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Abstract: Inflammatory bowel disease (IBD) is a chronic and heterogeneous disorder character-

ized by remitting and relapsing periods of activity. Pharmacogenetics refers to the study of the 

effect of inheritance on individual variation in drug responses. Several drug-related markers in 

IBD patients have been identified in order to predict the response to medical treatment includ-

ing biological therapy as well as the reduction of adverse events. In the future, the treatment 

of IBD should be personalized in its specific profile to provide the most efficacious treatment 

with lack of adverse events. 
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Introduction
Inflammatory bowel disease (IBD) comprises Crohn’s disease (CD) and ulcerative 

colitis (UC) characterized by intestinal chronic inflammation of unknown etiology. It 

has been postulated that it is a multifactorial disease involving interplay among aber-

rant immune response, environmental factors, and multiple genes.1

The incidence of IBD is now rising in developing countries, and it is being increas-

ingly considered an emerging global disease.2,3 Traditionally, developing nations have 

reported a lower prevalence of IBD, but the incidence is currently rising in many of 

these countries as they become more industrialized in Latin America and Asia.4–7  

Knowledge development in IBD has permitted classification of the disease into 

different phenotypes according to the current clinical Montreal classification that con-

siders clinical characteristics such as age at diagnosis, location of disease, behavior in 

CD, and extent of disease in UC.8 Clinical traits such as the extent of inflammation or 

disease location, extraintestinal manifestations, and disease behavior enabled predict-

ing the future course of the disease and response to medical therapy to allow disease 

categorization which in turn guides present-day care recommendations.9 

On the other hand, understanding the involvement of several molecular pathways 

by different technologies such as genomic, transcriptomic, epigenetic, and miRNAs 

studies has been focused on the identification of new genetic risk factors for specific 

disease and application to clinical practice such as prognostic factors involved in the 

clinical course and response to medical therapy.10,11

Finally, pharmacogenetics is the study of the association between variability in 

drug response, drug toxicity, and polymorphisms in genes in order to adapt drugs 

to a patient’s specific genetic background and therefore make them more efficacious 

and safe.12
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The vast heterogeneity of IBD patients has motivated a 

comprehensive evidence-based search of novel biomarkers 

for appropriate patient stratification that accounts for the 

interindividual differences in severity, drug efficacy, side 

effects, or prognosis and would help guide clinicians in the 

management of patients with IBD and represents a major 

step toward personalized medicine.13

This study aimed to review the role of pharmacogenetics 

in the potential selection of personalized treatment in patients 

with IBD in the future.

Several drug-related markers classified according to 

pharmacological groups with clinical utility in patients with 

IBD are described below and summarized in Table 1.

Pharmacogenetics in IBD treatment
Mesalazine (5-aminosalicylic acid [5-ASA])
Mesalazine constitutes the first line of treatment for induction 

and maintenance of remission in UC. It appears to act locally 

on colonic mucosa and reduces inflammation through a variety 

of anti-inflammatory processes by the activation of γ-form per-

oxisome proliferator-activated receptors (PPAR-γ). PPAR-γ has 

a role in the regulation of intestinal inflammation and is highly 

expressed in the colon, where epithelial cells and macrophages 

are the main cellular sources of this nuclear receptor.14 

A study showed decreased gene expression of PPAR-γ in 

colonic biopsies of patients with active UC and its expres-

sion was negatively correlated with severity of endoscopic 

disease activity.15  

In another study, the PPAR alpha gene expression was 

significantly decreased in patients with active UC com-

pared with remission UC group (P=0.001) and normal 

controls (P=0.001). Yamamoto-Furusho et al16 found that 

low gene expression of PPAR alpha in colonic mucosa is 

associated with high risk of UC activity (P≤0.0001, odds 

ratio [OR]=22.6). They observed an increase of PPAR 

alpha expression in patients with UC who were treated with 

5-aminosalicylates compared with those who received any 

other combined therapy (P=0.03, OR=0.08). PPAR-γ gene 

expression was decreased in the active UC group compared 

with remission UC (P=0.001) and control group (P=0.001). 

