cells (thin arrows) also expressed vWF. (C) vWF localised to the 
endothelium of a vessel in a cat with cardiomyopathy and clinical signs. The intravascular microthrombus had vWF 
(green) encompassing the thrombus (open arrows) and contacting the vascular endothelium. Platelets and vWF co-local-
ised in the centre of the microthrombus (orange, or yellow). (D) vWF (green), leucocytes, or WBC (blue) and some platelets 
(orange or yellow) attached on the endocardium from a cardiomyopathic cat with clinical signs. 400× magnification. 

3.3. Quantification of Endocardial vWF Expression in Left Atrial Samples 
The intensity of vWF fluorescence at the endocardium (Figure 2) was quantified us-

ing ImageJ for comparison between groups. To avoid quantifying the fluorescence signals 
from platelets where vWF can also be detected, the slides were double immunostained for 
vWF and the platelet marker integrin αIIb (Figure 3). 

  

Figure 1. Localisation of vWF in the LA samples. (A) vWF localised to the endothelium of a vessel (wide arrow) in a
control cat where there was minimal immunostaining of vWF at the left atrial endocardium. 100× magnification. (B) In this
microthrombus from a cardiomyopathic cat with clinical signs, vWF appeared to form a scaffold outside (open arrows) and
within the microthrombus. Red blood cells (RBC) were relatively fluorescence-lucent (thick arrow). vWF also localised to
the leucocytes, (closed arrow heads) and platelets (PLTs) within the microthrombus. Some leucocytes did not immunostain
for vWF (open arrow heads). Endocardial endothelial cells (thin arrows) also expressed vWF. (C) vWF localised to the
endothelium of a vessel in a cat with cardiomyopathy and clinical signs. The intravascular microthrombus had vWF (green)
encompassing the thrombus (open arrows) and contacting the vascular endothelium. Platelets and vWF co-localised in the
centre of the microthrombus (orange, or yellow). (D) vWF (green), leucocytes, or WBC (blue) and some platelets (orange or
yellow) attached on the endocardium from a cardiomyopathic cat with clinical signs. 400×magnification.

3.3. Quantification of Endocardial vWF Expression in Left Atrial Samples

The intensity of vWF fluorescence at the endocardium (Figure 2) was quantified using
ImageJ for comparison between groups. To avoid quantifying the fluorescence signals from
platelets where vWF can also be detected, the slides were double immunostained for vWF
and the platelet marker integrin αIIb (Figure 3).
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Figure 2. Localisation of vWF in the endocardium. Immunostaining of vWF in the endocardium. 
On the left, endocardial vWF (green) in a cat with cardiomyopathy and clinical signs. On the right, 
minimal endocardial immuostaining of vWF in a control cat. 400× magnification, Bar = 50 µm. 

 
Figure 3. Double immunostaining for vWF and integrin αIIb. In addition to vWF, each slide was 
also stained for Integrin αIIb, a platelet marker, so the quantification of endocardial vWF would 
not include any platelets which are known to also express vWF. Images were displayed as split 
channels with the merged image on the bottom right. 400× magnification; bar = 20 µm; Blue—Nu-
clei; Green—vWF; Red—Integrin αIIb (CD41). 

Representative images of vWF immunolabelling in different groups of cats are shown 
in Figure 4. Medians of the detected fluorescence intensity of endocardial vWF in the left 
atrial endocardium from the four groups from left to right as shown in Figure 5 were 
Control group: 30.8 (IQR 28.1–34.2), Subclinical 39.6 (IQR 31.8–59.6), CHF group: 46.0 (IQR 
36.6–56.8), and ATE group: 44.7 (IQR 34.9–54.6). The fluorescence intensity was signifi-
cantly higher in the ATE and CHF groups compared to the control group. 

