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Abstract

thyroid carcinomas (PTC).

functional assays.

Background: DNA methylation in miRNA genes has been reported as a mechanism that may cause dysregulation
of mature miRNAs and consequently impact the gene expression. This mechanism is largely unstudied in papillary

Methods: To identify differentially methylated miRNA-encoding genes, we performed global methylation analysis
(IMumina 450 K), integrative analysis (TCGA database), data confirmation (pyrosequencing and RT-gPCR), and

Results: Methylation analysis revealed 27 differentially methylated miRNA genes. The integrative analyses
pointed out miR-21 and miR-146b as potentially regulated by methylation (hypomethylation and increased
expression). DNA methylation and expression patterns of miR-21 and miR-146b were confirmed as altered, as
well as seven of 452 mRNAs targets were down-expressed. The combined methylation and expression levels
of miR-21 and miR-146b showed potential to discriminate malignant from benign lesions (91-96% sensitivity
and 96-97% specificity). An increased expression of miR-146b due to methylation loss was detected in the
TPC1 cell line. The miRNA mimic transfection highlighted putative target mRNAs.

Conclusions: The increased expression of miR-21 and miR-146b due to loss of DNA methylation in PTC
resulted in the disruption of the transcription machinery and biological pathways. These miRNAs are potential
diagnostic biomarkers, and these findings provide support for future development of targeted therapies.
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Background

Papillary thyroid carcinoma (PTC) is the most frequent
thyroid malignant neoplasm and is responsible for the
increased incidence of thyroid cancer worldwide [1, 2].
The main genetic alterations described in PTC are BRAF
and RAS mutations and RET rearrangements [3].
Furthermore, TERT promoter mutations have been
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associated with more aggressive thyroid carcinomas [4,
5], especially in tumors harboring BRAF mutations [4].
DNA methylation and microRNA (miRNA) are events
capable to regulate the expression of genes related to
cancer development, as previously reported in PTC [6—
9]. A recent study conducted by our group identified
DNA methylation alterations related to prognosis in well
differentiated thyroid lesions [10]. Using a robust methy-
lation platform in 141 thyroid samples (non-neoplastic
tissue, benign lesions, and carcinomas), we developed a
prognostic classifier based on 21 CpGs. This classifier
was able to distinguish well-differentiated thyroid carcin-
omas of patients showing worse prognosis (relapse
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during the follow-up) from those with good prognosis
(without relapse in the follow-up) [10].

Similar to protein-encoding genes, miRNAs are tran-
scribed and could be targets of epigenetic events that
modulate their expression [11]. In the last few years, the
number of miRNAs described as regulated by DNA
methylation increased substantially [11-13]. However,
the characterization of this epigenetic modification and
its functional role in the control of miRNA expression
are poorly explored in PTC. To our knowledge, only one
study described miRNAs putatively regulated by methy-
lation in thyroid cancer [7]. Nonetheless, neither con-
firmation nor functional experiments have been
developed in this field. This knowledge can contribute to
better understanding of PTC biology leading to the dis-
covery of biomarkers and new therapeutic strategies.

Herein, a comprehensive DNA methylation data from
PTC and matched NT (non-neoplastic tissue) samples,
previously described by our group [8, 10], were
re-evaluated focusing in the identification of miRNA
genes potentially regulated by methylation. External
molecular dataset from TCGA were assessed to perform
integrative analysis using DNA methylation, miRNAs ex-
pression, and target mRNAs data. The miRNA-coding
genes, MIR21 and MIR146B, were further investigated in
an independent sample set, and functional assays were
carried out in PTC cell lines.

Results

MicroRNA genes differentially methylated in PTC

The main strategies to identify miRNAs potentially regu-
lated by methylation are depicted in Fig. 1. DNA methy-
lation analysis comparing paired PTC (N =50) and NT
(N =50) samples revealed 50 CpG probes (34 miRNA
genes) differentially methylated, of which 86% (42 probes
mapped in 27 miRNA genes) was confirmed using the
TCGA database (Table 1). A supervised hierarchical
clustering analysis with all 42 probes revealed an enrich-
ment of hypomethylation in both, our PTC cases and in
the TCGA dataset (Additional file 1: Figure S1).

Impact of disrupted DNA methylation in miRNA
expression

To identify alterations in the expression levels of miRNA
genes in PTC, we assessed miRNA sequencing data from
TCGA, revealing 58 miRNAs (27 up and 31 down
expressed) (Additional file 2: Table S1). Only MIR2I
(hsa-miR-21-5p) and MIRI46B (hsa-miR-146b-5p and
hsa-miR-146b-3p) showed differential methylation and
expression (hypomethylation with increased expression).
The integrative analysis revealed highly significant nega-
tive correlation between methylation and miRNAs ex-
pression (Additional file 2: Table S2).
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Alterations in mRNAs targeted by miRNAs potentially
regulated by methylation

The mRNA data analysis from TCGA revealed 2432
differentially expressed coding transcripts in PTC
(Additional file 2: Table S3), 452 of them were considered
as targets of the miRNAs affected by DNA methylation.
Among these, 250, 243, and 189 mRNAs are predicted to
interact with hsa-miR-146b-3p, hsa-miR-146b-5p, or
hsa-miR-21-5p, respectively (681 miRNA-mRNA pre-
dicted interactions with significant negative correlation)
(Additional file 2: Table S4).

