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Abstract

The recent decrease in cost and time to sequence and assemble of complete genomes cre-

ated an increased demand for data storage. As a consequence, several strategies for

assembled biological data compression were created. Vertical compression tools implement

strategies that take advantage of the high level of similarity between multiple assembled

genomic sequences for better compression results. However, current reviews on vertical

compression do not compare the execution flow of each tool, which is constituted by phases

of preprocessing, transformation, and data encoding. We performed a systematic literature

review to identify and compare existing tools for vertical compression of assembled genomic

sequences. The review was centered on PubMed and Scopus, in which 45726 distinct

papers were considered. Next, 32 papers were selected according to the following criteria:

to present a lossless vertical compression tool; to use the information contained in other

sequences for the compression; to be able to manipulate genomic sequences in FASTA for-

mat; and no need prior knowledge. Although we extracted performance compression

results, they were not compared as the tools did not use a standardized evaluation protocol.

Thus, we conclude that there’s a lack of definition of an evaluation protocol that must be

applied by each tool.

Introduction

Next-Generation Sequencing (NGS) [1, 2] made possible a significant advance in the genetic

sequencing of thousands of organism genomes. Besides, the sequencing capacity has doubled

every seven months [3] in a way that, in the next 20 years, the global sequencing capacity

might reach 1 billion people annually [3]. Therefore, data storage costs could be a bottleneck

when compared to sequencing prices [4]. Thus, rather than merely increasing space [5, 6],
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more efficient data storage methods are needed [7, 8]. Given such demand, data compression

approaches are considered a very efficient alternative.

Data compression could be applied to various biological data types represented by different

file formats, such as FASTQ for sequenced reads, BAM/SAM for aligned data, VCF for haplo-

type or sequence variation. Among these file formats, compression tools for NGS data in

FASTQ or data alignment in BAM and SAM files were recently benchmarked by the MPEG

HTS [9] group. VCF files [10] or graph-based structures are commonly used to represent

genetic variations between different sequences (including haplotypic variation). For haplotypic

variations, sequenced reads are mapped to a reference genome (reference-based), or are used

for a de novo assemble to create a consensus sequence that is then mapped to a reference

sequence [11]. The most common use of VCF files are for haplotypic studies in Genome-Wide
Association Studies (GWAS), such as the 1000 Genomes Project [12], UK10K [13], GoNL [14]

or HRC [15]. Haplotype variation data, stored in VCF files can be compressed by some tool as

GTC [16], BGT [17], SeqArray [18], and PBWT [19] or, when stored in a graph-based format

by tools gPBWT [20] and BFT [21].

Another type of file format is FASTA, commonly used to represent a partially or fully

assembled sequence from an organism’s genome [22]. A genome sequence could be obtained

by resequencing or by a de novo-based assembly. In the resequencing process, sequenced

reads are mapped to the corresponding organism reference genome. In the de novo-based

assembly process, the sequence reconstruction is an overlapping-based sequenced reading,

creating contigs and scaffolds [23].

A de novo-based assembled genome, compared to a reference-based, turns possible to iden-

tify complex structural variations or large repetitive regions [23] to create a complete map of

genetic variations [24]. For this reason, de novo-based approaches are being widely used for

the correct identification of large sequence variations. Considering the importance of de novo-

based assembled sequences, normally stored in FASTA format, several compression tools were

proposed. As defined by the authors of Biocompress [25], the first genomics sequence com-

pression tool, the compression process could be performed by two modes: horizontal and ver-

tical. In horizontal mode, each genomic sequence is compressed using its self-contained

information as a search space [25]. In vertical mode, also known as delta or differential com-

pression, the content of one or more sequences can be used as a search space to detect shared

repetitive segments. Although for some cases, the used nomenclature for genomic data com-

pression considers vertical mode equivalent to referential mode, the second corresponds to a

subtype of the first [26, 27]. Vertical compression tools are designed for genomes of same spe-

cies, as they have high genomic similarity, such as between humans that share 99,5% of all

their genetic material [28]. Thus, it would be possible to store only the 0.5% differences [27].

Previous reviews had been published (Table 1) but they covered different topics such as

important bioinformatics areas in which compression techniques could be applied [26, 29, 30]

or NGS data compression [31]. Furthermore, some reviews [4, 27, 32–34] covering the topic ver-

tical genomic data compression consider a small number of tools to be compared, less than 10.

Due to the importance of compression methods and the high variability of existing method-

ologies, we performed a Systematic Literature Review (SLR) to identify existing compression

tools for the compression of a collection of assembled genomic sequences.

Thus, to create the macro vision of the main characteristics of the computational compres-

sion tools, the following research questions were enunciated:

RQ1: Which are the existent tools for Vertical Genomic Data Compression (VGDC), and in

which way do they process the sequence content and how they provide access to com-

pressed data?
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RQ2: Which are the techniques used by VGDC tools to detect shared segments and to encode

the final result?

In our review, we performed an in-depth review of 32 vertical compression tools. Of these,

16 (50%) were published in the last 3 years. We list the existing tools for vertical genomic data

compression. Next, we describe each tool process the sequence content and how they provide

access to the compressed data. Then, we describe the used techniques by the tools to detect

shared segments and to encode the final result.

Results

Article selection and overview

This systematic literature review was conducted following the protocol defined in the previous

section. The search was performed on August 1, 2018, and after the removal of duplicated

papers, 45726 unique papers were obtained. After applying the inclusion criteria, 32 tools were

filtered to be assessed by this review (Fig 1). Quantitative filters (impact factor, the number of

citations or journals in which the papers were published) were not applied as exclusion criteria

in this review. From this point, each research question was answered by analyzing the full con-

tent of the selected papers.

RQ1: Which are the existent tools for Vertical Genomic Data Compression (VGDC), and

in which way do they process the sequence content and how they provide access to com-

pressed data?

From the selected papers, 32 genomic data compression tools were identified (Table 5), and

the following information was extracted: publication date, programming language, the highest

and lowest compression ratios (ratio between the final size and initial size of the compressed

genomic sequence), compression scheme, supported alphabet, compression of sequence

header, external memory usage, and available method for compressed data access (Table 5).

Although the human genome was concluded in 2001 [35, 36], all the vertical genomic com-

pression tools were reported only after 2009 (Fig 2A).

We also observed that about 57, 5% of tools were written using the programming languages

C or C++ (Fig 2B). Although the authors did not justify the reason of using a specific program-

ming language, both mostly used languages are based on architecture-based compiled codes

that, in a general manner, allows faster execution times when compared to interpreted codes

Table 1. Genomic data compression reviews.

Publication

Year

Title Published Journal

2009 Textual data compression in computational biology: a synopsis Bioinformatics

2009 Data Compression Concepts and Algorithms and Their Applications to Bioinformatics Entropy

2012 Recent Directions in Compressing Next Generation Sequencing Data Current Bioinformatics

2012 Textual data compression in computational biology: Algorithmic techniques Elsevier Computer Science Review

2013 Data compression for sequencing data Algorithms for Molecular Biology

2013 Compressive biological sequence analysis and archival in the era of high-throughput sequencing

technologies

Briefings in Bioinformatics

2013 DNA Lossless Compression Algorithms: Review American Journal of Bioinformatics

Research

2013 High-throughput DNA sequence data compression Briefings in Bioinformatics

2014 Trends in Genome Compression Current Bioinformatics

2016 A Survey on Data Compression Methods for Biological Sequences Information

https://doi.org/10.1371/journal.pone.0232942.t001
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[37]. Another extracted information was the compression ratio [see Additional file 1:

Table S2] that is defined as the ratio between the uncompressed size and compressed size.

Such information was extracted directly from the data provided by each paper. We prioritized

the extraction of compression results of H. Sapiens genome sequences. However, the tools

RCC, RLZAP, Kanika, et al., RLZ 1.4, RLZ RePair and Project DNA Compression did not

Fig 1. Flowchart of study identification and selection process.

https://doi.org/10.1371/journal.pone.0232942.g001
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present any result using the H. Sapiens genome as a reference dataset [Additional file 1:

Table S2, highlighted in bold].

However, the data is not useful for direct comparison between tools since they were gener-

ated at different conditions. A wide variation of compression ratios among the tools might be

noticed. This is due to the lack of dataset homogenization for assessing compression ratio.

This same observation is supported by other authors [27, 33], that also observed the lack of a

standardized protocol for performance evaluation. Taking altogether, the following differences

were observed: a) the use of different sequences, from large genomes of animal and plants to

small genomes of microorganisms, b) the use of distinct methods for gathering and/or present-

ing compression performance evaluation metrics, and c) the use of a limited number of spe-

cialized compression tools and, for some cases, using generic tools like GZIP, making it

difficult to perform a comparative and conclusive performance evaluation.

As a systematic literature review, it was not the aim of this review to perform a performance

evaluation as performed by some others genomic data compression surveys [9, 22]. The first

[9] one focus only inHigh-throughput sequencing (HTS) data compression tools and in the sec-

ond [22] there is an attempt to compare different vertical compression tools, but it was

restricted to only two tools, the GRS [38], and the GReEn [39]. Additionally, the used test data-

set, although having sequences varying the species and genome size, did provide detailed infor-

mation about the sequence characteristics, such as their similarity degrees and types of

variations, if single-nucleotide polymorphism (SNP), inserts and deletions (INDEL) or structural
variations (SV).

Based on these previous reports, it becomes crucial to define a standard protocol to ensure

conclusive and comparable performance evaluation [40]. Therefore, some of the following def-

initions must be standardized: a) method for a tool execution; b) metrics (such as compression

time, memory requirements and disk usage) to be collected; c) time points for metrics collec-

tion; d) information that must be reported in order to guarantee reproducibility of the experi-

ments; e) standardizing the results presentation; f) datasets that must be used in the evaluation.