  

Figure 2. Localisation of vWF in the endocardium. Immunostaining of vWF in the endocardium.
On the left, endocardial vWF (green) in a cat with cardiomyopathy and clinical signs. On the right,
minimal endocardial immuostaining of vWF in a control cat. 400×magnification, Bar = 50 µm.
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Figure 3. Double immunostaining for vWF and integrin αIIb. In addition to vWF, each slide was
also stained for Integrin αIIb, a platelet marker, so the quantification of endocardial vWF would
not include any platelets which are known to also express vWF. Images were displayed as split
channels with the merged image on the bottom right. 400×magnification; bar = 20 µm; Blue—Nuclei;
Green—vWF; Red—Integrin αIIb (CD41).

Representative images of vWF immunolabelling in different groups of cats are shown
in Figure 4. Medians of the detected fluorescence intensity of endocardial vWF in the
left atrial endocardium from the four groups from left to right as shown in Figure 5 were
Control group: 30.8 (IQR 28.1–34.2), Subclinical 39.6 (IQR 31.8–59.6), CHF group: 46.0
(IQR 36.6–56.8), and ATE group: 44.7 (IQR 34.9–54.6). The fluorescence intensity was
significantly higher in the ATE and CHF groups compared to the control group.
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Figure 4. Comparison of the vWF immunostaining at the endocardium. (A) Image illustrating the LA anatomical struc-
tures and the region of interest where the intensity of immunofluorescence was quantified (dotted overlay). (B) Repre-
sentative images showed the variation in immunolabelling of vWF (green) at the endocardium in the different groups of 
cats. (C) Isotype control immunostaining was performed using rabbit IgG. Reagent control was performed with the pri-
mary antibody omitted. 100× magnification; Bar = 100µm; LA (Left atrium), L (Lumen), E (Endocardium), M (Myocar-
dium). 

Figure 4. Comparison of the vWF immunostaining at the endocardium. (A) Image illustrating the
LA anatomical structures and the region of interest where the intensity of immunofluorescence was
quantified (dotted overlay). (B) Representative images showed the variation in immunolabelling of
vWF (green) at the endocardium in the different groups of cats. (C) Isotype control immunostaining
was performed using rabbit IgG. Reagent control was performed with the primary antibody omitted.
100× magnification; Bar = 100 µm; LA (Left atrium), L (Lumen), E (Endocardium), M (Myocardium).
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detected in the ATE and CHF group were significantly higher compared to that of control group. 
No difference was detected between the rest of the groups. “ns” denotes non-significant. The num-
ber of cats in each group was shown in brackets. Data were analysed using Kruskal-Wallis test 
with Dunn’s multiple comparison test. Bars represent median and quartiles. 
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for vWF (green) and platelets (reddish orange) and were counterstained with the nucleus stain 
(DAPI). WBC can be identified by the blue round-shaped nucleus stained by DAPI. RBC can 
be easily identified by their autofluorescence in the reagent controls (Figure 6, autofluores-
cence column) [41]. The autofluorescence of RBC was markedly weaker compared to the fluor-
ophores bound to the antibodies used for labelling vWF, platelets and nuclei and thus ap-
peared relatively dark in Figures 1, 6, and 7. The composition of each thrombi was very differ-
ent in terms of relative proportions of the main components and how different components 
were organised. An enlarged image of the upper right quadrant of the LA thrombus from 
CHF 8 (Figure 6) is used as an example to show the various patterns of organisation (Figure 
7A). Different patterns of vWF expression were also observed and enlarged images of these 
different patterns of expression are described in Figure 7B. 

Figure 5. Quantification of the endocardial fluorescence from vWF: Cats with cardiomyopathy
and clinical signs showed higher expression of vWF at the endocardium. The fluorescence signals
detected in the ATE and CHF group were significantly higher compared to that of control group. No
difference was detected between the rest of the groups. “ns” denotes non-significant. The number of
cats in each group was shown in brackets. Data were analysed using Kruskal-Wallis test with Dunn’s
multiple comparison test. Bars represent median and quartiles.