An increased expression of PPAR-γ gene was associated with 

mild clinical course of the disease (P≤0.001, OR=0.05).16

Heat shock proteins (Hsp) are a family of molecules 

typically involved in folding, refolding, translocation, and 

degradation of intracellular proteins under normal and stress 

conditions.17 Hsp60 and Hsp10 (Hsp60 co-chaperonin) are 

increased in the affected intestinal mucosa in patients with 

CD and UC.18 

Table 1 Drug-related markers in inflammatory bowel  disease  

Pharmacological group Drug-related markers Clinical utility 

5-ASA PPAR-α, PPAR-γ  
Hsp10, Hsp60, and Hsp90

Severity of inflammation in UC 
Response to 5-ASA therapy

Corticosteroids MDR1
GRβ
RN6/2 GG (rs315951) and IL-1B-511 CC (rs16944) 
SNPs
IL-18 mucosal expression

Response to medical treatment
Nonresponder to steroids 
Steroid dependent 

Responder to steroids
Thiopurines TPMT mutant alleles

HLA-DQA1*02:01-HLA-DRB1*07:01 haplotype
Deletion of GST polymorphisms 
TPMT activity, 6-TGN, 6-MMP levels 

TPMT deficiency associated with adverse events 
(myelotoxicity)
Associated with adverse event (pancreatitis)
Lack of adverse event 
Adjust dose and therapeutic levels for reducing the risk 
of toxicity 

Anti-TNF therapy Caspase-9 TT genotype and Fas ligand-843 CC/CT 
genotype
ATG16L1 TT genotype
IL-23R SNPs: AA genotype for rs1004819, 
rs10889677, and rs11209032, GG genotype for 
rs2201841, and CC genotype for rs1495965
IL-1RN (rs4251961) allele C
Measurement of anti-TNF serum levels and drug 
antibodies

Responder to anti-TNF therapy

Responder to adalimumab
Responders to infliximab 

Poor responder to anti-TNF therapy
Optimize anti-TNF treatment and identify 
nonresponders

Anti-integrin therapy Granzyme A and αE integrin gene and protein expression Responders to etrolizumab 

Abbreviations: SNPs, single nucleotide polymorphisms; PPAR, peroxisome proliferator-activated receptors; 5-ASA, 5-aminosalicylic acid; IL, interleukin; Hsp, heat shock 
protein; MDR, multidrug resistant; TNF, tumor necrosis factor; GRβ, glucocorticoid receptor β; TPMT, thiopurine methyltransferase; HLA, human leukocyte antigen; GST, 
glutathione-S-transferase; 6-TGN, 6-thioguanine nucleotide; 6-MMP, 6-methylmercaptopurine; ATG16L1, autophagy-related 16-like 1; UC, ulcerative colitis.
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A study demonstrated that mucosal Hsp60 levels in 

UC patients decrease after therapy with either mesalazine 

alone or mesalazine plus probiotics. They also demonstrated 

that Hsp90 levels are elevated in colonic mucosa from UC 

patients, both in epithelium and lamina propria.19 Treatment 

with 5-ASA plus probiotics reduced the Hsp90 levels in the 

lamina propria, while 5-ASA alone did not have any effect 

and a linear correlation was also reported between Hsp90 and 

CD4 levels in lamina propria in UC patients at both diagnosis 

and 6 months after 5-ASA only therapy.20

Corticosteroids
Corticosteroids constitute the second line of therapy in 

patients who fail to respond to the maximal dose of mesala-

zine or present moderate-to-severe disease activity of IBD. 

The mechanism of action of corticosteroids is based on the 

inhibition of T-cell activation and the production of pro-

inflammatory cytokines. 

A review has proposed different markers associated with 

steroid therapy outcomes in patients with IBD.21 The most-

studied molecule is the multidrug-resistant (MDR1) gene 

code for a drug efflux pump P-glycoprotein-170 (perme-

ability glycoprotein or Pgp), which is expressed on the apical 

surface of lymphocytes and intestinal epithelial cells. Its func-

tion comprises active transportation of toxins and drugs out 

of target cells.22 Pgp and MDR expression have been shown 

to be significantly higher in CD and UC patients requiring 

surgery due to failure of medical therapy.23 On the other hand, 

MDR1 expression on colonic biopsies decreased in patients 

with active UC compared to UC patients in remission and 

the normal control group (P=0.034 and 0.002, respectively). 

However, in this study, the relevant finding was that the 

medical treatment response and long-term remission were 

associated with high gene expression of MDR1 (P=0.009 

and 0.002, respectively).24

Other studies have reported an increased expression of 

glucocorticoid receptor β in 83% of the patients with steroid-

resistant UC compared to only 9% in steroid-responsive 

patients and 10% in healthy controls.25,26

Yamamoto-Furusho et al27 found a significant association 

between RN6/2 GG (rs315951) and interleukin (IL)-1B-511 

CC (rs16944) genotypes and the presence of steroid depen-

dence in UC patients (p corrected=0.0001, OR=15.6 and 

pC=0.008, OR=4.09, respectively).

