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Ovarian cancer (OC) is characterized by a high mortality rate due to the late diagnosis and
the elevated metastatic potential. Autophagy, a lysosomal-driven catabolic process,
contributes to the macromolecular turnover, cell homeostasis, and survival, and as
such, it represents a pathway targetable for anti-cancer therapies. It is now recognized
that the vascularization and the cellular composition of the tumor microenvironment
influence the development and progression of OC by controlling the availability of
nutrients, oxygen, growth factors, and inflammatory and immune-regulatory soluble
factors that ultimately impinge on autophagy regulation in cancer cells. An increasing
body of evidence indicates that OC carcinogenesis is associated, at least in the early
stages, to insufficient autophagy. On the other hand, when the tumor is already
established, autophagy activation provides a survival advantage to the cancer cells that
face metabolic stress and protects from the macromolecules and organelles damages
induced by chemo- and radiotherapy. Additionally, upregulation of autophagy may lead
cancer cells to a non-proliferative dormant state that protects the cells from toxic injuries
while preserving their stem-like properties. Further to complicate the picture, autophagy is
deregulated also in stromal cells. Thus, changes in the tumor microenvironment reflect on
the metabolic crosstalk between cancer and stromal cells impacting on their autophagy
levels and, consequently, on cancer progression. Here, we present a brief overview of the
role of autophagy in OC hallmarks, including tumor dormancy, chemoresistance,
metastasis, and cell metabolism, with an emphasis on the bidirectional metabolic
crosstalk between cancer cells and stromal cells in shaping the OC microenvironment.

Keywords: cancer, cell metabolism, dormancy, cytokines, chemoresistance, autophagy, cancer associated
fibroblasts, inflammatory stroma
INTRODUCTION

Ovarian cancer (OC) emerges as the eighth most commonly diagnosed cancer among women
worldwide and the leading cause of death among gynecological malignancies (1). Epithelial ovarian
cancers are characterized by extensive genomic instability with mutations in several oncogenes and
tumor suppressor genes including BRAF, KRAS, TP53, BRCA1/2, and PTEN, among others, that
identify different subtypes with different behaviors and prognoses (2). The current therapy for OC
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consists in surgical debulking followed by multi-agent
chemotherapy regimens with platinum-based or taxane-based
compounds (3). Unfortunately, despite the initial efficacy of the
treatment, the majority of OC recurs with the development of
drug-resistant and metastatic tumors (3). Metastatic
dissemination of OC cells predominantly occurs through direct
cell spreading from the primary tumor site into the intra-
abdominal cavity of OC patients that is full of malignant
ascitic fluid (4). Cancer cells distribute into the cavity, broadly
seed in and invade through the peritoneum, and resume
secondary tumor growth in distant abdominal and pelvic
organs (5). Together with chemoresistance, these phenomena
not only denote the emergence of more aggressive tumor clones,
but also reflect the dynamics and plasticity that occurred within
the tumor microenvironment.

For a long time, cancer stroma has been considered as a
passive by-stander in carcinogenesis, subjected to modification
associated with the reactive inflammation. It is now recognized
that the tumor stroma composition (in terms of vascular
structures, cell components, and secreted factors) and its
dynamic changes play a fundamental role in cancer
progression (6).

Alterations in the expression profiles of genes and signaling
pathways lead to aberrant stroma activation, resulting in
intense extracellular matrix remodeling along with the
synthesis and release of factors involved in metastasis,
angiogenesis, and drug resistance (7). Overall, the stroma can
either hamper or sustain the proliferation and spread of OC
cells depending on its composition. Hence, targeting cancer
microenvironment could be an effective therapeutic strategy
to limiting OC aggressiveness and relapse, and to this end a
deeper understanding of the metabolic crosstalk between
OC cells and tumor stroma is crucial. In this context,
autophagy, as a catabolic pathway that provides substrates for
the carbohydrate, nucleotide, protein and lipid metabolisms
(8), plays a pivotal role in the exchange of metabolites between
cancer cells and stromal cells, thus impacting on the evolution
of the tumor microenvironment.