MicroRNAs and target genes associated with poor
prognostic features

The DNA methylation levels of MIRI46B and MIR2I,
expression of the miRNAs (hsa-miR-146b-5p, hsa--
miR-146b-3p, and hsa-miR-21), and their target tran-
scripts (452 mRNAs from the integrative analysis) were
compared with the clinical-pathological findings (TCGA
dataset). Hypomethylation and increased expression of
MIR146B, as well as decreased target genes expression,
were significantly associated with features related to
poor prognosis (advanced clinical stage, lymph node me-
tastasis, and extrathyroidal extension) and BRAF muta-
tion (Additional file 2: Table S5).

Data confirmation by quantitative bisulfite
pyrosequencing and RT-qPCR

Hypomethylation and overexpression of MIR2I and
MIRI146B in PTC compared with NT and BTL were con-
firmed using quantitative bisulfite pyrosequencing and
RT-qPCR, respectively (Fig. 2a, b). An additional analysis
of PTC compared with NT samples from the same
patients (18 matched samples for methylation and 17 for
miRNA expression) also corroborated these findings
(Additional file 1: Figure S2). A negative correlation
between the methylation pattern and expression of
MIR21 (r=-0.393; P<0.001) and MIR146B (r = - 0.649;
P <0.001) was also observed (Fig. 2c).

Seven target genes selected for RT-qPCR evaluation
(DOK6, FHLI1, FLRT1, MOB3B, MPPED2, MRO, and
STXBPSL) showed decreased expression in PTC com-
pared to NT and BTL (Fig. 2d). The interactions among
hsa-miR-146b-5p, hsa-miR-21-5p, and the seven targets,
found in the integrative analysis using the TCGA data-
set, supported the findings obtained in the RT-qPCR
analysis (Fig. 2e).

The pyrosequencing and RT-qPCR results were also
confronted with clinical-pathological features and BRAF
mutation (observed in 59% of the PTC). A significant as-
sociation was observed between lower methylation and
higher expression levels of MIRI46B and MIR21 with
BRAF mutation (Additional file 1: Figure S3).
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Fig. 1 (See legend on next page.)
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Fig. 1 Flowchart showing the strategies and results obtained using bioinformatic tools to identify miRNA genes potentially regulated by
methylation, their target mRNA and data confirmation studies. PTC, papillary thyroid carcinoma; NT, non-neoplastic thyroid tissue; BTL, benign
thyroid lesion; P adj, adjusted P value, |AB|, delta beta; FC, fold-change; r—, negative correlation; *Pearson test

Development of a diagnostic tool in thyroid cancer

The DNA methylation (pyrosequencing) and expression
(RT-qPCR) levels of MIR21 and MIRI146B were tested as a
potential tool to discriminate malignant (PTC) from be-
nign thyroid lesions (BTL). The combination of methyla-
tion values of both miRNAs allowed the discrimination of
87 out of 96 PTC and 25 out of 26 BTL (91% sensitivity
and 96% specificity) (Fig. 2f). The hsa-miR-21-5p and
hsa-miR-146b-5p relative expression was more efficient
than methylation to classify correctly 45 of 47 PTC and 31
of 32 BTL (96% sensitivity and 97% specificity) (Fig. 2g).
Curiously, the miRNA expression test correctly classified
all NT samples as non-malignant (35 of 35), while the
methylation test categorized 29 of 40 NT samples (73%) as
malignant.

Global demethylation-induced MIR746B expression in
TPC1 cell line
Firstly, we investigated the basal methylation of two
PTC cell lines (TPC1 and BCPAP) to study hypomethy-
lated CpGs. Whereas MIR146B showed high methylation
levels in both cell lines (51-60% of methylated alleles),
MIR21 was completely unmethylated even at basal level
(5-7% of methylated alleles), rendering no change in
miR expression after 5-Aza-dC treatment (Fig. 3a). Loss
of global methylation (A/R1Sat and AluYBS8 repetitive re-
gions) was confirmed after treatment with 5-Aza-dC.
Specific loss of methylation in CpGs mapped in the
MIRI46B gene and an increased expression level of the
hsa-miR-146b-5p in the TPC1 cell line was also ob-
served (Fig. 3b).

No change in miR expression.

Decreased expression levels of target mRNAs after miRNA
mimic transfection in the TPC1 cell line

A transfection assay using the TPC1 cell line for each
miRNA mimic (hsa-miR-146b-3p, hsa-miR-146b-5p and
hsa-miR-21-5p) was performed followed by global tran-
scriptomic analysis. From the 452 mRNAs highlighted by
the integrative analysis (681 miRNA-mRNA interactions),
168 also showed decreased expression levels after trans-
fection (188 miRNA-mRNA interactions). This strategy
gives additional evidence that 136, 112, and 134 mRNA
targets are regulated by hsa-miR-146b-3p, hsa-miR-
146b-5p, and hsa-miR-21-5p, respectively (Additional file 2:
Table S6). The in silico pathway analysis (IPA and KOBAS
3.0) including the mRNA target candidates revealed the
involvement of canonical pathways related to neuronal
system, thyroid function (mainly for hsa-miR-146b-3p

targets), and MAPK/ERK signaling (mainly for hsa-miR-
146b-5p targets) (Additional file 2: Tables S7 and S8).