A previous study identified several predictor gene panels 

containing genes involved in immune mechanisms (PTN, 

OLFM4, LILRA2, CD36), autophagy, or GC response 

(STS, MDM2) with potential value to predict GC response 

and need of surgery as well as with diagnostic value for 

IBD patients.28 Villeda-Ramirez et al29 showed that IL-18 

mRNA expression was significantly increased in the mucosa 

of patients with active and remission UC compared to the 

healthy control group (P=0.006 and 0.007, respectively). 

The high gene expression of IL-18 was associated with the 

use of steroids (P=0.04).

Thiopurines
Immunomodulator drugs have become the mainstay of IBD 

with proven efficacy in reducing relapses, permitting steroid 

withdrawal, and closing fistulas.30 

Thiopurines such as azathioprine (AZA) and 6-mer-

captopurine (6-MP) are usually used in patients with cor-

ticosteroid dependence or resistance and combined with 

tumor necrosis factor (TNF) therapy. The gene encoding 

thiopurine methyltransferase (TPMT) is located on chro-

mosome 6 (6p22.3) and contains 10 exons. Two wild-type 

alleles (TPMT*1 and *1S) and 20 mutant alleles (TPMT*2, 

*3A, *3B, *3C, *3D, *4, *5, *6, *7, *8, *9, *10, *11,*12, 

*13, *14, *15, *16, *17, *18) are responsible for TPMT 

deficiency.31,32 The distribution of TPMT mutant alleles 

differs significantly among ethnic populations. TPMT*3A 

(3.2%–5.7%) is the most occurring mutant allele in white 

populations, followed by TPMT*2 (0.2%–0.5%) and 

TPMT*3C (0.2%–0.8%), accounting for the vast majority 

(>95%) of mutant alleles.33–36 In Asian and African popu-

lations, however, TPMT*3C is the most frequent mutant 

allele.37,38

A genome-wide association study found a 2.59-fold risk 

of pancreatitis in IBD patients taking thiopurines who had the 

single nucleotide polymorphism rs2647087 within the human 

leukocyte antigen (HLA)-DQA1*02:01-HLA-DRB1*07:01 

haplotype.39  

Traditionally, AZA and 6-MP are initiated at a low dose 

and then gradually increased to a full therapeutic dose of 

2.0–2.5 and 1.5 mg/kg/day, respectively; however, this strat-

egy requires tight monitoring in order to detect adverse events 

such as myelotoxicity and hepatotoxicity. This strategy has 

been replaced by an approach based on the assessment of 

TPMT phenotype or activity as shown in Table 1. TPMT test-

ing is recommended before initiating AZA or 6-MP therapy 

for IBD to decrease the risk of leukopenia. For patients who 

have absent or low TPMT, activity leading to elevated 6-thio-

guanine nucleotide (6-TGN) concentrations during thiopurine 

therapy is significantly associated with an increased risk 

of development of bone marrow suppression.40 In patients 

with very high TPMT, activity develops suboptimal 6-TGN 
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concentrations, which have been associated with treatment 

failure.41 Population studies have shown that the distribution 

of TPMT activity is trimodal: 0.3% of the population have 

low-to-absent activity, 11% have intermediate activity, and 

89% inherit normal-to-high enzyme activity.42–44  

A review by Stocco et al45 has reported the role of enzyme 

glutathione-S-transferase (GST) genetic polymorphisms 

which may influence decreased sensitivity to AZA. Some 

studies have found that the frequency of GST-M1 deletion 

was significantly lower in patients who developed an adverse 

event in comparison to patients who tolerated AZA treatment 

with no adverse event.46–48 

On the other hand, measurement of the thiopurine 

metabolites, 6-TGN and 6-methylmercaptopurine (6-MMP), 

is useful in clinical practice. Several studies have demon-

strated that 6-TGN levels >230 pmol/8×108 red blood cells 

(RBCs) are associated with increased efficacy.49,50 However, 

supra-therapeutic levels, generally >400 pmol/8×108 RBCs, 

are associated with an increased risk of myelosuppression.51 

6-MMP can be measured to predict the risk of hepatotoxic-

ity; levels >5,700 pmol/8×108 RBCs carry a 3-fold risk of 

hepatotoxicity.52 

Anti-TNF therapy 
Anti-TNF-α drugs are indicated in patients with moderate-

to-severe IBD who do not tolerate or respond to conventional 

therapies. The use of anti-TNF therapy has improved several 

outcomes in patients with IBD such as better quality of life, 

reduction of surgeries and hospitalizations, steroid free remis-

sion, mucosal healing, and others. However, one third of the 

patients do not respond to anti-TNF treatment. 

