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Abstract: Two new lanthanide-based coordination polymers, [Sm2(bzz)(ben)6(H2O)3]·0.5H2O (1)
and [Eu(bbz)(ben)3] (2), were synthesized and characterized. The described products were formed
from in situ-generated benzoate (ben) and N’-benzoylbenzohydrazide (bbz) ligands, which were the
products of transformation of originally added benzhydrazide (bzz) under hydrothermal conditions.
Compound 1 exhibits a one-dimensional (1D) double-chain structure built up from the connection
of the central Sm3+ ions with a mixture of bzz and ben ligands. On the other hand, 2 features a 3D
network with a 4-connected (66) dia topology constructed from dinuclear [Eu2(ben)6] secondary
building units and bbz linkers. High-pressure CO2 sorption studies of activated 1 show that maxi-
mum uptake increases to exceptionally high values of 376.7 cm3 g−1 (42.5 wt%) under a pressure of
50 bar at 298 K with good recyclability. Meanwhile, 2 shows a typical red emission in the solid state
at room temperature with the decay lifetime of 1.2 ms.

Keywords: coordination polymers; CO2 adsorption; hydrazide; in situ synthesis; lanthanide;
photoluminescence

1. Introduction

Coordination polymers are a class of crystalline organic-inorganic materials built by
connecting metal ions or clusters and organic bridges through coordination bonds [1].
These hybrid solid materials possess the intriguing architectures of variable dimensionality
that allow potential applications in the fields of adsorption, luminescence, catalysis, and
magnetism [2–6]. Lanthanide-based coordination polymers (LnCPs) have drawn much
attention during the past few decades due to their unique optical properties, such as high
luminescence efficiency, long luminescence lifetimes, and narrow bandwidths, allowing
for potential applications in sensing, lighting, and integrated optics [7]. In comparison
with transition metal-based coordination polymers, the rational design and synthesis of
LnCPs is more difficult since Ln3+ ions frequently show higher coordination numbers
(typically from 6 to 12) and flexible coordination geometries. Moreover, various synthetic
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parameters, such as the ratio of reactants, solvent, reaction temperature, and pH can have
an influence on the nucleation and crystal growth of the final products [8–11]. Therefore,
experimental investigation of the impact of synthetic parameters on the crystallization
process and self-assembly of LnCPs is still required. It is well known that Ln3+ ions have a
high affinity for and prefer to bind to hard donor atoms. In this regard, oxygen- and/or
nitrogen-containing organic ligands, in particular benzene- and pyridine carboxylates, have
been widely used in the development of novel lanthanide-based luminescent materials.
These types of ligands can adopt various coordination modes with respect to the central
Ln3+ ions. They can also function as light-harvesting antennas for efficient sensitization of
Ln3+ ions to enhance their emission intensity [12–14].

On the other hand, hydro (solvo) thermal reactions accompanied by in situ ligand
synthesis have been developed as one of the most feasible strategies for the construction of
novel coordination polymers [15]. For instance, a variety of intriguing structural topologies
of tetrazole-based polymeric complexes have been successfully prepared through in situ
[2 + 3] cycloaddition reaction of nitriles and an azide in the presence of metal salts under
hydrothermal conditions [16,17]. Moreover, this synthetic approach can also be extended
to a wide number of carboxylate-based coordination polymers derived from the hydrolysis
of ester or cyano groups in water [18,19].

We are interested in the synthesis of novel crystalline coordination polymers with the
aim of understanding their structure-property relationships [20–22]. In the present work,
we intend to explore the possibility of synthesizing novel LnCPs using benzhydrazide (bzz)
as a ligand. Herein, we report two new LnCPs, [Sm2(bzz)(ben)6(H2O)3]·0.5H2O (1) and 3D
[Eu(bbz)(ben)3] (2), obtained through in situ synthesis of N’-benzoylbenzohydrazide (bbz)
and benzoate (ben) ligands from the reactions of bzz and lanthanide nitrate salts under
hydrothermal conditions. The in situ ligand formation was clearly evidenced by single
crystal X-ray diffraction analysis. Moreover, high-pressure CO2 sorption of the activated
sample of 1 was investigated in the pressure range up to 50 bar at 298 K. Notably, the room
temperature photoluminescence (PL) and lifetime decay behavior of 2 were also examined
in the solid state.