Discussion

Aberrant microRNA expression in thyroid neoplasia was
previously reported [14, 15]; however, the mechanisms
underlying the regulation of these miRNAs are poorly
explored. As possible impact of DNA methylation was
previously noticed [7]. In this study, we investigated the
methylation profiles of PTC and NT in genes encoding
miRNA using a high coverage platform (Illumina 450 k).
Although the use of whole genome bisulfite sequencing
would encompass more miRNA gene regions, an advan-
tage of our strategy was the inclusion of 565 PTC and
106 NT evaluated by the same platform (internal and
external samples from TCGA), which strengthened our
findings.

MIR21 exhibited increased expression and decreased
methylation levels in PTC compared to NT and BTL.
MIR21 overexpression was previously reported in thyroid
cancer [16, 17]. The transcribed miRNA (hsa-miR-21) was
one of the first oncomiR described and one of the most
studied in several tumor types [18—-20]. In prostate cancer
cell lines, MIR2I promoter hypermethylation resulted in
its repressed expression [21]. Moreover, the 5-AZA-dC
treatment stimulated the expression of this miRNA in
prostate and ovary cancer cell lines [21, 22]. However,
these studies were restricted to cell lines, and tumor sam-
ples were not evaluated to confirm the MIR2I methylation
pattern.

Similar to MIR21, MIRI46B presented hypomethyla-
tion and increased expression levels in PTC. This
miRNA was also previously described as overexpressed
in PTC [7, 14, 15]. Contrarily, the hypermethylation and
down-expression of MIR146B were reported in diffuse
and anaplastic astrocytomas, gliomas, and breast cancer
being the 5-AZA-dC treatment capable to induce the
MIR146B expression [23, 24]. Taken together, these find-
ings give evidences of the regulatory role of MIR146B in
different tumor types, being able to act as tumor sup-
pressor or oncomiR, depending on the context of altered
regulatory pathways in each tumor type [25-28].

The identification of miRNAs target-genes is crucial to
understand the regulatory mechanisms involved in thyroid
cancer cells. In this context, 452 target transcripts were
unveiled by the miRNA-mRNA integrative analysis
(TCGA dataset). Interestingly, 168 of these 452 putative
mRNA targets also exhibited decreased expression levels
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Probe (ID) miRNA Genomic CpG Internal data TCGA data
gene gulg‘;ltk'ﬂ:i)‘ : context Delta 8 p P adj. Delta f p FDR