The tumor microenvironment (TME) has been described as
hypoxic, nutrient deprived, energy limited, acidic, and
inflammatory (9, 10). This scenario can induce autophagy in
cancer cells (11). As a further layer of complexity, autophagy in
cancer and stromal cells contributes to the remodeling of the
extracellular matrix and reshaping of the cellular composition in
the TME (12). Since stromal cells in the TME and cancer cells
influence reciprocally the regulation of autophagy in a dynamic
manner that favors cancer cell persistence and progression (13,
14), interrupting this metabolic complicity could be of
therapeutic value (15).
Abbreviations: OC, ovarian cancer; miRNA, microRNA, lncRNA, long non-
coding RNA; EMT, Epithelial-to-Mesenchymal transition; CAF, cancer-associated
fibroblast; CAA, cancer-associated adipocyte; TAM, tumor-associated
macrophage; MSC, mesenchymal stem cell; TME, tumor microenvironment;
ECM, extracellular matrix; AAs, amino acids; FAs, fatty acids.
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THE OVARIAN CANCER
MICROENVIRONMENT

Ovarian cancer is composed of organoid-like structures in which
epithelial OC cells interact with the stroma composed of cancer-
associated fibroblasts (CAFs), cancer-associated adipocytes
(CAAs), tumor-associated macrophages (TAMs), and other
immune and inflammatory cells, mesenchymal stem cells
(MSCs) and endothelial cells embedded in a mixture of
amorphous components forming the extracellular matrix
(ECM) (16). A schematic representation of OC TME
composition is illustrated in Figure 1.

Cellular and molecular crosstalk between stromal and cancer
cells significantly affects OC tumorigenesis and progression
through the establishment of a malignant liaison that results in
a tumor-promoting and immunosuppressive microenvironment
(17). In addition, the inflammatory stroma could also favor the
awakening of dormant OC cells, thus causing cancer recurrence
(17). Moreover, oncogene-induced inflammatory pathways
facilitate metabolic changes in the tumor stroma resulting in
the secretion of metabolites that are used as alternative nutrient
source by cancer cells to sustain their increasing energy needs for
growth and anabolic functions (18).

These bidirectional communications have a great impact on
biological processes, the metabolic reprogramming of the various
components of tumor stroma, and their phenotypic features via
autocrine, paracrine, endocrine, and contact-dependent cell
signaling, thus reflecting the changes driving OC relapse (19, 20).

The bioactive soluble factors secreted into the extracellular
space and the malignant ascitic fluid include metabolites (amino
acids, fatty acids, etc.), proteases (MMP1, MMP2, MMP9, uPA,
collagenases), phospholipids (LPAs), chemokines (CXCL1,
CXCL-11, CXCL-12, CCL5), growth factors (IGF-1, M-CSF,
VEGF, HGF, FGF), and cytokines (IL-4, IL-10, IL-6, IL-1a, IL-
1b, TGF-b, IL-8, TNF-a). Additionally, OC microenvironment
is greatly affected not only by soluble factors, but also by
epigenetic mechanisms, such as non-coding RNAs (miRNAs
and lncRNAs), histone modifications, DNA methylation, and
chromatin remodeling (5).

Tumor-derived metabolites accumulate in the microenvironment
in consequence of an accelerated and imbalanced metabolism.
Among the pathways involved in the metabolic rewiring, here we
focus on autophagy, a mechanism acting as an active supplier of
nutrients/energy source for cancer cell survival.
AUTOPHAGY AND OVARIAN CANCER

Autophagy, literally “self-eating”, is a dynamic catabolic process
that ensures cellular quality control through the degradation of
cytoplasmic damaged, harmful, aged, redundant or unnecessary
cellular self-constituents (11, 21).