When analyzed the compression ratio described by each assessed tool, we found a an accretion

on the final size of the compressed input dataset in hundreds of times, and in some cases even

thousands of times. As reported by the authors, the power of compression is due to the high

level of similarity between sequences. However, these tools did not perform an in-depth analy-

sis, correlating the characteristics of the sequence and their similarity levels with the efficiency

of compression ratios, for better or worst results. The definition of a set of parameters

Fig 2. Tools for VGDC. Considering (A) Amount of Publications per Year and (B) Amount of Tools per Programming Language. The total number of

tools is greater than 32 because the HiRGC tool has versions in C ++ and Java.

https://doi.org/10.1371/journal.pone.0232942.g002
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corresponding to the dataset characteristics could improve the compression ratio and also pre-

dict which could be the better approach to be used for.

For example, in the results of the ABRC tool, it was observed a very different compression

ratio when comparing compression results of same species genomes. For a dataset of H. Sapi-

ens sequences, the tool reached a compression ratio of 397:1 and, by after compressing Saccha-
romyces Cerevisiae sequences, such ratio reduced to 61:1. Based on these reported results, we

raised the following questions: Which characteristics between these two datasets are causing

such difference in compression ratio? Would it be only the quantity of repetitions or any other

type of repetitive region? Alternatively, would that be a result of other types of genetic varia-

tion, such as those resulting from SNP, INDEL or SV?

According to our analysis, the compression tools did not follow a standard for the represen-

tation of the input dataset, the method to present the compression results, and the used met-

rics/approach for compression evaluation. It was also observed that many tools used the

human genome KOREF_20090224 [41] for their performance tests, but each tool reported a

different genome size (Table 2). Although we could list several reasons for that difference, such

the use of a different file system to store the files or a preprocessing step before the data com-

pression, it shows the need for a dataset representation standard.

Besides the differences observed in the described pipelines for data compression, we also

identify and described which the tools currently use compression schemes. A detailed analysis

of the papers led to the identification of 3 different schemes as follow (Table 5):

• Referential: Given a collection of genomic sequences, the referential compression, also

known as relative, delta or differential [27], consists on the selection—automatic or manual

—of a genomic sequence as reference. The remaining sequences, called targets, are then

compared to the reference to detect and store only the different parts [22]. These stored

parts are replaced by identifiers, called matches, within target sequences, which points to

Table 2. Informed size for KOREF_20090224 human genome.

Tool Size

HiRGC 2.987 MB

FM-context 3.080.419.480 bytes

MLF 3.080.436.051 bytes

NRGC 2.938 MB

SLF 3.080.436.051 bytes

ERGC 2.938 MB

iDoComp 3.100 MB

DnaCompact 2.937,7 MB

Dai et al. 3.080.436.051 bytes [t]

COOL 2.938 MB [b]

GRS 2.986,8 MB

GReEn 3.080.436.051 bytes

GDC-0.3 3.131,78 MB

Actual sizea 3.131.776.827 bytes

Tool: Name of tool or quotation of it when there is no name; Size: Size of KOREF_20090224 genome, as it is

presented by each tool in its original papers.

Notes:
a—Total value, in bytes, by adding the total bytes to the FASTA files available in ftp://ftp.kobic.kr/pub/

KOBIC-KoreanGenome/KOREF_20090224/fasta/ at 26/09/2016.

https://doi.org/10.1371/journal.pone.0232942.t002
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segments of the reference sequence [33]. Fig 3A illustrates an example of referential com-

pression, in which the first match, m(1,6), indicates that the shared segment GTTTGA is ini-

tiated in the reference sequence, position 1, having 6 nucleotides. Compression is by

achieved by using the information shared between the reference sequence and the corre-

sponding target sequences [32]. Such scheme is implemented by the following tools: RCC,

HiRGC, FM-context, MLF, RLZAP, NRGC, RCSCS, DNAComp, SLF, JDNA, Arram et al.,

ERGC, GDC 2.0, CoGI, iDoComp, DNAC-K, RLZ 1.4, FRESCO, DnaCompact, Dai et al.,

ABRC, COOL, GRS, GDC 0.3, RLZ-Opt, RLZ-RePair, RLZ and Project DNA Compression;

Fig 3. Compression schemes. (A) Referential pair-based. The target genome sequence will be compressed using information extracted from the

reference genome sequence. The goal of this process is to find shared segments. The goal of this process is to find shared segments. The final result is a

map (Mapped Target Sequence) in which matches replace such shared segments, and the not shared are written in raw, as a mismatch. In this example,

the match is composed of two integers, the first being the position where the shared segment begins in reference and the second representing the size of

the match. (B) Dictionary collection-based. In this example, three genomes are compressed at the same time. In the first moment, the process searches

for shared segments and stores them in a structure called codebook. Then, to obtain the mapped genomes, it rewrites sequences, replacing segments by

indexes of tokens previously created. Token indexes and mismatches symbols will compose the final mapping. In this example, we consider that to be

converted as a token, a shared segment must be larger than three bases. (C) Referential collection-based single/multi-reference. In this example,

sequences g1, g2, and g3 are compressed. On the first step (C), g2: Target Sequence 1 is compressed concerning g1: Reference Sequence and generates a

mapping between them. The second step represents behavior or single-reference (c1) or multi-reference (c2). In the case of single-reference (c1), the

process is similar to the previous step (C), in which sequence g3: Target Sequence 2 is compressed based on the same g1: Reference Sequence used in

(C). In multi-reference (c2), however, the compression process will try to find shared segments using both g1: Reference Sequence and the ones already

compressed, in this case, g2: Target Sequence 1. Thus, matches can point to any other sequence of the collection.

https://doi.org/10.1371/journal.pone.0232942.g003
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• Dictionary: The basic idea of this scheme is to find repeated recurrent data portions (i.e.,

substrings), remove them from the main content and store them as indexed tokens in a dic-

tionary, called codebook. This pieces of recurring data are replaced by its corresponding

stored indexes from the codebook [42]. The compression will become effective when less

space is required to store the indexes compared to the space for the tokens [43]. Fig 3B illus-

trates how a dictionary-based compression scheme works. In this scheme, the tool passes lin-

early through the three genomic sequences to detect shared segments between them.

Detected segments are then moved in, as tokens, to the codebook. Here, the token T1 is com-

posed by the bases GTTTGAGC and is found within all three sequences. The tools that

implement the dictionary-based concept are COMRAD and Kanika et al [44]. Although

Kanika and colleagues had described their tool as a referential-based schema, there is an ini-

tial step to create a reference set. Such reference is composed of shared blocks that are

extracted from a set of random-defined reference sequences. These blocks, corresponding to

DNA parts, are then localized in target sequences to be replaced by corresponding finger-

prints. In this dictionary-based schema, the reference set is used as a codebook, and the

tokens and fingerprints correspond to indexes;

• Statistical: instead of implementing a data transformation phase, the statistical-based schema

directly applies the coding over the input genomic sequences. This scheme uses the informa-

tion on the probability for a given nucleotide to occur within the sequence. Then, it can

determine a unique code-word, which may be of variable size (proportional to the size of the

alphabet). This code-word will be part of the final compressed file [45]. The tool GReEn [39]

is based on an arithmetic coding model (detailed in [46]), that uses the reference sequence to

create a dynamic probabilistic model. The model is used to compress the target sequences by

generating a numeric interval to reconstruct the original sequence. The GeCo tool [47, 48]

also uses an arithmetic coding schema. Its content corresponds to the occurrence probability

of each nucleotide happen, that is calculated by two models, one based on Finite-Context
Models (FCMs) and a second based on an Extended Finite-Context Models (XFCMs). For

GReEn and GeCo tools, models are created and updated using information extracted from

the reference sequence. Therefore, the better the capacity of the model to predicting the next

nucleotide, the lesser the quantity of data to be stored [49].

As a vertical-based compression scheme, the tools require the availability of the reference

sequence for the decompression process or the dictionary in the case of dictionary-based tools.

We also investigated the number of genomic sequences involved in the compression process,

that can be based on two different methods:

• Pair-based: compression method that uses as input data a single target genomic sequence to-

be-compressed [50]. When a set of targets sequences are available, each individual sequence

is separately compressed [50] using a reference sequence that must be available for the other

targets sequences to-be-compressed or for decompression [25, 51] (Fig 3A);

• Collection-based: compression method that uses as input data a collection of genomic

sequences to-be-compressed. The collection is analyzed to find for shared segments with

only one reference sequence [52]—single-reference, or with a collection of them—multi-ref-

erence [29] (Fig 3C). Depending on the number of involved sequences, different compres-

sion steps may be applied. On the first step (Fig 3C) both approaches, single and multi-

reference, perform the same search procedures through shared segments when there are

only one reference sequence and one target sequence (Target Sequence 1). In the second

step, the search procedure for shared segments becomes different. For a single-reference
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compression, a second target sequence (Fig 3c1, Target Sequence 2) is compressed using the

same reference sequence used by Target Sequence 1. For the multi-reference compression

(Fig 3c2), the Target Sequence 2 uses the information contained both in Reference Sequence

and in Target Sequence 1. Target Sequence 1 is also incorporated within the set of com-

pressed sequences and used as a source of information (search space). Due to the existence

of more sequences that can be used as a reference, the probability of finding more shared

segments increase.

Among the assessed tools (Table 5), only 6, GDC 2.0, DNAComp, DNAC-K, FRESCO,

COMRAD e GDC 0.3, implement a collection-based compression method using the multi-ref-

erence approach. Preliminary results suggest that these 6 methods are promising as they have

shown better results when compared to other approaches [50, 53]. A particular case is the RCC

[54] tool, that groups the target sequences into clusters and, for each cluster, generates one arti-

ficial reference sequence (consensus sequence). Next, each target sequence is compressed

using its corresponding reference sequence. Then, even though there is more than one refer-

ence sequence, each cluster makes use of only a single reference at a time, so we consider it to

be a single-reference approach.