€g19019198 MIRLET7G TSS200 -036 <1e-07 <le-07 -049 < 1e-07 <1e-07
cg07181702 MIR21 Body -0.19 <1e-07 <1e-07 -0.20 <1e-07 <1e-07
€g04276626 MIR21 TSS200 -0.18 <1e-07 <1e-07 -0.16 <1e-07 <1e-07
€g02515217 MIR21 TSS200 -0.17 <1le-07 <le-07 -0.16 < 1e-07 < 1e-07
€g15759721 MIR21 Body -0.17 <1e-07 <1le-07 -0.14 < 1e-07 < 1e-07
€g04805065 MIR33B TSS1500 Shore -0.25 <le-07 <le-07 -029 < 1e-07 < 1e-07
cg09186408 MIR33B TSS1500 Shore -0.20 <1e-07 <1le-07 -023 < 1e-07 <1e-07
cg19619576 MIR33B TSS1500 Shelf -0.16 <1e-07 1e-07 —-0.21 < 1e-07 < 1e-07
€g01243312 MIR128-1 Body 0.20 <1e-07 <1e-07 0.23 <1e-07 <1e-07
€g10734581 MIR134 TSS1500 -0.19 <1e-07 <1le-07 NA NA NA
€g15857661 MIR146B TSS200 Shelf -033 <1e-07 <le-07 -034 < 1e-07 < 1e-07
€g05858126 MIR146B TSS200 Shelf -032 <1e-07 <1e-07 -033 < le-07 <le-07
€g05251190 MIR146B 755200 Shelf -0.30 <1le-07 <1le-07 -0.29 < 1e-07 <1e-07
€g13442016 MIR146B Body Shelf -029 <1e-07 <1e-07 -029 <1e-07 <1e-07
€g09701700 MIR146B TSS1500 Shelf -020 <1e-07 <1e-07 -0.19 < 1e-07 < 1e-07
€g13309012 MIR155 Body -0.30 <1le-07 <1le-07 -0.30 < 1e-07 < 1e-07
€g 13449535 MIR200B TSS1500 Shore -025 <1e-07 <1e-07 -037 <le-07 <1le-07
€g14144728 MIR200B TSS1500 Shore -023 <1e-07 <1e-07 -021 < 1e-07 < 1e-07
€g08096702 MIR211 TSS1500 -0.29 <1e-07 <1le-07 -034 < 1e-07 <1e-07
cg11721554 MIR377 TSS1500 Shelf -017 <1e-07 <1e-07 -0.20 <1e-07 <1e-07
€g05138957 MIR377 TSS1500 Shelf -0.15 < 1e-07 < 1e-07 -0.19 < 1le-07 <le-07
€g21513316 MIR410 Body Island -0.16 <1le-07 <1le-07 -0.14 < 1e-07 <1e-07
€g20547131 MIR412 TSS1500 Shore -0.17 <1e-07 <le-07 -0.15 < 1e-07 < 1e-07
€g14910227 MIR495 Body -0.19 <le-07 <le-07 -0.27 < 1e-07 < 1e-07
cg11978784 MIR512-1 TSS1500 -0.17 <1e-07 <1le-07 NA NA NA
cg10583119 MIR518D TSS1500 -0.18 <1e-07 <le-07 -022 < 1e-07 < 1e-07
cg17670263 MIR520C TSS1500 -021 <1e-07 1e-07 -027 < le-07 <1le-07
€g05865548 MIR543 TSS200 -0.16 <1e-07 <le-07 -0.22 < 1e-07 < 1e-07
€g04522625 MIR548A2 Body 0.24 <1e-07 <le-07 0.30 < 1e-07 < 1e-07
€g18697991 MIR548A2 Body 0.19 <1e-07 <1e-07 0.20 < 1e-07 < 1e-07
€g03221073 MIR548F1 Body -041 <1e-07 <1le-07 -034 < 1e-07 < 1e-07
€g25874148 MIR548F5 Body -0.28 <1e-07 <le-07 NA NA NA
cg01719718 MIR548F5 Body -017 <1e-07 2e-07 -0.18 <1e-07 <1e-07
€g05878887 MIR548G Body -031 <1e-07 <1le-07 -033 < 1e-07 <1e-07
€g21175685 MIR548G Body -031 <1e-07 <1e-07 —024 <1e-07 <1e-07
€g02145866 MIR548G Body -029 <1e-07 <1e-07 -030 < 1e-07 < 1e-07
€g26664528 MIR548H4 Body Shore -0.28 <le-07 <le-07 NA NA NA
cg11539052 MIR548N Body Shore -020 <1e-07 <1e-07 NA NA NA
€g05966699 MIR567 TSS1500 -0.16 <1e-07 <1e-07 -024 < le-07 <1le-07
906277638 MIR570 TSS1500 -0.17 <1e-07 <le-07 NA NA NA
€g09031823 MIR575 TSS1500 -0.17 <1e-07 7e-04 -025 < 1e-07 < 1e-07
€g18948646 MIR575 TSS200 -0.16 < 1e-07 < 1e-07 -0.13 < 1e-07 <le-07
€g26620021 MIR641 TSS1500 Shore -0.28 <1le-07 <1e-07 NA NA NA



Ortiz et al. Clinical Epigenetics (2018) 10:144

Page 6 of 13

Table 1 CpG probes mapped in miRNA-coding genes differentially methylated in PTC compared to NT (Continued)

Probe (ID) miRNA Genomic CpG Internal data TCGA data

gene functional context Delta B P P ad. Delta P FDR

distribution

€g11035122 MIR758 TSS1500 -0.15 <1e-07 2e-06 -0.18 < 1e-07 <1e-07
€g02558026 MIR762 TSS1500 Shore -020 < 1e-07 < 1e-07 -024 < 1e-07 < 1le-07
€g13204193 MIR942 Body 0.19 <le-07 <le-07 NA NA NA
cg01940297 MIR1207 TSS1500 0.16 <1le-07 3e-06 0.25 < 1e-07 <1e-07
€g25037841 MIR1286 TSS1500 0.15 <1e-07 <le-07 0.18 < 1e-07 < 1e-07
€g25591377 MIR1288 TSS1500 -0.27 <le-07 <le-07 —-024 < 1e-07 < 1e-07
cg02746110 MIR1301 TSS1500 0.16 <1e-07 4e-07 0.18 < 1e-07 <1e-07

NA probes not available in the TCGA processed data (level 3); P Adj Bonferroni P value; FDR false discovery ratio; TSS transcription start sites; Shelf, 2-4 kb from

CpG island; Shore, until 2 kb from CpG island

after the individualized mimic transfection assays using
these three miRNAs (hsa-miR-146b-3p, hsa-miR-146b-5p,
or hsa-miR-21-5p). Although the cell lines are very useful
models, gene expression profiles are not identical with
those found in primary tumor tissues. Differences
based on epigenetic reprogramming have been re-
ported as a causal effect of the in vitro conditions
[29]. In addition, the induction of a single miRNA
can influence the expression of many transcriptional
factors, which enhances the complexity of the tran-
scriptome regulation network and makes the outcome
less predictable [30].

Seven selected transcripts were confirmed as having
decreased expression levels in PTC compared to NT and
BLT. Among the selected genes, MPPED2, MRO,
STXBPSL, FHLI, and FLRTI were previously reported as
down-regulated in PTC [31, 32]. In prostate [33], stom-
ach [34], and breast cancer [35], DOK6 and MOB3B
were reported as putative tumor suppressor genes. In
follicular tissues of the thyroid gland, these genes could
have similar function of tumor suppressors.