2. Results and Discussion
2.1. Synthesis and Infrared Spectra

As depicted in Scheme 1, compounds 1 and 2 were obtained under the same conditions
by the hydrothermal reactions of Ln(NO3)3·6H2O and bzz in a ratio of 1:2 and carried
out at 130 ◦C for 96 h. The new ligands bbz and ben, generated in situ, were formed by
the transformation of the bzz precursor. These new ligands can act as bridging and/or
chelating ligands for Ln3+ ions through oxygen and nitrogen sites to promote the formation
of the different polymeric structures viz. 1D chain and 3D network for 1 and 2, respectively.
It should be noted that when the hydrothermal reactions were performed at temperatures
above 140 ◦C, the starting material bzz was completely converted into the ben ligand
through the cleavage of C-N bonds [23].

The FT-IR spectra (Figure S1 in the Supplementary Material) of 1 and 2 display charac-
teristic absorption bands arising from the asymmetric and symmetric stretching vibrations
of the carboxylate groups in the wavenumber ranges around 1600 and 1400 cm−1, sup-
porting the presence of the ben ligand in their crystal structures. The absorption bands
in the region 3126–3067 cm−1 can be ascribed to N-H stretching vibrations of the hy-
drazine or hydrazide groups of the ligands. For 1, the strong and broad absorption bands at
3600–3400 cm−1 are assigned as the characteristic absorption bands of O-H stretching of wa-
ter molecules involved in hydrogen bonding [24]. All features of the FT-IR spectra of both
compounds are in accordance with the results of single crystal X-ray diffraction analysis.
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Scheme 1. Schematic representation of the in-situ formation of ligands ben and bbz.

2.2. Structural Descriptions

Compound 1 crystallizes in the triclinic system with the space group P-1. As shown
in Figure 1a, the asymmetric unit of 1 contains two crystallographically independent
Sm3+ ions, one bzz ligand, six ben ligands, three coordinated water molecules, and one
disordered lattice water molecule with occupancy factors of 0.50. Both Sm3+ ions in 1
adopt similar eight-coordinate geometries. Sm1 is coordinated by five oxygen atoms
from different ben ligands, one oxygen atom and one nitrogen atom from a bzz ligand,
and one oxygen atom from a coordinated water molecule. Sm2 is coordinated by six
oxygen atoms from different ben ligands and two oxygen atoms from coordinated water
molecules. The coordination polyhedra around the Ln3+ metal centers can be best described
as distorted trigonal dodecahedral geometries. The Sm-O/N bond lengths in 1 are in the
range 2.3088(16)–2.6290(19) Å (Table S2 in the Supplementary Material), which is normal
for these types of compounds [25].

The bzz ligand in these compounds exhibits only a bidentate-chelating η2 mode to bind
one Ln3+ ion via hydrazide oxygen and nitrogen sites, while the ben ligands adopt both
monodentate η2(O4–O12) and bidentate-bridging µ2 (O1, O2) modes. As can be seen from
Figure 1b, two neighboring Ln3+ ions are bridged by carboxylate oxygen atoms of the ben
ligands in a µ2 fashion to form a 1D single chain running parallel to the a axis. The Ln···Ln
separations through the µ2-ben ligands in 1 are 5.0195(4) and 5.1423(4) Å. These chains are
then cross-linked together in the c axis direction via the ben carboxylate oxygen (O1, O2)
atoms, giving rise to the formation of a 1D double chain. The Sm···Sm separation between
the single chains through the µ2-ben ligands is 5.9773(4) Å. Further stabilization of these 1D
double chains is achieved by extensive O-H···O and O-H···N hydrogen bonds between the
coordinated water and amine NH2 donors and the carboxylate acceptors along with C-H···π
arene edge-to-face interactions. Furthermore, the double chains are interconnected with
each other by O-H···O and O-H···N hydrogen bonds involving the lattice water molecules,
terminal carboxylate oxygen atoms, and amine NH groups, along with additional N-H···π
interactions occurring between bzz molecules. As a result, a 2D sheet is formed which
propagates along the b axis. The overall 3D supramolecular architecture results from the
stacking of the 2D sheets via van der Waals interactions along the c axis. The geometrical
details of hydrogen bonds for 1 are listed in Table S3 (in the Supplementary Material).
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approximately along the b axis; yellow colored space marks the contact surface of the void spaces. 
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between the layers. According to the void analysis performed with the PLATON program 
[26], using a probe molecule radius of 1.4 Å and a grid interval of 0.2 Å, the simulated 
solvent-accessible void space of 1 is estimated to be 5.9% (146.0 Å3) of the crystal volume 
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of the C-N bond. This ligand is flexible and able to connect two Eu3+ centers through the 
oxygen sites, allowing the generation of a high-dimensional coordination framework. This 
compound crystallizes in the orthorhombic Pnna space group and the asymmetric unit 
consists of one Eu3+ ion, three ben ligands, and a half of two bbz ligands, which lie on an 
inversion center. As illustrated in Figure 2, the Eu3+ ion in 2 is eight-coordinated with six 
oxygen atoms from five different ben ligands and two oxygen atoms from two bbz lig-
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Figure 1. (a) Coordination environment of the Sm3+ ion in 1. The thermal ellipsoids are drawn at the 30% probability level
for non-hydrogen atoms. Hydrogen atoms attached on the carbon and nitrogen atoms are omitted for clarity. Symmetry
codes: (i) −x, 1−y, 1−z; (ii) 1−x, 1−y, 1−z. (b) One-dimensional double-chain structure of 1 viewed along the b axis.
Hydrogen atoms attached on the carbon and nitrogen atoms are omitted for clarity. (c) Packing supramolecular structure
of 1 viewed approximately along the b axis; yellow colored space marks the contact surface of the void spaces.