Another critical point in compressing genomic data is the form in which they process and

provide access to a compressed FASTA file representation. This representation has 2 informa-

tion for each sequence. The first information is a header line, corresponding to the sequence

description/identification, beginning with the symbol “>”, and the second information corre-

sponds to the sequence content in nucleotides. The FASTA representation is not case-sensi-

tive, although some tools also handle this information. In a FASTA file having a genomic

sequence, the header has an average size smaller than 256 symbols. Thus, it is tiny compared to

the DNA sequence content it represents but required for recovering the compressed

sequences. Therefore, the sequence header can be stored separately, without applying a proper

compression schema.

Although essential for compressed data recovery, only a few tools store header information,

which are: HiRGC, NRGC, JDNA, ERGC, GDC 2.0, iDoComp, DNA_COMPACT, COOL,

GDC 0.3 and GRS. Other investigated tools either discard the header (MLF, Arram et al., GeCo,

DNAComp, SLF, CoGI, ABRC, GReEn and Project DNA Compression), or do not mention

how they treat the sequence header (RCC, FM-context, DNAC-K, RLZ 1.4, FRESCO, Dai et al.,

COMRAD, RLZ-opt, RLZ-RePair, and RLZ). The heterogeneity found in the way the tools pro-

cess the sequence header makes it challenging to assess the performance of a specific tool pre-

cisely. For example, in the tests described by iDoComp tool, the authors ignored the size of the

sequence header for small datasets to be able to make results comparable with other tools.

In addition to the sequence header, another essential characteristic for the compression of

genetic data is the alphabet, used to represent the DNA sequence in a FASTA file. Four sym-

bols compose the smallest required alphabet to represent a DNA sequence: A, T, C and G.

Among the 32 assessed tools, 15 of them (HiRGC, FM-context, MLF, NRGC [55], SLF, ERGC,

GDC 2.0, iDoComp, DnaCompact, Dai et al., ABRC, COOL, GRS, GReEn e GDC 0.3) do not

impose any kind of alphabet restriction, being therefore capable of considering any symbol of

ASCII table and also being case-sensitive. The only exception occurs for the tools COOL and

ABRC. COOL converts all symbols to uppercase and ABRC tool did not specify whether it

uses this information. Among the other tools, two tools accept IUPAC alphabet (COMRAD

and DNAC-K), and other 9 tools (RLZAP, GeCo, JDNA, CoGI, RLZ 1.4, FRESCO, RLZ-opt,

RLZ-RePair e RLZ) that consider an alphabet of reduced size and composed by the symbols

ATCGN. The tools RCC, Arram et al., GeCo, DNAComp e Project DNA Compression are

restricted to only 4 symbols, corresponding to the ATCG nucleotides.
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Besides the analysis of the treatment of FASTA content, we also investigated the computa-

tional demands of each compression tool, such as the use of secondary memory (disc). When

used in an appropriated way, secondary memory provides the ability for a compression tool to

be able to manipulate more massive datasets without restricting its use to the main memory

(RAM) size. A well projected and implemented secondary memory use should not jeopardize

the main memory of the system since its disorganized use could force the compression tool to

use the virtual memory (swap) from the Operating System, and then delaying the compression

process. Therefore, when compressing big datasets in limited computational environments, a

compression tool should be able to self-manage the use of computational resources. Among

the assessed tools, this functionality was implemented by GeCo, NRGC, JDNA, ERGC, ABRC,

and COMRAD. In GeCo, a new proposal was implemented using hash tables, called cache-

hash, which are not required to be stored entirely in the computer’s main memory. Instead,

the tool keeps stored within main memory only the most recent entries. In the tools NRGC,

JDNA, and ERGC it is implemented an on-demand loading strategy of the to-be-compressed

genomic sequences. In this method, the compression scheme works by keeping the remaining

of the to-be-compressed data in the secondary storage. The ABRC tool implements a slightly

different approach by loading into main memory only the index parts necessary for mapping.

The COMRAD tool uses a similar approach, however during compression it processes each

genomic sequence independently of the others. This strategy reduces the total amount of main

memory required for compression.

Once the genomic data has been compressed, we also analyzed how the tools extract part or

entire compressed sequences. This may be either the extraction of an entire sequence from a

collection of compressed sequences or the extraction of a segment from a compressed

sequence. Such extraction may require the decompression of the entire collection of com-

pressed sequences (Total Recovery) or allow only the desired sequence to be decompressed

(Single Recovery), the latter also is characterized by non-sequential data access [27]. Among

the assessed collection-based tools, the single recovery functionality is available within the

tools GDC 2.0, COMRAD, RLZAP, RLZ 1.4, GDC 0.3 and RLZ.

In the GDC 2.0 tool, single recovery is possible if only one reference sequence is used, oth-

erwise, more than one sequence should be decompressed. The COMRAD tool also imple-

ments a single recovery process to extract the sequence of interest but requires that the full

contents of the codebook and compressed sequences be stored in main memory. In this

method, only the necessary tokens from the sequence to-be-decompressed will have their cor-

responding nucleotides extracted. The other tools, RLZAP, RLZ 1.4, GDC 0.3 and RLZ, imple-

ment, on single recovery form, both partial and complete sequence extraction. Data structures

based on self-indexes are the broad approach used for Single Recovery [56–58].

RQ2: Which are the techniques used by VGDC tools to detect shared segments and to

encode the final result?

The 32 assessed vertical genomics compression tools in this review are based on 3 distinct

phases (Fig 4), with each one been composed by a different number of steps (Table 6). Such

steps are detailed within the next sections.

Automatic selection or creation of the reference sequence

This step aims to determine at least one sequence that will be used as a reference for the detec-

tion of shared segments in the collection of to-be-compressed target sequences. The reference

selection can be done by automatic selection from the collection of the to-be-compressed

sequences (Fig 5B). Tools implementing this strategy are DNAComp, CoGI, FRESCO, GDC

0.3. Another strategy for determining the reference is based on generating an artificial
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Fig 4. Conceptual compression flow. The conceptual vision of the activities that can be executed by a VCGD tool to

compress DNA sequences. 1) Preprocessing Phase, initial phase to select the sequence that will be used as reference and

index it. Some tools do not have an automatic process to select references. In these cases, tools expect the reference to be

manually informed. 2) Transformation Phase, phase in which tools explore characteristics inherent to DNA sequences

that, due to being all from the same or correlated species, tend to share a significant part of the information. The first

activity is to create the mapping, which will contain matches/mismatches or edit operations between a determined

target sequence and the reference. After that, tools can either execute the process of Post-processing or Second Order

Mapping. 3) Encoding Phase, in this phase the input is the Mapped Sequences that will be encoded, i.e., written in a
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sequence (a created consensus reference that is based on the to-be-compressed sequences

(Fig 5A)) and is implemented by the tools RCC, CoGI, Kanika et al. (44), FRESCO and Project

DNA Compression. For both cases, better compression results are reached when higher simi-

larities are found between the reference and to-be-compressed sequences.

According to our analysis, we have identified three distinct forms for reference sequence

selection:

binary way. The goal is to rewrite instructions aiming to reach the lowest possible entropy. In this phase, some tools opt

for grouping data according to the distribution of symbols that will be encoded. This is done because some entropy

encoding methods have their efficiency directly related to the number of distinct symbols as well as the probability

distribution of each symbol. For example, mismatches can be encoded separately from matches, which can have the

element referent to the position, coded separately from elements referring to the size. The final result is a binary file

containing one or more compressed sequences.

https://doi.org/10.1371/journal.pone.0232942.g004

Fig 5. Reference sequence (artificial vs. biological). In this figure we illustrate the differences of using a reference data based on a real genomic

sequence (B) compared to an artificially generated sequence (A). The great advantage of using an artificial sequence is its high level of similarity to the

to-be-compressed sequences since its creation is based on the most frequent segments found within the collection of to-be-compressed sequences.

However, the high computational cost for creation and storing of artificial sequences must be considered before applying this approach.

https://doi.org/10.1371/journal.pone.0232942.g005

PLOS ONE Vertical lossless genomic data compression tools for assembled genomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0232942 May 26, 2020 12 / 37

https://doi.org/10.1371/journal.pone.0232942.g004
https://doi.org/10.1371/journal.pone.0232942.g005
https://doi.org/10.1371/journal.pone.0232942


• Manual: is manually provided by the user before the start of the compression;

• Automatic: is automatically selected by the compression tool. This process is executed before

the compression;

• Generated: is automatically created, where the tool generates an artificial sequence based on

the to-be-compressed sequences. This process is executed before or during compression.

Although the selection of a reference has a direct and crucial impact on the final size of the

compressed sequences [49, 59, 60], the vast majority of tools require a manual determination,

as reported by HiRGC, FM-context, MLF, RLZAP, NRGC, RCSCS, GeCo, SLF, Arram et al.,

JDNA, ERGC, GDC 2.0, iDoComp, RLZ 1.4, DnaCompact, Dai et al., ABRC, COOL, GRS,

GReEn, RLZ-Opt, and RLZ. The efficient selection of reference allows minimizing the amount

of variation between reference and target and the total output file size [59]. Therefore, auto-

matic-based reference selection may bring significant benefits in the final compression ratio.

Reference sequence indexing

Some tools, during the mapping phase (detection of shared segments between genomic

sequences—detailed in section 3), use a specific strategy to access the reference sequence con-

tent. One of these strategies is based on the use of indexing methods to reduce the computa-

tional cost. Indexing-based methods use data structures to speed up the search for stored

content. They are mostly based on suffix arrays that allow to locate a segment of size m in a

sequence of size n with complexity O(m log n) compared to O(n) without its use. In general,

the lower the computational cost to access an index, the higher the cost in its generation and

storage [54].