Several studies have focused on studying genetic markers 

that may predict individual response to anti-TNF therapy.53 

In luminal CD, the response rate to anti-TNF therapy was 

74.7% in patients with Fas ligand (FASLG) -843 CC/CT 

genotype compared to a response rate of 38.1% in patients 

with the TT genotype (OR=0.11; 95% confidence interval 

[CI]=0.08–0.56, P<0.01). On the other hand, patients with 

caspase-9 TT genotype responded to anti-TNF therapy, in 

contrast to 66.7% of patients with the CC and CT genotypes 

(OR=1.50; 95% CI=1.34–1.68, P=0.04). Another variant 

in FASLG, rs763110, was able to predict the therapeutic 

response to infliximab in patients with fistulizing CD at 

week 10.54 A Japanese study reported that GG genotype of 

FCGR3A had a better response to anti-TNF therapy at week 

8 in CD patients.55

Autophagy-related 16-like 1 (ATG16L1) is an autophagy-

related gene that processes intracellular bacteria and is 

expressed in intestinal epithelial cell lines. ATG16L1 TT 

genotype for rs10210302 responded better to adalimumab 

after 12, 20, and 30 weeks of treatment compared to the CC 

genotype in CD patients.56 

The cytokine IL-23 is involved in the pathogenesis of IBD. 

Several genetic variants in IL-23R have been associated with 

response to infliximab in patients with moderate-to-severe 

UC at week 14. For instance, AA genotype for rs1004819, 

rs10889677, and rs11209032, GG genotype for rs2201841, 

and CC genotype for rs1495965 in IL-23R gene increased the 

probability to respond to infliximab. However, GG genotype 

for rs7517847 and rs11465804, CC genotype for rs10489629, 

and AA genotype for rs1343151 in IL-23R decreased the 

probability to respond to this drug.57 Bank et al found that 

the TC/CC genotype for rs10499563 in IL-6 and the GA/AA 

genotype had a better response to anti-TNF but the effect of 

IL-1RN (rs4251961) allele C was associated with poorer 

response to anti-TNF therapy.58 

In some patients who had a genetically increased MD-2 

level (rs11465996) and TNFRSF1A (TNFR1) expres-

sion (rs4149570) and genetically determined decreased 

TNFAIP3 (A20) expression (rs6927172), IL-1β (rs3804099 

and rs4848306), IL-6 (rs3804099 and rs10499563), IL-17 

(rs2275913), and interferon-γ (rs2430561) levels were asso-

ciated with beneficial response among patients with IBD. 

Fujino et al59 found mRNA expression and serum levels of 

IL-17 to be increased in patients with IBD and suggested that 

IL-17 might be associated with altered immune and inflam-

matory responses in the intestinal mucosa. 

Therapeutic drug monitoring (TDM) and measurement of 

antidrug antibodies (ADAs) for anti-TNF agents have been use-

ful in clinical practice to optimize the efficacy of biologics and 

minimize adverse events (Figure 1). TDM has been best studied 

Anti-TNF drug serum levels

Add immunomodulator Add immunomodulator

Switch to a biologic of
different class

Switch to a biologic of
different class
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Figure 1 Optimization of anti-TNF agents according drug serum levels and anti-
drug antibodies
Abbreviation: TNF, tumor necrosis factor.
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for infliximab and adalimumab including the measurement of 