In addition, it is obvious from the crystal structure of 1 described above that the
lattice and the coordinated water molecules occupy the intralayer space and the free
space between the layers. According to the void analysis performed with the PLATON
program [26], using a probe molecule radius of 1.4 Å and a grid interval of 0.2 Å, the
simulated solvent-accessible void space of 1 is estimated to be 5.9% (146.0 Å3) of the crystal
volume after removing the water molecules. The potential void space of 1 calculated in
mercury [27] using a probe radius of 1.2 Å is illustrated in Figure 1c.

For 2, the hydrothermal in situ synthesis of the new bbz ligand involves the formation
of the C-N bond. This ligand is flexible and able to connect two Eu3+ centers through the
oxygen sites, allowing the generation of a high-dimensional coordination framework. This
compound crystallizes in the orthorhombic Pnna space group and the asymmetric unit
consists of one Eu3+ ion, three ben ligands, and a half of two bbz ligands, which lie on an
inversion center. As illustrated in Figure 2, the Eu3+ ion in 2 is eight-coordinated with six
oxygen atoms from five different ben ligands and two oxygen atoms from two bbz ligands,
adopting a slightly distorted square antiprismatic geometry. The Eu-O bond lengths range
from 2.277(2) to 2.559(2) Å (Table S4 in the Supplementary Material), and are comparable
with other reported (EuO8) compounds [28].
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30% probability level for non-hydrogen atoms. Hydrogen atoms attached on the carbon and nitrogen
atoms are omitted for clarity. Symmetry code: (i) 3/2−x, 1−y, z.

Unlike 1, the ben ligand in 2 adopts two coordination modes viz. a bidentate-chelating
η2 mode (O1, O2) and a bidentate-bridging µ2 mode (O3–O6). As seen from Figure 3a, two
symmetry-related Eu3+ ions are bridged by four µ2-bridging carboxylate groups from four
different ben ligands to create a dinuclear [Eu2(ben)6] secondary building unit (SBU) in
which the midpoint of the SBU lies on a twofold rotation axis. The Eu···Eu separation across
the dinuclear SBU is 4.2842(4) Å. As depicted in Figure 3b, these SBUs are linked through
bbz ligands (not shown) in a µ2-bridging coordination mode, leading to the formation of a
3D network. The Eu···Eu separations via the bbz ligands are 8.1379(4) and 8.2993(4) Å. The
network is further sustained by N-H···O and C-H···O hydrogen bonds that occur between
the carboxylate oxygen atoms and the hydrazine NH groups or the phenyl proton of the
ligands. In addition, there are also weak C-H···π interactions involving the phenyl rings
of the bzz and ben ligands (Table S5 in the Supplementary Material). From a topological
point of view, the dimer [Eu2(ben)6] SBU and the bbz ligand can be regarded as 4- and
2-connected nodes, respectively, as Figure 3c shows. The network structure of 2 could be
simplified as a 4-connected (66) dia net as depicted in Figure 3d.
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2.3. PXRD and TGA Analysis