In this context, the tools MLF [61] and SLF [62], use suffix arrays to create two data lists to

search for shared segments. One list is the Longest Previous Factor (LPF), and the other is the

Position (POS). In tests reported by SLF tool, it consumed 2376 seconds to construct the index

of the H. sapiens genome (version KOREF_20090131 (41)). For the creation of lists LPF and

POS, 399 seconds were necessary, resulting in a total of 2775 seconds. In contrast, the use of

these lists reduced the compression time for the largest human chromosomes to less than a

second. In the MLF tool, on the other hand, which uses an improved version of the suffix

array, it took less time than the SLF, 889 seconds, to create the index of the same genome, but

it took about 39 seconds to perform the same sequence compression.

This scenario exemplifies the direct correlation between the time spent for reference-index-

ing step with the performance of data compression tool. A similar analysis was described by

the authors of FRESCO tool, who have identified that, by using the index structure based on a

k-mer hash table, the memory consumption averaged between 8 to 10 times the size of the ref-

erence sequence. With the use of an index structure based on compressed suffix trees, the

memory demand was decreased up to 5 times, but with a processing time 30% higher than

using a k-mer hash table structure. Once again, such observation makes evident that the use of

an index structure could substantially boost increase the final performance of the tool.

Based on these performance issues, some tools also implement specific heuristics to get

around the rise in computational cost caused by index creation. JDNA tool implements a strat-

egy that creates an on-demand index, that avoids the need to create an index of the whole

sequence [see Additional file 1: Section S1]. Instead, JDNA only requires to index an average

of only 2, 5% of the sequences, that reduces the required memory for the index. Similarly,

other tools such as ABRC and ERGC were based on a strategy that divides the reference

sequence into blocks and then starts the indexing process, block by block, and delete it after

use.
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Among all analyzed approaches, COOL and DnaCompact are the only tools that did not

require index creation. To replace the index, they work by limiting the search space to a fixed

size window within the reference.

The HiRGC [63] tool presents a new approach in which the mapping process receives 2-bit
integer sequences as input. With this, they do not need to deal with large alphabets. To achieve

this, all non-ATCG symbols are removed before indexing the reference sequence, and then the

sequence is encoded to a 2-bit integer sequence (A = 0, C = 1, G = 2andT = 3). After that, a k-

tuple hash table is created based on the values of the tuples—of size k—from the reference

sequence. The numerical value of a k-tuple is calculated based on a simple formula created by

the authors. A similar process is applied to the target sequence. In the end, all the non-ATCG
symbols that were removed, are stored along with their respective positions. It is also stored

the positions of the lowercase symbols. This information will be used in the decompression

process so that the final decompressed file will have precisely the same content as it initially

did.

As discussed here, different approaches have been used to deal with reference sequence

indexing to attend memory issues. In the assessed tools, a total of 6 types of index structure

were identified: k-mer hash table, K-tuple hash table, Suffix array [64], FM-index [65], Com-

pressed suffix tree [66], Matrix graph [67] and Longest previous factor [68].

The choice of the type of index structure to be used has a direct impact on processing time

and the needed memory space for data processing, and the k-mer hash table structure pre-

sented the best results compared to the other structures [69]. Other structures for indexing,

such as those ones based on FM-index also demonstrated some advantages compared to k-mer
hash tables, such as: the mapping performance is not influenced by the size of the reference

sequence and, given the fact that the reference is rarely altered, it is possible to keep stored the

index to compress other target sequences [70]. Despite the importance of an index in the final

compression quality, its storage cost demand must be considered, because in some cases, such

as in tool Arram et al. [70], the index size generated for the human genome is of 17GB.

Of all assessed compression tools, k-mer (or k-tuple) hash table is the most frequent type of

used structure, being reported by 11 out of 32 tools assessed (HiRGC, NRGC, GeCo, JDNA,

ERGC, Kanika et al., GDC 2.0 [50], CoGI, FRESCO [49], GReEn and GDC 0.3). A hash table

stores keys and values [71]. When a k-mer hash table was used as an index structure, we

extracted the k value, that corresponds to the segment size in the assessed target sequence

(Table 6). Regarding the values of k, it is know that the smaller the value, the longer the time

needed for index generation and its corresponding size and without any difference in the final

compression ratio [49].

Although the high computational cost involved for reference sequence index generation,

the analysis of the assessed tools demonstrated that the use of an index can improve the final

performance of data compression tools.

First order mapping

It is a data transformation step responsible for over 70% of the processing time [70]. In data

compression, the goal of a transformation phase is to reduce the redundancy of information

and the number of unique elements that need to be stored. With that, data disorder is reduced,

lowering its entropy, which allows increasing their compressibility at the encoding phase

(detailed in section 6). It is through the transformation that it reduces the necessary space for

storage in a smaller magnitude than what previewed by Information Theory [46]. This idea

was initially explored by LZ transformations [42, 72]. Before that, the encoding phase was fed
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with the original content of the to-be-compressed data, limiting it to the distribution of each

element that composes the input data.

To reach higher efficiency, the transformation step must also be capable of exploring char-

acteristics inherent to the data being processed; in this case, if the genomic sequences consid-

ered are resulting from similar organisms, of the same species. In the context of vertical

compression of genomic data, the goal is to reduce the number of nucleotide segments that are

equal and shared among the to-be-compressed genomic sequences. In the analyzed tools in

this review, the following techniques were identified for mapping:

• Factorization: The factorization process, based on LZ77 concept [72], tries to pair the cur-

rent segment with an earlier occurrence of itself. The implementation of this strategy

requires a dictionary structure, composed only by words already visited in the input stream.

In vertical compression, instead of using, like a dictionary, already visited segments of the

input stream, the search for repetitive segments is restricted to other sequences available as

references [52]. One particular case is tools RCC, GeCo [47], SLF [62] and DNAComp [73]

that include the input stream (the target sequence) in the search space. In this way, besides

using only the reference sequence as search space, it uses information from the target

sequence being compressed. As a result of this process, matches are generated, which are

also known as: factors [52, 74, 75], LZ-matches [69], relative match entry [76], referential

match entries [49] or triploid [77]. These matches represent shared segments between

sequences and can be interleaved with segments of one or more nucleotides not shared

between sequences, known as mismatch bases. Matches can be represented as a) pair (p, l),
where p is the starting position of the match at the reference sequence and l is the size of the

match; or b) triplet (p, l,mi), in which p is the starting position of the match, l is the size of

the match and mi are the mismatch bases. There are several ways of performing factorization

and can be based on sliding window concept (COOL and DnaCompact [75, 78]), alignment

(ERGC [79]), greedy search (HiRGC [63], FM-context [77], FRESCO and RLZ [49, 52]),

look ahead (RLZ-Opt [74]) or fingerprinting (NRGC [55]).

• Grammar based: Sequences are processed iteratively so that, at each step, it is attempted to

identify frequent segments to be replaced by non-terminal symbols, which are not part of

the initial set of symbols in the processing content. The goal is that at each stage, it should be

possible to identify longer segments. These segments can also be composed of non-terminal

symbols. The process ends when a predetermined number of steps is reached or when suffi-

cient segments are no longer found to be replaced [80]. Among the tools assessed, only

COMRAD operates in this way.

• Alignment: It is when DNA sequences are aligned to find shared segments. Such alignment

can be done by pair, in a way that a target sequence is aligned with a reference sequence,

aiming to find the local shared sequence and then extracting the different sequence (imple-

mented by GRS tool [38]). Another search method is to align a set of sequences to extract the

consensus sequence that will describe the collection of sequences used (implemented by

DNAC-K [81]).

As a result of the first order mapping process, a map is generated that contains information

about shared and non-shared segments (Fig 3). The only tools that do not implement such

strategy are GeCo [82] and GReEn [39] that do not have a mapping phase. Both are statistical

tools, which send the target sequence content directly to encoding.

We have identified that, during mapping, some tools implement specific strategies to exe-

cute the search for shared segments, called Local Search. The goal is to increase efficiency in

the search for shared segments or in the identification of matches that have a more efficient
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representation. This more efficient representation will be explored in the encoding phase. This

local search, looking for the beginning of the next match, is done by limiting the search space

in the reference sequences, so that the search is started in a subsequent position close to the

last identified match. Thus, in addition to reducing the need to go through the whole reference

sequence whenever we look for a match, it is possible to prioritize match detection so that they

are identified in a growing chain. With this, it is possible to create a relative representation of

positions. Such behavior is possible given the homology and co-linearity of genomic elements

[83] existent between organisms of same species, or between organisms of genetically similar

species. With that, the chance that a large segment (a match) is interrupted by mutations, such

as SNPs, INDELs, rearranges and CNV is significantly high.

There are several approaches to the implementation of Local Research behavior, the main

ones being highlighted here (Fig 6):

1. Keep a pointer between reference and target (Fig 6A), and advance this pointer at the same

time in reference and target for every match or mutation identified, as implemented by tool

JDNA [84]. Another possibility, implemented by tool GDC 2.0, is to perform some punc-

tual simple verifications before initiating the search for a larger segment, advancing the

pointer in reference [34];

2. Restrict the search within a bidirectional window (Fig 6), which can have its position and

size updated dynamically, behavior presented by COOL and DnaCompact tools [75, 78];

3. Splits reference and target in same size blocks and process both blocks into the same order

as they appear (Fig 6), giving preference initially to matches in these blocks (presented by

tools ABRC and ERGC [76, 79]);

4. Implementing a metric that penalizes matches that are distant from the latest recently con-

sidered match (Fig 6), implemented by tool GDC-0.3 [69];

5. Initiate the search for the next large match after the ending of the last recently identified

match (Fig 6), implemented by tools GeCo [47], GReEn [39], RLZ-Opt [74], RLZAP [85].