Autophagy starts with the recruitment of key initiating
complexes resulting in the nucleation of the isolation
membrane, followed by the elongation of the vesicle that
captures cytosolic material, forming the autophagosome.
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Next, the autophagosome fuses with endosomal-lysosomal
organelles to form the autolysosome. The sequestered cargo is
degraded by lysosomal acid hydrolases into monomeric
constituents that are exported across the lysosomal membrane
to the cytosol for re-use during cellular renovation and
macromolecules turnover (22). Regarding the molecular
regulation, the mTORC1 complex appears as the main
negative controller of autophagy through the inhibition of the
ULK1/2 complex (Figure 2). Both the abundant presence of
amino acids, which directly activate mTOR, or of growth factors,
which activate mTOR via the PI3KC1–AKT pathway, result in
the inhibition of autophagy, while the absence of nutrients
(amino acids, glucose) and the lack of oxygen, which causes a
reduced production of ATP, trigger the AMPK pathway resulting
in the induction of autophagy (Figure 2).

Under normal conditions, autophagy occurs at basal levels
and ensures constitutive turnover of cytosolic components by
Frontiers in Oncology | www.frontiersin.org 3
specifically degrading damaged or redundant organelles and
molecules (23). In response to a wide range of extra- and
intracellular stress stimuli, autophagy is induced and sustains
cell survival by producing metabolites that can be re-used in
biosynthetic processes or energy production (11). It has been
calculated that autophagy controls the destiny of up to fifty per
cent of the cellular proteins (24), and up to four percent of the
mitochondria pool is basally degraded by mitophagy every day,
while dysfunctional mitochondria are actively and selectively
removed on demand (25). Thus, overall autophagy presides to
protein and organelle quality control that preserves cell viability
and prevents from cancer (26, 27). Additional tumor
suppressive mechanisms of autophagy include the elimination
of oncogenic substrates and dampening of oxidative stress and
inflammation, which contribute to preserve genome stability
(28, 29). Yet, these same mechanisms might turn to be pro-
tumorigenic when activated in established tumor cells. In fact,
FIGURE 1 | Cellular and metabolic heterogeneity of ovarian cancer microenvironment. Ovarian cancer (OC) has been classified a Type I and Type II. Type I OC
(typically harboring mutations in BRAF, KRAS, ARID1A, PIK3CA, PTEN, and CTNNB1) is less aggressive and less lethal than Type II (typically harboring mutations in
TP53 and BRCA1/2). The metabolic rewiring occurring in the OC microenvironment is influenced by the interactions among the heterogenous cellular populations,
the availability of nutrients and oxygen (O2), the metabolic side products, and the pH gradients. Gradients of the latter are indicated by the shaded arrows.
Disseminated OC multicellular spheroids detach from the tumor bulk and spread within the abdomen, where ascite accumulation facilitates their seeding and
colonization of peritoneal cavity.
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by removing the damaged proteins and DNA, autophagy
protects cancer cells from the cytotoxic stress induced
by chemo- and radiotherapy (30, 31). Further, autophagy
can provide a survival advantage to the cancer cells in
the most inner portion of the tumor that face hostile
conditions such as hypoxic, growth factor and nutrient-
deprived microenvironment due to the scarce vascularization
(32). Autophagy is deregulated in OC cells in consequence of
genetic and epigenetic mutations (33, 34). The haplo-
insufficient tumor suppressor gene BECN1 (that encodes for
the protein BECLIN-1) has been the first autophagy gene that
was found to predispose to OC development when mono-
allelically deleted (35, 36). Autophagy in ovarian cancer is
subjected to epigenetic regulation by histone de-acetylases
(37), by hypomethylation (38), and by non-coding RNAs (39–
41). Autophagy, being a stress response that can be regulated
epigenetically, it is not surprising that the TME can modulate
the actual level of autophagy in ovarian cancer cells (10).
Frontiers in Oncology | www.frontiersin.org 4
AUTOPHAGY-MEDIATED METABOLISM
SHAPES THE OVARIAN CANCER
MICROENVIROMENT

Cancer growth requires a complex and orchestrated rewiring of
cell metabolism (42). Altered cell metabolism enables cancer cells
to sustain their increased energetic and biosynthetic needs for
tumor growth, invasion, and progression. To satisfy this
abnormal high demand of metabolites the cancer cells must
partner with other cells in the TME.