We also investigated the association of miRNAs
methylation and expression levels of the target-genes
with clinical and pathological features of poor prognosis
and BRAF mutation. Increased expression levels of
MIR146B were related with advanced stage, tumor size,
extrathyroidal extension, and BRAF mutation, as previ-
ously reported [36—39]. In our initial analysis using the
TCGA cohort, MIR21 and MIRI146B hypomethylation
and their increased expression levels, as well as de-
creased levels of several target-genes, were suggested as
associated with poor prognosis features. Nevertheless, a
clear distinction of the molecular profiles was confirmed
using pyrosequencing and RT-qPCR analysis in our
BRAF-mutated cases. The association between global
DNA methylation and BRAF mutation in PTC has
already been extensively explored, and a global hypome-
thylation in tumors harboring BRAF V600E was re-
ported [8, 40, 41]. The mechanisms possibly involved in

the epigenetic control of genes by the BRAF mutation
have been recently explored (42—44). In melanoma cells,
the expression of 59 hypermethylated genes in the BRAF
V600E knockdown were down-expressed suggesting that
in mutated cells these genes were hypomethylated and
over-expressed [42]. According to the authors, aberrant
EZH?2 (histone methyltransferase) and DNMT1 (DNA
methyltransferase 1) expression were affected by the
BRAF mutation [42]. A similar study performed by the
same group was reported in two PTC cell lines (BCPAP
and OCUT1), showing that BRAF mutation had an im-
pact in the methylation and the expression of several
genes, including HMGB2 and FDGI [43]. A recent study
demonstrated that the MAPK/ERK signaling pathway
activated by the BRAF mutation was able to induce epi-
genetic aberrations by H3K27me3 and MYC [44]. There-
fore, if BRAF mutation can trigger the epigenetic
alterations in coding genes, the same effect is expected
to occur in miRNAs.

MIR21 and MIR146B methylation and expression ana-
lysis revealed high sensitivity (91% and 96%, respectively)
and specificity (96% and 97%, respectively) to distinguish
PTC from benign lesions. Although the methylation clas-
sifier failed in distinguishing PTC from NT (73% of the
NT samples were classified as malignant), the miRNA ex-
pression classifier categorized all NT as “non-malignant.”
These results suggest that our methylation markers could
detect cells in the preliminary steps of malignant trans-
formation (the non-neoplastic samples were obtained
from the surrounding thyroid tissue from PTC patients).
Epigenetic events are known to anticipate the phenotypic
manifestation of malignancy [45, 46].

Considering the similarities observed in the classifiers
for molecular diagnosis in thyroid nodules and the high
complexity of the methylation assays, miRNAs expression
analysis is more easily applicable in the clinical routine.
Two recent studies [47, 48] reported the clinical validation
of assays based on miRNA expression (Rosetta Genomics,
Philadelphia, PA, USA). In these studies, a set of 24
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Fig. 2 Quantitative bisulfite pyrosequencing and RT-gPCR confirmed the data from the large-scale analysis. MIR21 and MIR146B were significantly
hypomethylated (a) and overexpressed (b) in PTC compared to non-neoplastic tissues (NT and BTL). ¢ Significantly negative correlation between
methylation and expression of MIR21 and MIR146B was observed. d Five miRNA-target transcripts showed lower expression in PTC compared to

NT and BTL. No significant differences were found between NT and BTL, in exception of DOK6 and FLRTT genes. e All target transcripts
demonstrated significant negative correlation with their miRNA regulators (P < 0.001 to all genes). Scatterplot representation of MIR21 and
MIR146B methylation (f) and expression (g) levels. A diagnostic classifier (dashed line) was designed to distinguish PTC from BTL using Fisher's
linear discriminant analysis. The classification performance of the methylation and miRNA-based classifier is illustrated. Seven PTC and three BTL
were excluded from the methylation diagnostic classifier (low pyrosequencing quality was observed for at least one of the miRNAs). NS, not
significant; *P < 0.05; ***P < 0.001 (ANOVA followed by Tukey test). PTC, papillary thyroid carcinoma (red); NT, non-neoplastic thyroid tissue (blue);
BTL, benign thyroid lesions (green); r, Pearson’s correlation coefficient; P, p value obtained by Pearson’s correlation test

miRNAs were evaluated (among them, hsa-miR-146b-5p)
by RT-qPCR in thyroid nodules showing indeterminate
cytology. First, an analytical validation was conducted to
ensure the test robustness, proving the feasibility of the
assay in fine-needle aspiration smears (N =576 nodules)
[47]. Subsequently, a classifier was developed to identify
nodules as benign or suspect (N = 189 cases) showing 98%
of sensitivity and 78% of specificity [48]. Despite our

malignant cohort was only represented by surgical speci-
mens of PTC, we achieved a similar sensitivity and higher
specificity.