3.4. Characterisation of vWF in Thrombi Obtained from LA and LAA

Thrombi were found in the LA or LAA in three cats (CHF 8, ATE 9, and ATE 12 in
Tables S3 and S4) at postmortem. The necropsy images of the thrombi and the hearts can
be found in Figure S1. The microscopic images of the thrombi, two retrieved from the
LA and one remaining in situ in the LAA, are shown in Figure 6. These thrombi were
immunostained for vWF (green) and platelets (reddish orange) and were counterstained
with the nucleus stain (DAPI). WBC can be identified by the blue round-shaped nucleus
stained by DAPI. RBC can be easily identified by their autofluorescence in the reagent con-
trols (Figure 6, autofluorescence column) [41]. The autofluorescence of RBC was markedly
weaker compared to the fluorophores bound to the antibodies used for labelling vWF,
platelets and nuclei and thus appeared relatively dark in Figure 1, Figure 6, and Figure 7.
The composition of each thrombi was very different in terms of relative proportions of
the main components and how different components were organised. An enlarged image
of the upper right quadrant of the LA thrombus from CHF 8 (Figure 6) is used as an
example to show the various patterns of organisation (Figure 7A). Different patterns of
vWF expression were also observed and enlarged images of these different patterns of
expression are described in Figure 7B.
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Figure 6. Microscopic images of thrombi immunostained for vWF and integrin αIIb: Images from Cats ATE 9, CHF 8: 
Images on the left shows the merged channels of vWF (green), platelet marker integrin αIIb (reddish orange) and nuclei 
(blue). In the merged channel, bright orange colour (closed arrow heads) represented clumps of platelets and vWF, while 
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4. Discussion

Cats with underlying myocardial disease are known to be at a greater risk of throm-
boembolic events which frequently results in euthanasia on humane grounds [6,7]. Given
the high prevalence of cardiomyopathy in cats, which for HCM is estimated at up to 17%
in outbred animals and even greater in certain pedigree breeds [33], it is important to
obtain a greater understanding of the left atrial remodelling process that predisposes to
thrombus formation.

This is the first study to quantify and characterise vWF in the LA endocardium and
LA thrombi from cats with cardiomyopathy at different stages of their disease process.
LA samples from cardiomyopathic cats with LAE and clinical signs (CHF and ATE), but
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not those from subclinical cardiomyopathic cats had increased endocardial vWF protein
compared to control cats (Figure 5), which suggests an association of endocardial vWF
elevation with an advanced stage of cardiomyopathy. The immunohistological evaluation
of the thrombi revealed that vWF was extensively involved in thrombus formation and
organisation of both microthrombi and the three macrothrombi, which were visible on
gross pathology within the LA(A) in cats CHF 8, ATE 9, and ATE 12 shown in Figure S1.

The finding that vWF localised to some vessels in the LA samples is consistent with
previous report of differential expression of endothelial vWF in mice where vWF expression
varied not just in different organs but even in the vessels in the same vascular tree [42].
The minimal detection of vWF in the endocardium in the control cats is similar to that in a
human report where no or only minimal focal immunostaining for vWF was present in the
LAA endocardium from patients without cardiac abnormalities [19,43]. It is also striking
that there were no female cats in our ATE group, which is consistent with previous reports
showing a male predisposition to ATE and to an increase hazard of an ATE associated death.
However, the possibility of this finding being due to chance cannot be ruled out [7,44].

Importantly, our finding in cats with advanced myocardial disease are similar to two
human studies where patients with hemodynamical disturbance in the LA secondary to
various cardiac causes showed elevated endocardial vWF compared to the non-cardiac
patients using immunohistological microscopy [19,20]. In the first of these studies, a sig-
nificant increase in the expression of vWF in the endocardium of atrial appendages was
identified in human patients with a variety of congenital and acquired heart diseases
irrespective of the presence of atrial fibrillation. Furthermore, increased vWF expression
correlated with the degree of platelet adhesion and thrombus formation [19]. In the second
study involving patients with valvular and non-valvular atrial fibrillation, expression of
vWF protein in the endocardium correlated with the degree of structural remodelling
in the atrial wall. In addition, endocardial vWF appeared important for platelet adhe-
sion/aggregation on the endocardium and intra-atrial thrombi formation suggesting that
increased endocardial vWF may contribute to LA thrombogenesis [20]. It is recognised that
inflammation per se can cause thrombosis via a VWF-mediated mechanism by elevating
the level of VWF, enhancing the reactivity of VWF, and modulating the levels and activities
of regulatory molecules such as the metalloprotease ADAMTS13 [45]. Heart failure is an
established cause of systemic inflammation, and the increased expression of vWF in our
cohort of cats with clinical signs may at least in part be related to this pro-inflammatory
milieu, however the relationship between circulating concentrations of vWF and heart
failure remains unclear in human studies [46–48] and that between endocardial vWF and
inflammation is not examined.