The phase purities of 1 and 2 were confirmed by PXRD analysis. As shown in Figure 4a,
the experimental PXRD patterns of the bulk samples are in accordance with the simulated
patterns derived from crystallographic data, indicating phase purity of the as-synthesized
samples. Thermal stabilities of 1 and 2 were also examined by TGA carried out under N2
atmosphere from room temperature to 650 ◦C. The results of this experiment are shown
in Figure 4b. For 1, the first step of weight loss of 5.3% from 50 to 115 ◦C corresponds to
the removal of coordinated and lattice water molecules (calcd 5.1). Thereafter, a weight
loss of 11.6%, due to the decomposition of the bzz ligand, occurs in the second step
from 150 to 350 ◦C (calcd 11.5%). The resulting structure is stable up to 425 ◦C, and
then begins to collapse, corresponding to the decomposition of the organic components.
Meanwhile, the TGA curve of 2 displays two main steps of weight loss. The first step
between 255 and 365 ◦C, with a weight loss of 30.9%, corresponds to the loss of the bbz
molecule (calcd 31.8%). The second weight loss of 38.7% from 470 to 560 ◦C is attributed
to the decomposition of the ben ligands (calcd 48.1%) with the collapse of the skeleton
into unidentified products. It is interesting to note that the heated sample of 2 after
the first weight loss step in the TGA experiment retained its structural integrity. The
resulting material shows significant changes in the PXRD patterns in comparison to the
as-synthesized sample, as can be seen in Figure 4c. This could be attributed to the structural
changes arising from the removal of the bbz ligands upon heating, which leads to the
formation of a new phase. It is clearly visible that four different phases can be recognized
in the variable temperature PXRD patterns. As can be seen, the initial phase (identified as
the as-synthesized 2) can be transformed into a second phase when the sample is heated to
300 ◦C. Clearly, the PXRD pattern of this second phase shows well-defined crystallinity
and the main peak positions of the experimental data match quite well with those of the
reported 1D polymeric structure of europium-benzoate compound, i.e., [Eu3(ben)9] [28].
This phase II was stable up to 400 ◦C, and then underwent phase transformation into
an amorphous state (phase III) at 500 ◦C. Notably, the appearance of new peaks was
observed upon further heating from 600 to 800 ◦C, suggesting a new phase (phase IV)
being produced. This possibly results from the pyrolysis of the 1D chain frameworks in
air. New sharp diffraction peaks appear at 2θ = 7.23, 19.88, 28.32, 32.79, and 47.01◦ in the
patterns, which is consistent with the pattern of Eu2O3 (PDF: 00-034-0392). Thus, it can be
concluded from the above phenomena that the 3D diamond network of 2 can be converted
into the 1D chain structure of [Eu3(ben)9] through crystalline-to-crystalline transformation
upon heating the sample to about 300 ◦C.
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2.4. CO2 Adsorption Isotherms of 1

As mentioned above, the crystallographic analysis revealed that compound 1 has a 1D
polymeric double chain structure with small void space to accommodate water molecules.
On the other hand, 2 exhibits a dia topology with dense network structure. Considering its
porous structure, the CO2 adsorption isotherms of 1, up to 50 bar, were investigated using
a high-pressure volumetric gas adsorption analyzer at 298 K to explore the relationship
between structure and adsorption capacity. Prior to the adsorption measurement, the
crystalline sample of 1 (~50 mg) was degassed at 110 ◦C (1 ◦C/min) under vacuum
(2.25 mTorr) for 24 h. As shown in Figure 5a, the activated sample of 1 displayed a type
III isotherm according to the IUPAC classification [29], which indicates a weak adsorbent–
adsorbate interaction. In the low-pressure region (1–10 bar), the activated sample adsorbed
very little CO2, which is not surprising as its structure contains a small void space. The
amount of adsorbed CO2 in 1 increased gradually with increasing gas pressure, which may
be related to crystal structure changes including pore expansion and the specific interactions
between the CO2 sorbate and the sorbent 1. Apparently, the maximum CO2 adsorption
value of 1 reached an exceptionally high volumetric uptake capacity of 376.7 cm3 g−1

(42.5 wt%) at 49.8 bar without saturation. Notably, 1 shows reversible CO2 desorption
accompanied with a small hysteresis. This observation probably originates from the
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adsorbent-adsorbate interaction, and this also indicates that the adsorption does not reach
equilibrium within the measurement pressure limit of 50 bars.
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Furthermore, the CO2 adsorption-desorption repeatability of 1 was tested as well.
The result demonstrates that 1 can be repeatedly used for at least two consecutive cycles
without losing significant adsorption capacity. In addition to this, the PXRD results in
Figure 5b show that the crystallinity of 1 can be maintained after two cycles of adsorption.
However, the main diffraction peak at 2θ ≈ 5.93◦ was significantly shifted to a higher angle
2θ ≈ 6.69◦ and diffraction peaks at 2θ ≈ 11.03◦, 11.88◦, and 17.73◦ disappeared, indicating
structural change on complete removal of solvent molecules. Regrettably, we failed to
determine the crystal structure of the desolvated 1 due to poor diffraction.