To this end, epithelial cancer cells can reprogram the
catabolism of neighboring stromal cells to enhance their
secretion of energy-rich metabolites (such as pyruvate, lactate,
ketone bodies, amino acids, and free fatty acids) that are up-
taken by tumor cells and used to sustain their onco-metabolism
(43–45).

The unbalanced availability of these metabolites in the TME
affects the regulation of autophagy which in turn has an impact
FIGURE 2 | Role of Autophagy in Ovarian cancer hallmarks. Autophagy is regulated by signaling pathways that sense the presence of growth factors, the availability
of nutrients (amino acids and glucose) and of ATP, and that ultimately modulate the activity of the ULK complex. The formation of the autophagosome is triggered by
the BECLIN-1 interactome (comprised of Vps34, Vps15 and ATG14L). The autophagosome entraps the autophagic cargo and then fuses with the lysosome to form
the autolysosome, wherein degradation takes place. Depending on cancer cell background and TME context, autophagy plays either an inhibitor or promoting role
on cancer evolution. Particularly, autophagy can: (i) fulfill increased energetic and biosynthetic needs for tumor growth; (ii) favor resistance to cytotoxic drugs; (iii)
promote the survival of dormant cells; (iv) modulate the secretion of soluble factors affecting cancer progression and anti-tumor immune response; (v) inhibit
metastasis and prevent anoikis of invading cancer cells. Note that autophagy in stromal cells sustains the metabolic crosstalk with cancer cells.
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on cell behavior and destiny. Below, we summarize how
autophagy responds to environmental harsh conditions and
how this response reflects on the composition and function of
the TME and cancer cell fate. As schematically represented in
Figure 2, autophagy is essentially implicated in the amino acid,
glucose, and lipid metabolisms, in the secretion of soluble factors
found in the TME, and in cancer cell behavior and fate (that
includes cell dormancy, response to chemotherapeutics
and metastasization).

Autophagy in Cell Metabolism
Amino Acid Metabolism and Autophagy
Amino acids play a central role in cell metabolism, as they are the
fundamental blocks for protein synthesis and a source for the
synthesis of carbohydrates and lipids. Non-essential amino acids
could be synthesized endogenously, but if the proliferation rate is
fast, these amino acids have to be provided from external sources
because the capacity of endogenous synthesis does not meet the
increased needs of the highly proliferating cancer cells (46). Amino
acid shortage not only impairs the anabolic pathways, it also
potently induces autophagy for rescuing amino acids and other
metabolites necessary for vital functions (47). Consistently,
prolonged amino acid starvation in ovarian cancer cells triggers
the expression of several autophagy genes (48). Amino acid
availability is sensed by the mTOR kinase, that positively regulates
protein synthesis while negatively regulates autophagy (49). In
cancer cells, the lack of (conditionally) essential amino acids
determines the proteasomal degradation of the mTOR kinase,
thus allowing pro-survival autophagy (50). It has been shown that
ovarian cancer cells cultivated in arginine-deprived medium and
unable to synthesize it, preventing the induction of autophagy
eventually leads to cell death (51). Cancer cells are particularly
addicted to glutamine, a (conditionally) essential amino acid that
fuels the mitochondrial Krebs’s cycle, particularly when glucose is
not fully oxidized in the mitochondria (52). In cancer cells, there is a
cooperative link between the glutamine and the glucose
metabolisms (53).

Nutrient addiction displayed by OC cells relies on the
availability of different substrates, and these metabolic
dependencies are also dependent on cancer stage (44, 54, 55).