Tools Dai et al. [86] and CoGI [87], however, restrict the search to a nearby region in which

recent segments were identified.

The decision to implement Local Search depends directly on the implemented coding

scheme. Among the tools evaluated, we identified in 16 of them the Local Research behavior:

RLZAP, GeCo, JDNA, ERGC, GDC 2.0, CoGI, DnaCompact, Dai et al., ABRC, FRESCO,

COOL, GRS, GReEn, GDC-0.3, RLZ-opt and RLZ-RePair. Some tools are based on close

matches identification, as RLZ-opt (74) and GDC-0.3 [69], aiming to reduce the cost for stor-

ing the match position. Other tools, such as HiRGC [63], FM-context [77], RLZ [52] and

FRESCO [49], suggest that, by considering longer matches, even distant from previous ones,

there is a reduction in the final amount of matches that, by consequence, reduces the final stor-

age cost as there are fewer elements that need to be stored. Indeed, FRESCO implements both

possibilities. Local search, that looks for short and local matches and a greedy search, that

looks for the longest possible matches. It is important to notice that some tools implement

more than one Local Search strategy, as RLZ-Opt [74] and JDNA [84], in which it is dynami-

cally determined, during mapping, which local search strategies will be applied. GeCo and

GReEn tools, despite not executing a mapping phase, use local search strategy to create and

keep their statistical models updated.

Another fundamental problem of vertical compression of genomic sequences is related to

the storage of numerical elements referring to the position and size of shared segments [59].
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Fig 6. Local search. Illustrative examples of how the local search can be implemented. (A) After identifying a match or

a mismatch the pointer advances, at the same time, both in the reference sequence and in the target sequence and then

the search is initiated. (B) The search is limited to a search window that advances every match or mismatch. (C) The

reference sequence and the target sequence are divided into blocks, and the search for matches is restricted, in a first

moment, to such blocks. (D) The search can be made in the whole reference sequence, but penalties are given to

possible matches found in distant positions from the last match identified. With that, the tool prioritizes matches closer

to the recently identified. (E) The search is always initiated right after the ending of the last match identified.

https://doi.org/10.1371/journal.pone.0232942.g006
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The basic approach is to store the position in absolute value, pointing to the reference position

in which the shared segment initiates. However, a genetic sequence may vary the size and can

contain from millions to billions of nucleotides. The closer to the ending of this sequence, the

larger the numeric values to represent the position. One possible solution would be to store the

current position value, based on the difference (delta) from the previous match’s position.

Such a strategy is possible when the to-be-compressed genomic sequences are evolutionarily

related. Thereby, elements’ disposition, although being interrupted by mutations, tends to be

co-linear (83). Thus, the probability that shared segments are encountered in an organized

way is high, so that the position in which they occur will create an organized chain. This is

exemplified in Fig 3c1, where four matches are presented: M(1,8), M(10,7) and M(17,5). The

matches, located in positions 1, 10, and 17, are disposed to create an incremental and linear

chain. Approaches to the representation of positions identified are tabulated in Table 6. We

have identified a particular case in the FM-context [77], wherein they store the size element as

a result of the match size minus aminlen (minimum length) parameter. Thisminlen parameter

is used to limit the minimum size of the matches during the mapping step. By doing so, they

get shorter bit code for the size element.

In the mapping step, tools can, besides searching for exact matches, also search for matches

that are reverse complement (COMRAD [80]) or palindromes (DNAComp [73]). Although

we performed an in-deep literature review, we only found this behavior in these two tools.

However, it is largely known that reverse complement and palindromes are explored by hori-

zontal data compression tools, such as DNAPack [88], Biocompress [25]. Even in DnaCom-

pact, a vertical compression tool, which has a horizontal mode, in the horizontal mode, during

the mapping phase, it searches for matches considering reverse complements and

palindromes.

Another characteristic identified in some tools was the implementation of a step to identify

and treat ambiguous bases. This feature is relevant because the current technologies used for

genome sequencing have some computational limitations that make reconstructing the origi-

nal molecule into a single contig a major challenge [89]. This is mainly due to the presence of

regions with high repetitions or regions with low sequencing coverage. It is the case, for exam-

ple, of the centromere and telomere regions of a chromosome. The result is that bases from

these regions are represented, in the final sequence, by the symbol N. As it is expected that

there will be long segments composed by Ns, tools HiRGC, RLZAP [85], JDNA, GDC 2.0 and

GDC 0.3 [69] implement specific behaviors to deal with that. The identification of ambiguous

bases is still necessary even with the recent development of new assembly software and more

modern technologies of genetic sequencings, such as Nanopore [90].

Second order mapping

It is a vertical transformation step that adopts a similar approach to the First Order Mapping

step, being identified in tools: GDC 2.0 and FRESCO. Compression ratio gains are obtained

because, by compressing DNA sequences of same species organisms, the possibility that the

same succession of matches and mismatches occur between distinct target sequences is high

[50], and they become proportionally higher as the number of sequences raises [49, 50]. In this

way, the search space is composed of the set of already mapped target sequences, and the con-

sidered alphabet corresponds to the map of matches/mismatches (Fig 7).

In FRESCO tool, the second order mapping is done splitting the target sequence set into

two subsets. The first, that will be the search space for the second order mapping, is composed

of the new reference sequences, that will be indexed (hash table). Therefore, the search space

has a maximum size. The second set will be composed by the remaining sequences that will be
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processed, one by one, by checking the search space for successions of coincident matches/

mismatches to be replaced by new matches. In the performance evaluations, authors have

obtained with Second-Order Mapping, on average, a compression ratio 4 times higher. These

results were achieved using a search space of 70 reference sequences.

Tool GDC 2.0 implements a similar strategy. The main difference compared to that imple-

mented by FRESCO is that it increases the search space, including new mapped sequences, to

each new target sequence processed by First Order Mapping. Thus, the search space consid-

ered by GDC 2.0 tool does not present any size limitations. However, the results reported were

based only on the use of Second Order Mapping, which made it difficult to conclusively evalu-

ate the impact of this strategy in improving the compression ratio. In the experiments

described, the authors performed tests varying the size of the search space from 10% to 100%

of the sequences, obtaining compression ratios ranging from 300:1 to 900:1, respectively. The

Fig 7. Second-order mapping. In this example, in the first moment (A), two target sequences, Target Sequence 1 and Target Sequence 2, are parsed

using a same reference sequence, Reference Sequence. As a result, two mappings are obtained, one for each sequence. In a second moment (B) a Second

Order Mapping is executed. The input are the maps previously generated and the tool, parsing Mapped Target Sequence 2 in relation to Mapped Target

Sequence 1 identifies a succession of three elements, two matches and one literal that are shared and generate a Second Order Match, SOM(g1, 1, 3).

This SOM indicates that, in Target Sequence 2, initiating from position 1 of sequence g1, the first three elements must be considered, in this case M(1,

8), M(10, 6) and L(T).

https://doi.org/10.1371/journal.pone.0232942.g007
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compression time reduced by 24%, with a decrease of the search space by 50%, while the com-

pression ratio reduced by 26%.

Post-processing

This transformation step has a similar goal to Second Order Mapping: to reduce the number

of elements to be stored. Tools Arram et al. [70], iDoComp and COOL implement it. The dif-

ference in this transformation step, when compared to Second Order Mapping, is in the direc-

tion in which data is analyzed: horizontal—where transformations are made on the map of

each target sequence using only information contained in the map being processed. Generally,

the goal is to merge adjacent matches, separated or not by mismatches. From the analysis of

the tools, we identified three different approaches. In Arram et al. [70], it attempts to make a

union of adjacent matches that are not interleaved by mismatches. This implementation

allowed an improvement of up to 41.3 times in the compression ratio. Tool COOL [75] (Fig 8)

evaluates the possibility of matches being separated by insertions, substitutions or small dele-

tions. For each merge, the tool replaces combined matches, creating a larger match and an edit

instruction (substitution, insertion or deletion) that is appended to its respective instruction

set. In iDoComp [91], in addition to attempting to merge matches that are separate by single-

base insertions or substitutions, it tries to merge small matches that are interspersed with small

insertions or substitutions that point to distant positions of the previous match. The goal of

this second mechanism is to avoid storing small matches that are not a part of a chain known

as the Longest Increasing Sub-Sequence (LISS). The authors concluded that in these cases it is

more efficient to store substitution and insertion instructions than small matches that are not

a part of LISS chain. The reason is that these matches imply in need to store large numbers to

represent their position, once the delta encoding of these values does not result in small

numbers.

Encoding

This is the only phase implemented by all assessed tools. Such a phase is the last part of the

compression process, where the map generated by previous steps is encoded in a binary for-

mat. Thus, the goal is to obtain the least possible entropy in the compressed data, in which the

smallest amount of bits is sought to represent the most frequent elements of the map.

At this stage, each tool can also apply one or more encoding methods for different map ele-

ments. This combination is called the coding strategy. For example, GRS [38] applies the same

method to the map as a whole, while GDC-0.3 [69] and iDoComp [91] apply different methods

to each map element, contextually encoding each data group. In Fig 9 we illustrate both meth-

ods described. The first approach (Fig 9A) exemplifies the process in which all elements that

compose the map are encoded using the same method. In the second approach (Fig 9B), three

data streams are created. The first is applied only to values that indicate positions, the second

to values referring to match the size and finally a stream for symbols that are not part of

matches, called literals. In this example, each stream is encoded separately and, in the end, the

results are combined, generating a single file that corresponds to a compressed representation

of the processed sequence. The advantage of this second approach is that each stream has a

more homogeneous symbol distribution, which makes it more predictable. Statistical encoders

based on the probability distribution of symbols then exploit this homogeneity. Some tools, as

JDNA [84] and SLF [62], use other generic compression tools as, for example, GZIP or 7-zip

for some elements that compose the mapping.