2.5. Photoluminescence Properies of 2

The solid-state photoluminescence properties and lifetime decay behavior of 2 were
investigated at room temperature and the results are displayed in Figure 6. Under excitation
at 297 nm (Figure S3 in the Supplementary Material), 2 exhibits the characteristic transitions
of Eu3+ ion viz. 5D0 → 7F1 (592 nm), 5D0 → 7F2 (612, 620 nm), 5D0 → 7F3 (652 nm), and
5D0 → 7F4 (702 nm). Among these, the strongest emission peak centered at 620 nm is
assigned to the electric dipole transition of 5D0 → 7F2, which is hypersensitive to the
environment in the vicinity of the Eu3+ ions. The strong intensity of this transition is
responsible for the bright red emission with CIE coordinates of (0.650, 0.337), while the
peak at 590 nm, being second in terms of emission intensity, corresponds to the magnetic
dipole 5D0 → 7F1 transition, which is insensitive to site symmetry around the Eu3+ ion. It
can be clearly seen, in the emission spectrum of 2, that the intensity of the electric dipole
transition is stronger than that of the magnetic dipole transition (I(5D0→ 7F2)/I(5D0→ 7F1)
= 4), which implies that the Eu3+ ion resides in a low-symmetry site without an inversion
center [30]. Moreover, only one peak is found for the 5D0 → 7F1 transition, indicating
that there is only one Eu3+ ion in the asymmetric unit [31], which agrees with the crystal
structure analysis above. Notably, the lifetime for 5D0→ 7F2 of Eu3+ ion in 2 was calculated
to be 1.2 ms. It should be noted that there are no emission peaks observed in 1 upon
excitation at various wavelengths from 254 to 420 nm with UV light.
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3. Experimental Section
3.1. Materials and Methods

All starting materials, i.e., Sm(NO3)3·6H2O, Eu(NO3)3·6H2O, and benzhydrazide
(bzz) were of reagent-grade quality, and were obtained from commercial sources without
further purification. Elemental (C, H, N) analysis was determined with a LECO CHNS
932 elemental analyzer. FT-IR spectra were recorded on a PerkinElmer model Spectrum
100 spectrometer using ATR mode, in the range of 650–4000 cm−1. P-XRD measurements
were carried out on a Bruker D8 ADVANCE X-ray powder diffractometer using Cu-Kα
(λ = 1.5418 Å). TGA thermograms were acquired in N2 atmosphere on a TGA 55 TA
instrument. The measurement was performed from ambient temperature up to 650 ◦C with
a heating rate of 10 ◦C min−1. CO2 adsorption isotherms in the pressure range of 0.1–50 bar
at 298 K were measured on a Quantachrome iSorb HP1 analyzer. Ultrapure (99.995%)
CO2 gas was used for the adsorption measurements. The PL spectra and emission decay
curves were measured at room temperature using a Horiba Scientific model FluoroMax-4
spectrofluorometer.
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3.2. Synthesis of [Sm2(bzz)(ben)6(H2O)3]·0.5H2O (1)

A mixture of Sm(NO3)3·6H2O (44.7 mg, 0.1 mmol) and bzz (27.3 mg, 0.2 mmol) in
distilled H2O (4 mL) was placed in a Teflon-lined reactor. The mixture was stirred at room
temperature for 30 min, sealed in a 15 mL stainless steel autoclave, and then placed in an
oven. The reaction mixture was kept at 130 ◦C under autogenous pressure for 96 h. After
cooling to room temperature, the crystalline product was filtered, washed with distilled
H2O, and dried in air at room temperature. The product was obtained as light-yellow
needle-like crystals with a yield of 84% (37.5 mg) based on Sm(NO3)3·6H2O. Anal. calc. for
C49H46N2O17Sm2: C, 47.63%; H, 3.75%; N, 2.27%. Found: C, 47.54%; H, 3.49%; N, 2.56%.
FT-IR (ATR, ν/cm-1, s for strong, m for medium, w for weak): 3430(w), 3058(w), 1593(m),
1532(s), 1492(m), 1403(s), 1307(w), 1180(s), 1070(w), 1025(w), 845(w), 712(s), 684(m).