Interestingly, low-invasive OC cells are basically glutamine-
independent and rely on glucose metabolism for their growth,
whereas high-invasive OC cells shift their nutrient addiction
from glucose to glutamine (56). Remarkably, to fulfill their
increased requirement for glutamine, highly malignant OC
cells reprogram their surrounding CAFs to neo-synthetize
more glutamine than what normal ovarian fibroblasts would
do (56). Glutamine has been shown to stimulate OC cell
proliferation through modulation of the mTOR pathway (57),
and this likely inhibits autophagy as indicated by the observation
that L-asparaginase, which degrades glutamine to glutamate,
induces autophagy in OC cells (58).

Glucose Metabolism and Autophagy
Glucose is one of the principal sources of energy, and its lack is
sensed by the cell through the Hexokinase 2-mTOR axis to
Frontiers in Oncology | www.frontiersin.org 5
trigger autophagy as a stress response (59). Cancer cells resident
in well-vascularized areas can fully exploit glucose through
mitochondrial respiration to sustain their energetic needs (60).
However, highly proliferating cancer cells preferably use
glycolysis to produce ATP and skip the mitochondrial
respiration step despite the availability of oxygen, a phenomenon
known as Warburg effect (61). On the other hand, cancer cells
located in hypoxic niches are obliged to use glycolysis for the
production of ATP because of the lack of oxygen (62). Glycolysis is
ten times less convenient than mitochondrial respiration in terms
of ATP yield, therefore the tumor mass consumes huge amount of
glucose (approximately 10–200 times more) compared to the
normal counterpart tissue, and this leads to the production of
high amount of lactate (63).

The acidification of the TME due to lactate secretion further
contributes to cancer progression promoting (i) cancer cell
invasion and metastasis (64), (ii) Epithelial-to-Mesenchymal
transition (EMT) and the emergence of stem-like clones (65,
66), (iii) angiogenesis (67), (iv) the survival of cancer cells
competing with stromal and immune cells for energy and
glucose availability (68, 69), (v) the polarization of tumor-
associated macrophages (TAMs) toward an immune
suppressive phenotype (70, 71), and (vi) resistance to hypoxia,
cytotoxic drugs and immune attack (72).

It has been proposed that the glycolytic shift in glucose
metabolism along with upregulation of autophagy occur also in
stromal cells, mainly in CAFs (44), that would then supply the
cancer cells with amino acids and lactate to sustain the anabolic
processes involved in hyperproliferation and cancer progression
(73, 74). In the presence of oxygen, cancer cells can oxidize
lactate into pyruvate thanks to the lactate dehydrogenase B
(LDHB), thus substituting the glucose to fuel the mitochondria
(75). Interestingly, this LDHB-dependent metabolism increases
the autophagy flux along with increased acidification of the
lysosomes in cancer cells (75).

Fatty Acid Metabolism and Autophagy
The bidirectional crosstalk between ovarian cancer cells and
adipocytes, that are used as “food donors”, is another example of
metabolic complicity in the TME that supports OC growth (76, 77).

Lipidomic analysis of malignant OC ascites revealed the
presence of high concentrations of linoleic acid, a potent
PPARb/d agonist that promotes the pro-tumorigenic
polarization of ovarian TAMs (78).

When cultured in the ascite microenvironment, ovarian
cancer cells undergo a metabolic shift from aerobic glycolysis
to b-oxidation and lipogenesis, and this associates with increased
aggressiveness (79).

In the TME, cancer-associated adipocytes (CAAs) release
fatty acids (FAs) that are used by cancer cells as an energetic
source, and adipokines that stimulate cancer progression (80).
Interestingly, the uptake of (long chain) FAs present in the TME
is higher in hypoxic cancer cells due to HIF-1a-induced
expression of CD36, also known as FA translocase (81). To be
noted, CD36 is over expressed in ovarian cancer cells and
associates with ovarian cancer progression and metastasis (82).
In hepatocarcinoma cells, over-expression of CD36 has been
December 2020 | Volume 10 | Article 599915
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shown not only to increase the long-chain FA uptake but also to
inhibit autophagy, and particularly lipophagy (83). Whether this
also occurs in OC cells remains to be demonstrated.

Again, recent evidences suggest that lipophagy, the
autophagic degradation of lipids, has a role in the release of
free fatty acids that constitute an alternative source of energy as
well as metabolic intermediates involved in cell signaling and
macromolecule biosynthesis (84).