Considering all papers assessed, we identified the use of 15 encoding methods: Huffman

Coding [92], Canonical Huffman Coding [93–95], Golomb Coding [96], Elias Gamma Coding
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[97], Arithmetic Coding [98], Run Length Coding [96], PPMD [99], which is a variant of Pre-

diction by partial matching (PPM) [100], Range coding [101], GZIP [102], Log-skewed [103],

Compressed Integer Set [104], Compressed bit vectors [105], Lempel–Ziv–Markov chain algo-

rithm (LZMA2), Variable length byte coding and Arithmetic Coding with encryption capabil-

ity [106].

Among all the vertical compression tools assessed, it was also possible to identify that only

RCSCS [107] describes the use of methods to ensure protection with data encryption. In this

context, the SECRAM [108]—a horizontal genomic data compression tool—is one of the first

to consider also the protection based on encryption and access control to compressed genomic

Fig 8. Post-processing. In this example, we explain the post-processing phase. After the first order mapping (A), the set of matches M is processed, two

by two, trying to merge them. In the first iteration (B), matches m1 and m2 are evaluated. It is verified that (m1.position + m1.length + m2.length + 1) is

equal to m2.position, therefore, there is a substitution between matches. Matches are combined, and m2 is removed from set M, arranging the

remaining to such removal. At the same time, instruction s1 is created and inserted in set S that will contain editing instructions of the substitution type.

In the second iteration (C), matches m1 and m2 (which was m3) are evaluated. It is verified that (m1.position + l1.position) is equal to m2.position,

therefore, there is an insertion between matches. Matches are combined; match m2 is removed from set M, arranging the remaining to such removal.

At the same time, instruction i1 is created and inserted in the set I that will contain editing instruction of the insertion type. On the third iteration (D)

matches m1 and m2 (which was m4 in the first iteration) are evaluated. It is verified that (2<= m2.position—(m1.position + m1.length + 1)<= Lmax),

where Lmax is a predefined value that determines the maximum size that a deletion can have to be treated by post-processing process. Therefore, there

is a 2 bases deletion between the evaluated matches. Once again, both matches are combined, match m2 is removed from set M, which will contain only

match m1. At the same time, instruction d1 is created and inserted in set D that will contain editing instructions of deletion type. The goal is to reduce

the number of integers. In this case, we initially had 8 distinct integers numbers and at the end, only 6 remained.

https://doi.org/10.1371/journal.pone.0232942.g008
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data. Another tool, called E2FM [109], that is a self-index for collection of genomic sequences

also have this capability, to encrypt the compressed genomic data. However, regarding the

fidelity of the information, we did not identify tools with such control.

Discussion

The demand for storage space of genomic data has become one of the limiting parts on the

advance of the genomic era, and data compression is an important alternative to reduce such

limitation. In this sense, we investigate, in a broad way, as a form of systematic literature

review, all existing tools for vertical compression of assembled genomic sequences stored in

FASTA format. In total, 32 tools were identified and characterized in different aspects: the

compression scheme and the way they compress a single sequence or a collection of them; the

size of alphabets considered; if they use external memory during compression processes; if

they allow direct access to compressed data.

From the analyzed works, the execution flow of each tool was obtained, which is constituted

by phases of preprocessing, transformation and data encoding. For each phase, specific

approaches were identified to deal with: a) selection, indexing and use of reference sequence

(Figs 3 and 5); b) search for shared segments between sequences that present specific behavior

through the Local Search technique (Fig 6); c) try to reduce the total amount of elements to be

stored (Second Order Mapping or Post-processing) (Figs 7 and 8); and d) coding with the use

of different techniques for different elements resulting from the mapping phase (Fig 9).

The analysis of the tools also allowed to identify the lack of a standardized methodology to

evaluate the performance of vertical genomic data compression tools. Thus, in order to be able

to compare different tools qualitatively, a comparative analysis with the same datasets would

Fig 9. Encoding process. (A) is an example of how a tool performs encoding when all elements that are part of the map are sent to be encoded together.

In this case, all elements will be processed in a single data stream. In (B), we illustrate the situation in which a tool splits the elements of the map in three

different data streams. The first one containing elements referent to the position of matches; the second one referring to sizes; and, at last, bases that do

not compose any match, the mismatches. In this case, each data stream will be encoded separately and, by the ending, the results will be combined into

a single file. The advantage of this second approach is that the probability distribution of the elements is more concentrated, which allows for a higher

compression rate since, according to Information Theory, smaller binary codes will be conceded to symbols that appear more.

https://doi.org/10.1371/journal.pone.0232942.g009
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be necessary. We have also considered that, in order to better evaluate each compression

phase, the tools could present some metrics referent to the executed processes. For example, in

relation to the transformation phase, details could be described, such as: the total amount of

matches between sequences, average match size, total size (in bytes) of matches, amount of

mismatches, average mismatches size, total size (in bytes) of mismatches and the final entropy

of the generated map. This information could be used to verify which tool (or approach) cre-

ates the best map or which one can identify the more significant amount of matches. With

this, it would be possible to perform a verification between the percentage of target sequence

identified as similar, or the average size of each match related to the final compression ratio. In

this way, it will be possible to verify the relationship between the ability to locate similarities

concerning the achieved compression ratio. This would also allow evaluating the efficiency of

each approach towards different organisms, with different levels of similarity. In the analysis

performed, only SLF tool provided the generated map size—this information is crucial to iden-

tify how the encoding influenced the final compression ratio.

The results presented by evaluated works demonstrate that the compression tools allow

reducing the space needed to store data, regardless of the method considered. One of the main

problems in genomic vertical data compression is to find an optimized relation between map-

pings that captures as many shared segments with the lowest coding costs possible.

Criteria suggestion for evaluating genome compression tools

As previously mentioned in this systematic review, the data compression process is mostly

shared among the proposed tools, which is based on three distinct phases. The phases include:

pre-processing, transformation, and coding. Despite this, so that the results presented by each

tool can be compared to one another, it is necessary to follow a common evaluation protocol.

Such a protocol must contain a minimum set of basic requirements regarding the data being

compressed (dataset) and indispensable metrics for the evaluation of the compression perfor-

mance. However, we did not find in the literature a protocol with a specific objective of stan-

dardizing genome compression tool assessment that would fulfill such criteria. To tackle this

problem, we propose some rules to be observed so that the results between different genome

compression tools can be compared.

Dataset: Standardizing the dataset to be used in the compression tests is one of the main

points to ensure that the results achieved by compression tools are comparable. We found in

the literature two authors who published datasets for genome compression benchmarking

[110, 111].

The benchmark dataset proposed by [110] contains 15 genomic sequences. This dataset

contains a total of 534,263,017 bases, which is approximately half a gigabyte. Besides, it main-

tains a consistent balance between the number of strings and their respective sizes. It also

reflects the main domains and kingdoms of biological organisms, and thus, it allows a compre-

hensive and balanced comparison for compression methods. For tools that manipulate FASTA

files, it is worthy to highlight that each sequence of this dataset is in raw format, i.e., they do

not present headers.

The dataset proposed by [111] consists of sequences from several different organisms, with

1105 prokaryotes, 200 plasmids, 164 viruses, and 65 eukaryotes. Furthermore, the author of

this work found a scientific way to select samples for compiling the dataset for the benchmark,

using multi-stage sampling strategies. The data in this dataset are composed of FASTA and

multi-FASTA files.

Both datasets are well-founded on their representation in the universe of genomic

sequences existing in public genomic databases, such as NCBI [112]. However, the first dataset
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mentioned above introduced in [110] is much smaller, and thus, the processing time is conse-

quently smaller as well.

Disk/storage usage: For this point, two metrics are of fundamental importance for the per-

formance evaluation of genome compression tools. These metrics are the space savings, and

the number of bits to store a symbol (bits per base, or bpb). The use of these metrics is related

to compression using the “Naive bit encoding” [51]. Therefore, the simplest approach to com-

press a genomic sequence, without the need for any specialized tool, is to assign two bits to

each symbol of the genomic alphabet (A, C, G, and T) that represent the nitrogenous bases. As

a result, we can verify that, without using advanced techniques, it is possible to achieve a

space-saving of 75% using 2-bit coding per base. It occurs because is required 8 bits to store an

ASCII symbol in FASTA format. However, when encoding each symbol with 2 bits, there is a

75% space-saving by the equation: spaceSavings = (1 − (compressedSize/uncompressed − size)) �

100. Likewise, to calculate the number of bits used to store each symbol, the equation used is

the bpb = numBits/numSymbols. The numBits variable represents the number of bits used

for data storage after compression, and numSymbols is the number of symbols in the

sequence prior to compression. Consequently, it is possible to determine whether the perfor-

mance of the specialized genome compression tool is better than the 2-bit per base coding

baseline.

Compression/decompression time: It is relevant to collect this type of information when

the compressed file does not allow random access to the data. Thus, whenever it is necessary to

access some information on the genome that was compressed, it will be required to decom-

press the entire genome first. Therefore, the decompression process will occur many times.

From this perspective, it is possible to state that the decompression time is more important

than the compression time since the compression process will happen once, even though this

process takes more time to be completed. Thus, authors can measure the compression and

decompression time in seconds using the equation tc = (endTime − startTime) and td = (end-
Time − startTime), respectively, where tc represents the compression time, td is the decom-

pression time, startTime is the moment when the process is initialized, and the endTime
is the moment when the process is finalized.