both drug and antibodies to infliximab (ATIs) or antibodies to 

adalimumab (ATAs). Several studies have reported concentra-

tions predictive of response ranging from 1.4 to 12.0 μg/mL.60–63 

For adalimumab, cutoffs predictive of mucosal healing range 

from 4.9 to 7.5 μg/mL.64,65 Low levels of anti-TNF agents are 

associated with developing ADAs and preceded the formation 

of ATIs and ATAs66,67 and these are implicated in the increased 

drug clearance of anti-TNF agents related with lower serum 

drug levels as well as active disease and loss of response.68,69   

Anti-integrin therapy
Etrolizumab is a monoclonal antibody against β7 integrin 

subunit that has shown efficacy in patients with moderate-

to-severe UC. A study evaluated biomarkers in the colonic 

mucosa such as granzyme A and integrin αE measured by 

gene and protein expression levels; both markers were found 

to be associated with clinical response and mucosal healing 

in UC patients treated with etrolizumab.70     

Microbiota 
A potential link between genetics and the microbiome has 

been documented in patients with IBD. Some studies have 

shown the effect of NOD2 mutations associated with increased 

numbers of mucosa-adherent bacteria71 and decreased tran-

scription of the anti-inflammatory cytokine IL-10.72 

IBD patients with NOD2 and ATG16L1 have significant 

alterations in the structure of their gut microbiota, includ-

ing decreased levels of Faecalibacterium and increases in 

Escherichia.73 Individuals homozygous for loss-of-function 

alleles for fucosyltransferase 2 are “nonsecretors,” who do 

not express ABO antigen on the gastrointestinal mucosa and 

bodily secretions. Nonsecretors are at increased risk for CD28 

and exhibit substantial alterations in the mucosa-associated 

microbiota.74

Several studies have shown specific taxonomic shifts 

in IBD patients. Enterobacteriaceae are increased in IBD 

patients.75 Escherichia coli, particularly adherent-invasive E. 

coli strains, has been isolated from CD biopsies in culture-

based studies76 and is enriched in UC patients.77 Another 

type of adherent and invasive bacteria is Fusobacteria. The 

genus Fusobacterium has been found in higher abundance 

in the colonic mucosa of patients with UC relative to control 

individuals.78,79

On the other hand, specific groups of gut bacteria may 

have protective effects against IBD. Bacteroides and Clos-

tridium species have been shown to induce the expansion of 

Treg cells, reducing intestinal inflammation.80

Other bacterial species such as Bifidobacterium, Lacto-

bacillus, and Faecalibacterium may protect the host from 

mucosal inflammation by several mechanisms, including 

downregulation of inflammatory cytokines81 or stimulation 

of IL-10.82 Faecalibacterium prausnitzii is a member of the 

microbiota with anti-inflammatory properties. F. prausnitzii 

has been found depleted in CD biopsy samples concomitant 

with an increase in E. coli abundance,83 and low levels of 

mucosa-associated F. prausnitzii are associated with higher 

risk of recurrent CD following surgery.82 Conversely, recovery 

of F. prausnitzii after relapse is associated with maintenance 

of clinical remission of UC.84

A recent study has shown a microbial signature for CD 

that identified eight groups of microorganisms including 

Faecalibacterium, Peptostreptococcaceae, Anaerostipes, 

Methanobrevibacter, Christensenellaceae, Collinsella, 

Fusobacterium, and Escherichia; the signature achieved an 

overall sensitivity of 80% and a specificity of 94% for the 

detection of CD versus healthy controls.85

Fecal microbiota transplantation (FMT) aims to restore 

gut microbiota diversity by transferring feces from a healthy 

donor to a sick patient. To date, FMT has been assessed 

as a novel therapeutic for UC. A randomized controlled 

trial reported 24% and 5% of those who received FMT 

and placebo, respectively, reached clinical remission after 

7 weeks. This study identified that those patients who had 

been recently diagnosed of UC (within the year previous 

to FMT) had a high rate of clinical remission compared 

to UC patients with longer disease duration (75% vs 18% 

respectively).86  

On the other hand, another study by Rossen et al87 showed 

no statistically significant difference in clinical remission 

between UC patients who received FMT sourced from healthy 

donors or autologous FMT (their own fecal microbiota), and 

only 41% of patients who received donor FMT achieved 

clinical and endoscopic remission. The findings of this study 

suggest that microbial ecosystems of patients who responded 

to FMT from a healthy donor increased in the numbers of 

bacterial species from Clostridium clusters. 

A detailed assessment of the fecal microbiota taxonomic 

composition pre- and post-FMT need to be performed in 

order to identify the responders to FMT in patients with UC. 

A selective FMT of certain species such as Bifidobacterium, 

Lactobacillus, and F. prausnitzii could be effective as per-

sonalized treatment in patients with IBD. 

In conclusion, the combination of genetic markers with 

clinical, biochemical, serological, and microbiome data for 

subgroups of IBD patients might permit individualized risk 
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stratification and treatment selection to ensure high efficacy 

of medical treatment with lack of adverse events.
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