During energy stress condition, CAAs upregulate autophagy
and supply fatty acids that are transported to cancer cells and can
be used for building cell membranes or are catabolized by
b-oxidation (85). The latter process may also generate ketone
bodies that represent a useful substrate for ATP generation in
fast-growing cancer cells, since ketone bodies provide more ATP
with less oxygen consumption than glucose (86). This aspect
leads to speculation that cancer cells growing in an adipocyte-
enriched microenvironment, like OC, specifically rely on
mitochondrial b-oxidation to fuel high bioenergetic demand of
cancer cells, suggesting that adipocytes promote a metabolic
switch to favor fatty acids over glucose and amino acids as
mitochondrial substrate due to a tissue-specific feature of this
cancer (80, 87).

In particular settings, lipophagy has shown to exert a tumor-
suppressive role. The lack of lysosomal acid lipases, the enzymes
involved in lipophagic degradation, results in the promotion of
cancer growth and metastasis through the mTOR-dependent
activation of myeloid-derived suppressor cells (88).

Further characterization of lipophagy perturbation in the
TME is needed to fully understand its role in OC development
and progression and to determine its potential as a target for
novel cancer therapeutic approaches (89).
The Role of Secretory Autophagy
in Shaping the TME
Peptides, proteins, and hormones that lack the leader/secretion
peptide and fail to enter the conventional secretory system,
normally operating via the endoplasmic reticulum–Golgi
pathway, can be secreted in an autophagy-dependent manner
(90). Thus, autophagy actively participates in remodeling of
TME via unconventional secretion of soluble factors involved
in intercellular communications (91). Autophagy knockdown in
stromal and/or in cancer cells results in the reduction of cytokine
and chemokine release (including IL-1b, IL-18, IL-6, IL-8, IL-2,
CCL2, CCL20, TNFa, LIF), indicating an autophagy-dependent
secretion of pro-inflammatory and pro-invasive factors that
collectively modulate tumor growth, immune evasion, stemness
maintenance, angiogenesis , and metastasis (91–97).
Additionally, the autophagy-dependent tumor secretome
includes extracellular matrix remodeling proteins (e.g. MMP2,
MMP9), angiogenic stimuli (VEGFA) and growth factors (b-
FGF, TGFb1) (95, 98, 99). Further, autophagy impairment
hampers the secretion of IFN-g, CXCL9, CXCL10, CXCL11
that are involved in T cells and dendritic cell recruitment,
resulting in immune surveillance escape (100).

On the other hand, autophagy promotes the release of
immunomodulatory proteins known as DAMPs (damage-
Frontiers in Oncology | www.frontiersin.org 6
associated molecular patterns) that elicit anti-tumor immunity
by activating immune cells, thus limiting tumor progression
(101, 102).
AUTOPHAGY-MEDIATED CROSSTALK
WITHIN THE MICROENVIRONMENT
AFFECTS OVARIAN CANCER
PROGRESSION

The TME has been described as inflammatory and desmoplastic,
recalling a wound that never heals (103). In normal tissues subjected
to environmental injuries, the inflammatory and autophagy
pathways cross-communicate and cooperate to re-establish
homeostasis (104). In the tumor niche, several pro-inflammatory
factors and pro-tumorigenic metabolites could directly or indirectly
impinge on autophagy in cancer and stromal cells, thus affecting
cancer evolution (105, 106). On the other side, autophagy plays a
role in the release of pro-tumorigenic cytokines (107). IL-6, one
such inflammatory and pro-tumorigenic cytokine released by CAFs,
is particularly secreted in the OC TME and accumulates abundantly
in the ascitic fluid of OC (17). This cytokine has been shown to
promote EMT and the migration of OC cells (108). Recently, we
have shown that the pro-EMT and pro-migratory effect of IL-6 on
OC cells is dependent on the epigenetic regulation of
autophagy (40).