Memory and CPU usage: The discussion of these metrics needs to be deepened in terms of

how they are gathered and analyzed. The difficulty lies in knowing the ideal time frame to col-

lect the peak of memory use and the percentage of CPU usage. Depending on the strategy fol-

lowed, the genome compression/decompression process can use 100% of the available

memory and CPU according to the complexity of the algorithms. On the other hand, some

tools may use lower memory percentages and reach the maximum memory or CPU usage in

only one of the compression/decompression phases. Thus, our suggestion is for the minimum

data collection for this metric to capture the peak memory achieved during the compression

and decompression process.

Comparison of performance with baseline tools: Comparing the compression perfor-

mance with the results of other specialized genome compression tools as a baseline makes the

results more relevant. The relevance is on the possibility to check whether the compression

rates of the proposed specialized genome compression tool achieves better results than the

compression rates of existing tools.

Other dimensions discussion: In addition to the proposed metrics and datasets, there are

still other dimensions to be standardized, such as the method of execution of the compression

tool, taking into account the order of the arguments, in addition to defining the ideal windows

of time for the collection of data from memory and CPU usage. Likewise, it is necessary to

standardize also what information should be available to the reader to guarantee the reproduc-

ibility of the experiment and how the results will be presented, e.g., using size measures in
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bytes instead of kilobytes, megabytes, or larger units of this measurement. However, these

points need to be deepened on the subject, which is an excellent opportunity for future

research and publication of work to propose a protocol for evaluating lossless genomic data

compression tools with the vertical approach.

Materials and methods

The method used for obtaining this SLR was based on the protocol developed by Kitchenham

et al. [113]. The main goal of this review was to identify and synthesize the state of the art vis-

à-vis the computational tools for the vertical compression of DNA sequences in FASTA for-

mat. Such compression must be made with no loss and no use of previous knowledge, for

example, a map that contains expected mutations for a determined organism.

The aspects referring to search strategy, inclusion criteria and data extraction strategies will

be discussed subsequently.

Search strategy

The search strategy was structured in two phases. The first one consisted of an exploratory

study focusing on the indexes composition, the identification of sources of data and the defini-

tion/restriction—in terms of dates—of the investigated period. The second phase consisted of

an effort to filtrate, analyze and compare the works recovered by the application of the search

strategy. Such phases were fundamental for giving support and systematize the achievement of

the final goal in this SLR.

A search string was defined using various keywords and three concepts (Table 3). The selec-

tion of such keywords was guided by the main goal and by the research questions. The combi-

nation of these keywords originated the following search string: ((compression) AND

(genome OR genetic OR dna OR nucleotide OR “biological sequence” OR genomic) AND

(relative OR referential OR reference OR model OR dictionary OR codebook OR collection

OR multiple OR vertical OR content OR set)). The validation of such search string was done

by an iterative process that consisted in creating a previous round of search, and in the con-

frontation of the result with other reviews and works already known in the literature. During

this process, the absence of terms was noticed, such as genomic and content, that were, there-

fore, included. It was opted not to include any synonym for the keyword compression because

based on the results of the initial search—exploratory phase -, no other keyword that was asso-

ciated with the concept of “data compression” was found.

Although the main goal of this review orbits around the identification of computational

tools of genomic data vertical compression without loss of information, it was opted not to

include in the search string keywords that described no loss behavior. Thus, the search string

made it possible for the recovery of tools that worked with or without data loss. Such decision

was made given the difficulty of identifying keywords that identified the computational tools

Table 3. Concepts and keywords used to create the search string.

Concept Keywords

Data compression compression

Biological data genome; DNA; genetic; nucleotide; biological sequence; genomic

Vertical

compression

relative; referential; reference; model; dictionary; codebook; collection; multiple; vertical;

content; set

Concept: Concept that was tried to be covered; Keywords: Keywords used to attend the respective concept.

https://doi.org/10.1371/journal.pone.0232942.t003
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of genetic data vertical compression without loss and, at the same time, without overly restrict-

ing the identification of works of interest.

The data sources considered were two: PubMed and Scopus. Such sources index around

43000 and 35000 periodicals, respectively (Table 4).

The research was made using the search interface provided by the data sources, in which

the search setting was full text and no data or specific area restrictions. Such restrictions were

not considered in order to allow wider amplitude in the search space. This way, the initial set

of works to be analyzed was created by the result obtained in the application of the search strat-

egy. The first step was to remove the duplicated papers. This was done automatically, based on

papers title, year and authors list. After this, the inclusion criteria were applied to this set in

order to determine the set of primary works. These criteria will be now discussed.

Inclusion Criteria

In order to focus the analysis efforts in texts relevant to the goal of this review, the following

inclusion criteria were applied to the initial set of works. Thus, a given work is included in the

set of primary works when:

1. It proposes a tool vertical compression of genomic data without loss;

2. It allows to compress a genomic sequence using information from other sequences, this

being the definition of vertical compression

3. It allows to manipulate files in the FASTA format;

4. It must not depend on previous information (a priori knowledge) for its operation;

5. It provides an implementation of the proposed algorithm—meaning that works with theo-

retical proposals were not selected.

The application of inclusion criteria obeyed the following order: first, criteria 1 and 2 were

applied on the titles and summaries; and second, criteria 1 to 5 were applied to the complete

content of each article.

Among the excluded works, some can be quoted as examples: (a) were based on self-index

(E2FM [109], LZ-End [114] and BioFMI [56]) (b) use genomic sequences only as input for

performance evaluation, but are not specific to compress biological data (Ray [115] and

Cobald [116]); (c) tools of horizontal compression that allow vertical compression, but don’t

present algorithm detail (Biocompress [25], Biocompress-2 [51] and Hex-LRE [117]); (d) com-

press various sequences at the same time without using information in a vertical manner

(GtEncseg [118]); (e) don’t work with files in the FASTA format (TGC [119]); (f) need previ-

ous information (database with genetic variants already known among same specie organisms)

(DNAzip [120] and GenomeZIP [121]) or (g) porting already existing tools to other platforms

Table 4. Searched bases for the systematic literature revision.

Base URL Indexed content

PubMeda http://ncbi.nlm.nih.gov/pubmed 43000

Scopusb http://scopus.com/ 35000

Base: Name of the searched base; URL: Electronic address of the used search mechanism; Indexed content:

Approximate amount of indexed journals. PubMed dataa: http://nlm.nih.gov/bsd/serfile_addedinfo.html; Scopus

datab: https://www.elsevier.com/solutions/scopus/content.

https://doi.org/10.1371/journal.pone.0232942.t004
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[122]. The remainder set of works was analyzed more thoroughly, focusing on the data extrac-

tion to answer the research questions mentioned previously, and whose results are presented

in the following sections.

Data extraction strategy

The strategy consisted of reading each selected paper and identifying/extracting data, as previ-

ously said, to answer the research questions. Such extracted data were structured in data sheets

shared in clouds. Three specialist researchers executed this stage independently and the con-

flicting points were reevaluated and solved individually. Research questions were punctuated

based on data extracted from the main text of each work and, when necessary, additional

source data were used (website, source-code and project documentation).

In some cases, the authors presented more than one proposal in one work. In these situa-

tions, data from all versions were extracted and consolidated. In the results and discussion sec-

tion, all papers were represented as a single tool. This decision was made since the goal is to

trace the current scenario referring to existent works and operationalized approaches. In this

context, the need to separate and present each implementation as a distinct tool was not

verified.

Notes on Table 5

• a—Tool implemented in MATLAB using external libraries in C.

• b—Not informed.

• c—For test reasons, the authors have implemented another version in C++.

• d—All nucleotides are convert to lower-case

• e—Despite being a multi-referential tool, in the presented results, when compressing large

datasets, they have used a single-reference version.

• f—Tool only works with more than one reference sequence at Second-order mapping, there

being no limit to the maximum number of reference sequences

• g—All nucleotides are converted to lower-case and those that are not a ‘atgcn’ symbol are

converted to ‘n’.

• h—The tool groups the sequences into clusters and, for each cluster, it is created a consensus

sequence and it is stored as a representation of each cluster.

• i—We are calling this tool by that name because we received the source code from the

authors and it was named as RLZ 1.4.

• j—Tool only works with more than one reference sequence at Second-order mapping, how-

ever, has a limit to the maximum number of reference sequences.

• k—All nucleotides are converted to upper-case.

• l—The maximum number of reference sequences is limited to 39 sequences.

• m—The tool does not allow random access when more than one reference sequence is used.

• Tool—Name of tool, or quotation when there is no name.

• Year—Publication year of each tool

• Language—Main programming language in which each tool was implemented.
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• Scheme—Compression scheme implemented by each tool.

• Alphabet—Largest alphabet (set of distinct symbols) supported by each tool

• Header—Denotes if the tools consider or not the FASTA file header in the compression pro-

cess. When a tool considers the header, then it is restored in decompression to the original

value.

• Memory—Indicates which tools have specific behavior for external memory (disk) usage

during compression/decompression process.

• Access—Describes the ways to access the compressed data (without the need of complete

decompression).

Table 5. Vertical genomic data compression tools.