Although most of studies focused in the discovery of
tumor suppressor miRNAs repressed by epigenetic mech-
anisms [49, 50], only hypomethylated miRNA-encoding
genes were detected in our study. Cell lines treated with
demethylating agents, as 5-Aza-dC, is widely used to
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Fig. 3 Demethylation assays in thyroid cancer cell lines (TPC1 and BCPAP). a Pyrogram showing the percentage of basal methylation of MIR21
(unmethylated in both cell lines) and MIR146B (> 50% methylation in both cell lines). b The demethylation in the mapped region of MIR1468 was
demonstrated after 5-Aza-dC treatment in TPC1 and BCPAP cell lines. BCPAP cell line had no changes in hsa-miR-146b-5p expression and TPC1
cell line presented seven-fold increased expression levels after the induced demethylation
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demonstrate a direct regulation by methylation [51]. Even
though MIR21 and MIRI146B were hypomethylated in
PTC, the basal CpG methylation found in MIRI46B was
relatively high in two cell lines evaluated (TPC1 and
BCPAP), allowing a functional assay using 5-Aza-dC. The
increased expression of MIR146B after the treatment in-
fers an association with the methylation loss in the
miRNA gene promoter.

The role of hsa-mir-146b-5p in proliferation, migra-
tion, and invasiveness of thyroid cancer was previously
investigated by others using mimics-miR transfection
assays in thyroid cell lines [52, 53]. The functional role
of hsa-mir-146b-5p in thyroid gland oncogenesis and
its association with PTC aggressiveness was reported as
involved with the down-regulation of PTEN and
E-cadherin [53]. Likewise, it was previously described that
inducing hsa-miR-21-5p in TPC1 cell line by plasmid
transfection (pEZX-eGFP-miRNA-21) resulted in in-
creased cell proliferation and invasion, and inhibited
apoptosis, possibly mediated by PDCD4 repression [16].

Conclusions

The mechanism underlying the overexpression of MIR2I
and MIR146B due to DNA methylation loss in PTC was ex-
plored in our study. We used, for the first time, small-scale
(RT-qPCR and pyrosequencing) analysis and functional as-
says to corroborate the findings originated from large-scale
screening in a large cohort of cases. The interconnections
between these epigenetic events are potentially responsible
for many deregulations in the thyroid transcriptome leading
to cancer development. DNA methylation and expression
levels of these miRNA-encoding genes were demonstrated
as suitable PTC diagnostic markers. Moreover, the under-
standing of the mechanisms of upregulation of these onco-
miRs in thyroid malignancies creates opportunities to
develop miRNA -targeting therapies.

Methods

Sample population

Fifty matched PTC and NT samples from our previous
DNA methylation profiling studies were re-evaluated as
a discovery set. In addition, a confirmatory subset of 103
PTC, 40 NT, and 32 BTL (benign thyroid lesions: 14 fol-
licular adenomas, 17 goiters, and 1 lymphocytic thyroid-
itis) snap-frozen tissues were obtained retrospectively
from patients treated at A.C. Camargo Cancer Center,
Sdo Paulo, SP, Brazil. The Additional file 2: Table S9
summarizes the clinical features of PTC patients. Nucleic
acid isolation and BRAF mutation genotyping are detailed
in Additional file 3: Supplementary Methods.

Global DNA methylation analysis
DNA methylation profiling were obtained from the 50
paired PTC and NT samples using the Infinium® Human
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Methylation450 BeadChip Platform (Illumina, San
Diego, CA, USA). The data were retrieved from previ-
ously generated studies from our group [8, 10] and are
available in the Gene Expression Omnibus database
(GSEB6961 and GSE97466). CpG probes differentially
methylated in PTC compared to NT were detected using
limma package [54] with adjusted P value (Bonferroni) <
0.05 and delta-beta (AP) > 0.15 or < — 0.15. Quality controls
and pre-processing data are detailed in Additional file 3:
Supplementary Methods.

Integrative analysis using TCGA database

The available TCGA clinical and molecular data were re-
trieved using UCSC Xena (https://xenabrowser.net/data-
pages/—accessed in February 2018). DNA methylation
data from 515 PTC and 56 NT (Infinium® Human Methy-
lation450 BeadChip) from TCGA dataset were used to
confirm the CpG probes differentially methylated identi-
fied in our study (¢ test adjusted P < 0.05, AB>0.1, or< -
0.1). Two strategies using integrative analysis were devel-
oped: (i) CpG probes differentially methylated in both
cohorts were compared to miRNAs expression from
TCGA (miRNASeq IlluminaHiSeq, 509 PTC and 59 NT),
and (ii) miRNAs differentially expressed were contrasted
with target-genes expression using the TCGA data (RNA-
SeqV2 IlluminaHiSeq) in 505 PTC versus 59 NT (¢ test
adjusted P < 0.05; fold change FC > 2 for both miRNA and
mRNA). As different prediction methods are generally un-
correlated [55], miRNA target prediction was carried out
with miRWalk 2.0 tool (http://zmf.umm.uni-heidel-
berg.de/apps/zmf/mirwalk2/), considering predicted inter-
actions in at least two of four selected algorithms
(miRWalk, miRanda, RNAhybrid, and Targetscan). Predic-
tions were based on interactions between miRNA seed se-
quences (starting from the first position) and the 3'UTR
region of the target mRNA. Pearson’s correlation test was
applied to investigate negatively correlated predicted inter-
actions in PTC (P < 0.05).