Another molecule highly secreted within the OC
microenvironment is lysophosphatidic acid (LPA). In ovarian
cancer, LPA could act either in an autocrine or a paracrine
manner to reprogram the glucose metabolism (109), to induce
EMT and invasiveness (110), and to promote the secretion of
pro-invasive factors (like VEGF, IL-6, IL-8, etc.) (111, 112). It is
likely that these effects are mediated by modulation of autophagy.
Accordingly, LPA has been shown to inhibit autophagy in
prostate cancer cells (113, 114). Further, it has been demonstrated
that LPA induces a glycolytic shift that associates with the pheno-
conversion of ovarian normal fibroblasts into ovarian CAFs (115), a
process that depends on autophagy modulation (74).

Consistent with a role of autophagy in metastatic dissemination,
a recent study found that disseminated ovarian cancer cells within
the peritoneum over-expressed several autophagy genes (116).
However, the relationship between EMT and autophagy is quite
intricate: while on one hand it inhibits the early phases of
metastasization mainly through the selective degradation of EMT-
associated transcription factors such as SNAIL, SLUG, and TWIST,
on the other hand it helps cancer cells that already underwent EMT
to prevent from anoikis and move within the ECM (117), yet it is
also involved in the reverse Mesenchymal-to-Epithelial transition
process (118, 119).

Tumor dormancy coincides with the period during which
disseminated tumor cells can remain in a latent state associated
with inhibition of cell proliferation and reprogramming of cell
metabolism that sustain cell survival with the least expenditure of
energy in presence of reduced source of nutrients and oxygen
(120). Hence, dormancy is an important adaptive response to
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microenvironmental stresses, and it is the result of an integrated
metabolic crosstalk (involving cytokines, chemokines, growth
factors, metabolites, and non-coding RNAs) in which autophagy
plays a key role (121, 122). Dormancy and autophagy are
functionally interconnected at the molecular level. The tumor
suppressor gene ARH-I (also known as DIRAS3), which is
epigenetically silenced in a vast majority of ovarian cancers,
promotes autophagy in cultured OC cells (40, 123), and its
inactivation in the context of a xenografted tumor in mice
causes the interruption of dormancy and the rapid re-growth
of the tumor (124).

This mechanism of adaptation to a nutrient poor
microenvironment favors the survival of chemoresistant OC
cells (125). Therefore, autophagy signaling machinery might
integrate quiescence and survival signals to promote damage
repair, via ATG7 regulation of p53 and sustain cancer cell needs
by generating an alternative route for amino acid turnover as well
as for energetic metabolism and ATP balance (126, 127).
CONCLUSIONS

Here we have briefly described the interplay occurring within the
OC tumor microenvironment between OC cells and stromal
components, how this influences the dynamic changes in the
structure and composition of extracellular matrix and of tumor
stroma, the reprogramming of energetic metabolism, and the
secretion of soluble factors that, overall, negatively impact on the
prognosis of OC patients.

Deregulation of autophagy has been recognized as one of the
main hallmarks of cancer. However, while studying the role of
autophagy in cancer, we now realize that things are far more
complicated than what it was thought some decades ago. In fact, we
must consider that autophagy regulation is subjected both to genetic
and epigenetic mutations of oncogenes and tumor suppressor
Frontiers in Oncology | www.frontiersin.org 7
genes, and it is transitorily modulated by microenvironmental
factors such as metabolites, pro-inflammatory cytokines and pro-
oxidant molecules. As a further layer of complexity, we have to
consider the level of autophagy in both the epithelial cancer cells,
the stromal cells (CAFs, CAAs, TAMs), and probably also of
neighboring normal cells, and keep in mind that all these actors
can exchange metabolites and factors influencing reciprocally the
autophagy level. Interrupting the functional link between
autophagy and cell metabolism both in epithelial cancer cells and
in stromal cells could be an effective therapeutic approach to slow
down OC progression and prevent relapse. To achieve this goal, we
need to further investigate the mechanisms of autophagy dynamics
and how it shapes the TME.
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