Tool Year Language Scheme Alphabet Header Memory Access

RCC 2017 Matlaba RF, CB, SR ATCG n/ib no n/ib

HiRGC 2017 Java/C++ RF, PB ASCII distinct yes no n/i

FM-context 2017 C++ RF, PB ASCII distinct n/i no n/i

MLF 2016 n/i RF, PB ASCII distinct no no n/i

RLZAP 2016 C++ RF, CB, SR ATCGN n/i no RA, SR

NRGC 2016 Java RF, PB ASCII distinct yes yes n/i

GeCo 2016 C ST, PB ATCG no yes n/i

RCSCS 2016 Java RF, PB n/i n/i no n/i

Arram et al. 2016 FPGAc RF, PB ATCGd no no n/i

DNAComp 2015 Matlaba RF, CB, MRe ATCG no no n/i

SLF 2015 C RF, PB IUPAC distinct no no n/i

JDNA 2015 Java RF, PB ATCGN yes yes n/i

ERGC 2015 Java RF, PB ASCII distinct yes yes n/i

Kanika et al. 2015 Java DT, PB n/i n/i no n/i

GDC 2.0 2015 C++ RF, CB, MRf ASCII distinct yes no SR

CoGI 2015 n/i RF, CB, SR ATCGNg ignores no n/i

iDoComp 2014 C RF, PB ASCII distinct yes no n/i

DNAC-K 2014 n/i RF, CB, MRh IUPAC n/i no n/i

RLZ 1.4i 2014 C++ RF, CB, SR ATCGN n/i no RA

FRESCO 2013 C++ RF, CB, MRj ATCGN n/i no n/i

DnaCompact 2013 C++ RF, PB ASCII distinct yes no n/i

Dai et al. 2013 C++ RF, PB ASCII distinct n/i no n/i

ABRC 2012 C++ RF, PB ASCII ignores yes n/i

COMRAD 2012 C DT, CB, MR IUPAC n/i yes RA

COOL 2012 Python RF, PB ASCIIk yes no n/i

GRS 2011 C/Shell RF, PB ASCII distinct yes no n/i

GReEn 2011 C ST, PB ASCII distinct ignores no n/i

GDC-0.3 2011 C++ RF, CB, MRl ASCII distinct yes yes RAm

RLZ-Opt 2011 C RF, CB, SR ATCGN n/i no n/i

RLZ RePair 2011 C RF, CB, SR ATCGN n/i no n/i

RLZ 2010 C RF, CB, SR ATCGN n/i no RA, SR

P. DNA Comp. 2009 Perl RF, CB, SR ATCG ignores no n/i

Scheme: RF = Referential, SR = Single-reference, MR = Multi-reference, CB = Collection-based, PB = Pair-based, ST = Statistical, DT = Dictionary. Access

RA = Random Access, SR = Single recovery.

https://doi.org/10.1371/journal.pone.0232942.t005
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Notes on Table 6

• a—Despite the tool does not implement an index structure, it uses an external tool called

PatterHunter to the search for the shared segments.

• b—Uses the generic compression tool 7-zip to compress the final result.

• c—Sends each nucleotide from the to-be-compressed sequence directly to the encoder.

• d—Sends each nucleotide from the to-be-compressed sequence directly to the encoder.

• e—Although it does not have a mapping phase, the tool uses local search whenever there is a

new attempt to restart the use of the probabilistic.

• f—Not applicable, does not have a position element to be stored.

• g—For the first match, the absolute position is stored.

• h—Uses variable-length integers to encode position and size elements of matches.

• i—Uses the generic compression tool GZIP to compress the final result.

• j—By default, uses the shortest sequence as reference and it also has two distinct heuristics

for automatic reference selection.

• k—Used to represent SNPs position.

• l—Used to represent the position element of matches.

• m—Not applicable, does not use reference sequence.

• n—By default, uses the longest sequence and it also has a specific heuristic for automatic ref-

erence selection.

• o—Implements a bidirectional search window therefore does not need to create an index on

the reference sequence.

• p—Uses a generic compression tool PPMDj to compress the final result.

• q—Implements a dynamic window based on string matching therefore does not need to cre-

ate an index on the reference sequence.

• r—Uses a modified UNIX diff program.

• s—Although it does not have a mapping phase, the tool needs to create an index for the ref-

erence sequence because it is necessary to create them.

• t—The result of (last match position + last match length + previous factors length) is called

‘expected position’.

• u—When this happens, then, it means that the position can be derived based on the last posi-

tion, so that value is not stored. A bit vector is used.

• v—Not informed, does not detail how it works.

• x—These techniques were not combined, instead, they were used separately to evaluate the

performance of each.

• Tool name—Name of tool, or quotation of it when there is no name.
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Table 6. Phases executed by each VGDC tool.

TN RSS RSI MP MLS SOM PP EC RPR

RCC G nonea F Arithmetic coding and adaptive

Elias Gamma Coding

(actual matched position—last match position)

HiRGC M K-tuple Hash

Table k = 20

F Run Length and PPMDb (actual matched position—last match position)

FM-context M FM-index F Arithmetic coding and Gamma

coding

(absolute position)

MLF M Longest Previous Factor F AD-HOC Binary Coding lzma2b

and PPMDb
(absolute position)

RLZAP M Matching Statistics (LCP

array)

F X AD-HOC Binary Coding and

Compressed bit-vectorsc
(actual matched position—last match position)

NRGC M k-mer Hash Table 99

k = 11, 12, 13

F PPMDb (actual matched position—last match position)

GeCo M k-mer Hash

Table (cache-hash) k = n/

a

noned Xe Arithmetic coding n/af

RCSCS M n/iv F X Integer arithmetic coding (with

encryption capability)

n/iv

Arram et al. M FM-index F X AD-HOC Binary Codingh (absolute position)

DNAComp A,

M

nonea F Arithmetic coding, Elias Gamma

Coding and Run-length coding

(actual matched position—target size)g

SLF M Longest Previous Factor F LZMA2b (absolute position)

JDNA M k-mer Hash Table k = n/a F X Huffman codingi (actual matched position—last match position)

ERGC M k-mer Hash Table k = 21,

if fails then k = 9

F X PPMDb (actual matched position—last match position)

Kanika et al. G k-mer Hash

Table k = dynamic size

AT n/av n/af

GDC 2.0 M k-mer Hash Table k = 15 F X X Range coding (last match position + last match length + previous

literals length)—actual matched position

CoGI Aj k-mer hash Table k = n/a AT X Rectangular Partition, AD-HOC

Binary (static entropy) and

Variable length for the reference

sequence

(actual matched position—last match position)

iDoComp M Suffix Array F X Arithmetic coding (actual matched position—last match position) k |

actual matched position—(last match position + last

match length)| l

RLZ 1.4 M FM-Index F AD-HOC Binary Coding,

Compressed bit-vectorsc and Run

Length coding

(beginning of the actual to-be-compressed position

at target—actual matched position at reference)

FRESCO An,

G

k-mer Hash Table k = 34 F X X AD-HOC Binary Coding actual matched position—(last match position + last

match length + 1)

DnaCompact M noneo F X Log-Skewed coding, Elias Gamma

coding and Arithmetic coding

(actual matched position—start position of the

search window)

Dai et al. M none A(d) X Run Length coding, PPMDp and

Arithmetic coding

n/iv

ABRC M Compressed Suffix Tree F X AD-HOC Binary Coding absolute position together with his respective block

number

COMRAD n/

am
none G Canonical Huffman coding n/af

COOL M noneq F X X Huffman coding and Golomb

coding

(actual matched position—last match position)

GRS M Matrix Graphr A(v) X Huffman coding (actual matched position—last match position)

GReEn M k-mer Hash Table s

k = 11

noned Xe Arithmetic coding n/af

(Continued)
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• Reference sequence selection—Indicates how reference sequence selection is done or if

must be manually informed by the user.

• Reference sequence indexing—Presents the method or data structure used by each tool to

index the reference sequence. At the same time, for the.

• Mapping—Lists which scheme is implemented to map target sequences.

• Mapping local search—Denotes which tools implement Local Search strategies.

• Second order mapping—Denotes which tools execute a Second Order Mapping phase.

• Post-processing.—Denotes which tools execute post-processing phase.

• Encoding—Presents which encoding techniques are used in the encoding phase.

• Relative position representation—Presents, when applicable, how each tool calculates the

values of the matches’ position element for relative.
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Table 6. (Continued)

TN RSS RSI MP MLS SOM PP EC RPR

GDC 0.3 A,

M

k-mer Hash Table k =

(alphabets izek)< = 4069

F X Huffman coding and Variable-

length byte coding

beginning of the actual to-be-compressed position

at target—actual matched position at reference

RLZ-opt M Suffix Array / Matching

Statistics (LCP array)

F X Golomb coding if (last match position + last match length

+ previous factors length) t == actual matched

position then the position is discarded else

position = actual position—expected position

RLZ- RePair G Suffix Array F X Golomb coding if (last match position + last match length

+ previous factors length) t == actual matched

position then the position is discardedu else

position = actual position—expected position

RLZ M Suffix Array F Compressed integer set absolute position

P. DNA

Comp.

M,

G

none n/iv Huffman, Golomb or Elias

Gamma codingx
(actual matched position—last match position)

Selection (Reference selection): G = Generated, M = Manually, AT = Automatically. Map: F = Factorization, A(c,d,v) = Alignment: (consensus, difference, variation)

sequence, G = Grammar-based.

TN (Tool name); RSS (Reference Sequence Selection): G = Generated, M = Manually, AT = Automatically; RSI (Reference Sequence Indexing); MP (Mapping):

F = Factorization, A(c,d,v) = Alignment: (consensus, difference, variation) sequence, G = Grammar-based; MLS (Mapping Local Search); SOM (Second Order

Mapping); PP (Post-Processing); EC (Encoding); RPR (Relative Position Representation).

https://doi.org/10.1371/journal.pone.0232942.t006

PLOS ONE Vertical lossless genomic data compression tools for assembled genomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0232942 May 26, 2020 31 / 37

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0232942.s001
https://doi.org/10.1371/journal.pone.0232942.t006
https://doi.org/10.1371/journal.pone.0232942


S1 Table.

(XLSX)

Author Contributions

Conceptualization: Kelvin V. Kredens.

Data curation: Kelvin V. Kredens, Juliano V. Martins, Osmar B. Dordal.

Formal analysis: Roberto H. Herai.

Investigation: Kelvin V. Kredens, Juliano V. Martins, Osmar B. Dordal.

Methodology: Kelvin V. Kredens.

Supervision: Mauri Ferrandin, Roberto H. Herai, Edson E. Scalabrin, Bráulio C. Ávila.
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