DNA methylation analysis in miRNAs genes by
pyrosequencing

To confirm the global DNA methylation results, 500 ng
of genomic DNA samples were converted by sodium bi-
sulfite using the EZ DNA Methylation Gold kit (Zymo,
Irvine, CA, USA), according to the manufacturer’s rec-
ommendations. Only independent samples (103 PTC, 29
BTL, and 40 NT) from the previous global methylation
analysis [8, 10] were included. Forward and reverse bio-
tinylated primers (Sigma, Darmstadt, Germany) were
used to amplify the region of interest (Additional file 2:
Table S10 and Additional file 1: Figure S4). Two probes
representative of MIRI46B and MIR21 were selected,
presenting the highest negative correlation with the cor-
responding miRNA expression. Primer design and PCR


https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/
http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/

Ortiz et al. Clinical Epigenetics (2018) 10:144

conditions are detailed in Additional file 3: Supplemen-
tary Methods. Pyrosequencing (PyroMark Q24 system,
Qiagen) was performed including methylated and
unmethylated DNA controls according to the manufac-
turer’s instructions (Zymo Research, Irvine, CA, USA).

MicroRNAs and target mRNAs expression analysis by RT-
qPCR

Expression of miRNAs (hsa-miR-21-5p and hsa-
miR-146b-5p) and mRNAs (MPPED2, STXBP5L, MRO,
FHLI, FLRT1, DOK6, and MOB3B) were performed by
RT-qPCR (detailed in Additional file 3: Supplementary
Methods) using TagMan® and SYBR® Green detection
system, respectively (Applied Biosystems, CA, USA).
The hsa-miR-146b-5p and hsa-miR-146b-3p showed re-
dundant expression in the miRNA sequencing results
using the TCGA dataset (PTC =510, Pearson’s r = 0.970,
Pearson’s P not computable). Based on these findings,
we selected only hsa-miR-146b-5p to be evaluated by
RT-qPCR (most prevalent mature form).

Seven of 452 target transcripts detected in the integra-
tive analysis were selected according to the negative cor-
relation coefficient values, expression levels in normal
thyroid tissues (available at https://www.ncbi.nlm.nih.-
gov/gene), higher FC, and significant clinicopathological
variables associated with poor prognosis (obtained from
TCGA) (Additional file 2: Table S11). According to these
parameters, all seven transcripts are targets of miR-
146b-5p, and three of them (DOK6, MPPED2, and
STXBPSL) are targets of miR-21-5p. The mRNA primer
sequences are described in Additional file 2: Table S12.

For miRNA analysis, TagMan® microRNA Reverse
Transcription Kit (Applied Biosystems) and TagMan®
microRNA Assays (IDs: 000397 and 001097, Applied
Biosystems) were used according to the manufacturer’s
instructions. miRNA normalization was performed using
RNU44 (ID 001094) and RNU48 (ID 001006) [36, 56].
The highly stable references, EIF2B1 and PUMI, were
employed for mRNA normalization, as previously de-
scribed [31]. The method proposed by Pfaffl (2001) [57]
was used for normalization with a geometric mean of
reference tests and efficiency equal to 100%.

Global demethylation assay in PTC cell lines

The human thyroid cancer cell lines TPC1 (BRAF wild
type, received from Janete M Cerutti, Federal University
of Sdo Paulo, Brazil) and BCPAP (BRAF V600E, received
from Edna T. Kimura, University of Sdo Paulo, Brazil)
were in vitro cultured in RPMI (Gibco, Grand Island,
NY, USA) and DMEM/F-10 medium (Gibco), respect-
ively, supplemented with 10% fetal bovine serum, 1%
streptomycin (Gibco), and 1% penicillin (Gibco). Global
demethylation assays were performed using 5-Aza-dC
(Sigma, Darmstadt, Germany) at 1 pM and 3 pM
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determined by cell viability assays (detailed in Add-
itional file 3: Supplementary Methods). Loss of methyla-
tion after treatment was confirmed by pyrosequencing
using AluYB8 and AlR1Sat primer pairs, as described by
Choi et al. (2009) [58]. Basal methylation of MIR21 and
MIR146B regions and the corresponding mature miR-
NAs expression in the cell lines upon treatment were
evaluated as described above. The samples treated with
5-Aza-dC were compared to vehicle using three repli-
cates (independent assays) for each cell line.

MicroRNA mimics transfection in the TPC1 cell line

Due to the increased expression of MIRI46B after azaci-
tidine treatment in TPC1, this cell line was chosen to
conduct the transfection experiments. The cells were
seeded 24 h prior to the transfection in 6-well plates
with 200,000 cells per well in the medium specific to the
cell lines, without supplemented antibiotics. The trans-
fection reagent Lipofectamine RNAIMAX (Invitrogen)
was prepared in Opti-MEM medium (Invitrogen), as
recommended by the manufacturer. The mirVana
miRNA mimics (Invitrogen) hsa-miR-146b-3p, hsa-miR-
146b-5p, and hsa-miR-21-5p were dissolved to the rele-
vant concentrations in Opti-MEM medium. The diluted
transfection reagent and mimics (final concentration of
30 nM) were then mixed and incubated at room
temperature for 5 min. Afterwards, the complexes were
added to each well containing cells and Opti-MEM
medium. Negative control mimics (30 nM) and a mock
control were included in the transfection experiments.
The cells were incubated for 48 h before being harvested
in trypsin followed by total RNA extraction. The mature
miRNAs were reversely transcribed with targeted
primers. Moreover, successful transfection was con-
firmed by RT-qPCR (> 100 increased expression levels
for the three miRNAs).