The immunostaining of the micro- and macrothrombi supports a pivotal role for
vWF in thrombus formation. Thrombosis is a multifactorial process which usually in-
volves an abnormality in one or more of the following factors: endothelial damage and
dysfunction, disturbed blood flow, and hypercoagulability. Thrombus formation begins
when platelets adhere to the exposed subendothelial matrix by means of vWF that was
previously deposited on the sub-endothelium by endothelial cells. Once adhered, the
stimulated platelets then secrete more mediators such as ADP and thromboxane A2 that
further activate additional platelets leading to propagation of the thrombus [49,50].

Traditionally, two categories of thrombus have been described based on their gross
appearance and composition. A red thrombus that forms under low shear stress and is
primarily composed of erythrocytes and fibrin, and a white thrombus that forms under
high shear stress and contains a large number of platelets and few erythrocytes. The former
mostly comprise venous thrombi where stasis of blood is evident and endothelial injury
is not an absolute requirement for thrombus formation. Conversely, white thrombi are
usually confined to the arterial system and form after the severe endothelial disruption
such as plaque erosion or rupture as part of the atherosclerosis process [51]. In the present
study, platelets were found to be an important component in the thrombi despite being
formed in the environment of slow blood flow and low shear stress found in the enlarged
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LA. Different patterns of vWF expression in the thrombi were seen in or around particular
cellular components forming different structural patterns around the same cell type, such
us bead-like or web-like patterns around erythrocytes. vWF is known to fold or unfold
under different conditions of shear stress and can therefore display various properties
and functions as a result of exposing certain binding sites for adhesion or uncovering its
cleavage site [52,53]. These various structural patterns formed by the thrombi might imply
that the local environment within the LA where the thrombus developed altered over time,
affecting vWF function and thereby the composition of the thrombus over its development.
More research is needed to investigate how and why the feline cardiogenic thrombi showed
components of both a traditional red and white thrombus.

There are a number of limitations to the study. First, the origin of the detected
endocardial vWF protein in the LA samples remains undetermined. We cannot rule out the
possibility that the LA endocardial vWF we detected was originally secreted by platelets or
endothelia elsewhere in the body and delivered via the circulation. Second, although all
the control cats had structurally normal hearts, a number did have other clinical potentially
inflammatory conditions that may have affected endothelial vWF expression. However,
most systemic inflammatory diseases are associated with increased level of vWF, which
is contrary to the finding of low endocardial vWF in the control cats in our study. Third,
in the subclinical group, four out of the nine cats had mild LAE. However, when we
further sub-divided these cats into (1) subclinical with LAE, and (2) subclinical without
LAE, there was no significant difference in endocardial fluorescence intensity between
these subgroups and the controls. Fourth, to better evaluate the structure of the thrombi,
sliced-though slides with co-immunostaining for fibrin would be helpful to gain greater
understanding of thrombus organisation. However, this was beyond the scope of the study
and not performed.

5. Conclusions

These results provide evidence for increased endocardial vWF in cats with advanced car-
diomyopathy and support a potential role for endocardial vWF as a pro-thrombotic substrate.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ani11051240/s1, Figure S1: Gross appearance of the thrombi. Table S1: Pathology classi-
fication criteria for feline cardiomyopathies, Table S2: Echocardiographic classification criteria for
feline cardiomyopathies, Table S3: Clinical presentation and echocardiography summary, Table S4:
Signalment, echocardiographic parameters, and histopathology diagnosis, Table S5: Measurement of
echocardiographic variables. References [33,36,38,39] are also cited in the supplementary materials.
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