3.3. Synthesis of [Eu(bbz)(ben)3] (2)

The procedure was the same as that for 1, except that Sm(NO3)3·6H2O was replaced
by Eu(NO3)3·6H2O (44.9 mg, 0.1 mmol). The product was obtained as light-yellow block-
shaped crystals with the yield of 47% (21.1 mg) based on Eu(NO3)3·6H2O. Anal. calc. for
C35H27EuN2O8: C, 35.66%; H, 3.42%; N, 17.82%. Found: C, 35.43%; H, 3.41%; N, 17.35%.
FT-IR (ATR, ν/cm-1): 3155 (w), 3055 (w), 3002 (w), 2896 (w), 1643 (m), 1587 (m), 1504 (s),
1477 (s), 1398 (s), 1305 (m), 1173 (w), 1066 (w), 1020 (w), 921 (w), 834 (w), 695 (m).

3.4. X-ray Crystallography

Suitable crystals of compounds 1 and 2 were mounted on MiTeGen micromounts
using paratone oil (Hampton Research). X-ray diffraction data were collected using a
Bruker D8 QUEST CMOS PHOTON II operating at T = 296(2) K. Data were collected
using ω and φ scans and using Mo-Kα radiation (λ = 0.71073 Å). The total number of
runs and images was based on the strategy calculation from the program APEX3 and unit
cell indexing was refined using SAINT [32]. Data reduction was performed using SAINT
and SADABS were used for absorption correction. The integrity of the symmetry was
checked using PLATON [26]. The structure was solved with the ShelXT structure solution
program using combined Patterson and dual-space recycling methods [33]. The structure
was refined by least squares using ShelXL [34] using the OLEX2 [35] interface. In the final
refinement cycles, all non-H atoms were refined anisotropically. All C-bound H atoms
were placed in calculated positions and refined using a riding-model approximation with
C-H = 0.93 Å and Uiso(H) = 1.2 Ueq(C), while all N- and O-bound H atoms were located
in a difference Fourier map and refined with N-H = 0.86–0.89 Å and O-H = 0.84 ± 0.01 Å,
respectively. The lattice water molecule in 1 presents a positional disorder that was refined
as two contributions with a 0.80:0.20 occupancy ratio. The benzene rings of the ligands
in 1 and 2 were found to be disordered over two 50% occupancy sites. The details of
crystallographic parameters, data collection, and refinements for all complexes are listed in
Table S1 in the Supplementary Material.

4. Conclusions

Two new mixed ligand LnCPs were synthesized based on in situ-generated ligands
formed under similar hydrothermal conditions. The participation of the ben and bbz
ligands formed in the transformation of bzz molecules plays an important role in the
formation of the structural differences between the network structures of compounds 1
and 2. Compound 1 shows a 1D double chain, while compound 2 features a 3D network
with a 4-connected (66) dia topology. Activated compound 1 shows that maximum CO2
uptake increases to exceptionally high values of 376.7 cm3 g−1 (42.5 wt%) under a pressure
of 49.8 bar at 298 K with good recyclability. Meanwhile, 2 exhibits a typical red emission in
the solid state at ambient temperature with a decay lifetime of 1.2 ms. We believe that the
hydrothermal in situ hydrolysis reactions of hydrazide ligand described here will provide
an alternative strategy of obtaining novel crystalline LnCPs. Further systematic investiga-
tions are currently underway with the aim of exploring various aromatic hydrazide groups
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containing ligands for hydrothermal in situ self-assembly reactions. We anticipate that this
will result in many more novel LnCPs with fascinating structural properties, which will
help us to understand the possible reaction mechanism of the in situ ligand synthesis and
provide new insights toward the development of crystal engineering of LnCPs.

Supplementary Materials: The following are available online, Figure S1: FTIR spectra for 1 and 2,
Figure S2: View of C···H-π interactions for 2, Figure S3: Solid-state excitation spectrum for 2, Table S1.
Summary of crystal data and structure refinement for 1 and 2, Table S2: Selected bond lengths (Å) for
1, Table S3: Hydrogen-bond geometry (Å, ◦) for 1, Table S4: Selected bond lengths (Å) for 2, Table S5:
C···H-π interactions (Å, ◦) for 2.
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