Large-scale transcriptomic analysis after miRNA
transfection

The RNA from mimics and control assays was amplified
(200 ng), labeled, and hybridized using the Clariom D
platform (Affymetrix, Santa Clara, CA, USA) following
the manufacturer’s instructions. Two biological repli-
cates were included for each miRNA tested individually.
The arrays hybridization was performed in a GeneChip®
Hybridization Oven 645 (Affymetrix) and scanned using
the GeneChip Scanner 3000 (Affymetrix). The data were
analyzed using the Affymetrix Transcriptome Analysis
Console software (v. 3.1.0.5) and normalized by the Ro-
bust Multiarray Average module. The analysis was fo-
cused in the target mRNAs found in the integrative
analysis and specifically in transcripts down-expressed
(in both duplicates) after the transfection with the
mimics.


https://www.ncbi.nlm.nih.gov/gene
https://www.ncbi.nlm.nih.gov/gene

Ortiz et al. Clinical Epigenetics (2018) 10:144

In silico canonical pathway analysis

Protein-encoding genes predicted as target of the miR-
NAs potentially regulated by DNA methylation, found in
the integrative analysis and down-expressed after the
mimic transfection, were submitted to canonical path-
way evaluation using the Ingenuity Pathway Analysis
(IPA v2.1, Ingenuity Systems) and KOBAS 3.0 software
(http://kobas.cbi.pku.edu.cn/).

Statistical analysis

The SPSS v. 21.0 (Statistics Packet for Social Sciences,
Chicago, IL, USA) and BRB Array Tools v. 4.4.0 were
used for statistical analysis. Graphical representations
were implemented by GraphPad Prism v.5.0 (GraphPad
Software Inc., La Jolla, CA, USA). The methylation, miR-
NAs, and target gene expression from TCGA were com-
pared with clinical and pathological data and BRAF
mutation using ¢ test (P<0.001; FDR <5%; |AB|>0.10
or FC > 1.5). Pyrosequencing (percentage of methylation
in each CpG) and RT-qPCR data (miRNAs and mRNAs
relative expression) were evaluated by parametric tests
(paired and unpaired ¢ test, ANOVA with Turkey’s post
hoc, and Pearson’s correlation test). The null hypothesis
was rejected when the two-tailed P value was <0.05.
Fisher discriminant analysis was used to construct diag-
nostic classifier algorithms.

Additional files

Additional file 1: Figure S1. Supervised hierarchical clustering analysis
heatmaps comprising 42 probes of miRNAs identified in both, internal (A)
and TCGA (B) data. The clusters highlighted in red demonstrate
enrichment for PTC samples and in blue for NT samples. PTC: papillary
thyroid carcinoma; NT: non-neoplastic thyroid tissue. Figure S2. Matched
papillary thyroid carcinomas (PTC) compared with non-neoplastic thyroid
tissue (NT) samples showed hypomethylation and miRNA increased
expression of MIR21 and MIR146B in PTC (***P < 0.001; paired t test). Fig-
ure S3. Methylation (A) and expression (B) analysis of MIR21 and MIR146B
according to BRAF mutation status. PTC, papillary thyroid carcinoma;
BRAFWT, BRAF wild type; BRAFV60OE, positive for BRAF mutation. *P < 0.05;
P <001; ***P <0001 (Student’s t test). Figure S4. Location of the
probes covering the MIR21 (A) and MIR146B (B) at chromosomes 17 and
10, respectively. The probes highlighted in orange were selected for pyro-
sequencing confirmation. (DOCX 5782 kb)

Additional file 2: Table S1. Identification of 58 differentially expressed
microRNAs detected in the comparison between PTC and NT from the
TCGA database. Table S2. Integration between DNA methylation probes
and the corresponding miRNA expression. Table S3. Differentially
expressed genes in PTC compared to NT from TCGA database. Table S4.
MicroRNA and target-mRNA interactions obtained by the integrative
analysis (TCGA database), comprising the miRNAs potentially regulated

by DNA methylation. Table S5. Comparison of miRNA genes methylation,
miRNA, and target gene expression with clinical features (clinical stage,
extrathyroidal extension, node metastasis and BRAF mutation) using the
TCGA database. Table S6. List of 452 target transcripts of miRNA
potentially regulated by methylation after mimic transfection in TPC1 cell
line. Table S7. Significant pathways (P value< 0.05) enriched by target
genes of hsa-miR-21-5p and hsa-miR-146b (5p and 3p) identified by IPA.
Table S8. Significant pathways (P value< 0.01) enriched by target genes
of hsa-miR-21-5p and hsa-miR-146b (5p and 3p) identified by KOBAS 3.0
(http://kobas.chipku.edu.cn). Table S9. Clinical-pathological characteristics
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of the patients included in the study. Table $10. Primer sequences,
amplicon size, number of CpGs flanked in the amplification and PCR
temperature conditions. Table S11. Selection criteria of the miRNA
targets selected for RT-gPCR validation. Table S12. Characteristics of the
primers used in the transcripts expression level analyses by RT-qPCR.
(XLSX 295 kb)

Additional file 3: Supplementary methods. (DOCX 29 kb)
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