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Abstract

This paper presents the concept of Simultaneous Localization and Multi-Mapping

(SLAMM). It is a system that ensures continuous mapping and information preservation

despite failures in tracking due to corrupted frames or sensor’s malfunction; making it suit-

able for real-world applications. It works with single or multiple robots. In a single robot sce-

nario the algorithm generates a new map at the time of tracking failure, and later it merges

maps at the event of loop closure. Similarly, maps generated from multiple robots are

merged without prior knowledge of their relative poses; which makes this algorithm flexible.

The system works in real time at frame-rate speed. The proposed approach was tested on

the KITTI and TUM RGB-D public datasets and it showed superior results compared to the

state-of-the-arts in calibrated visual monocular keyframe-based SLAM. The mean tracking

time is around 22 milliseconds. The initialization is twice as fast as it is in ORB-SLAM, and

the retrieved map can reach up to 90 percent more in terms of information preservation

depending on tracking loss and loop closure events. For the benefit of the community, the

source code along with a framework to be run with Bebop drone are made available at

https://github.com/hdaoud/ORBSLAMM.

1 Introduction

Simultaneous Localization and Mapping (SLAM) is the problem of placing a robot at an

unknown location in an unknown environment, then, using the onboard sensors, the robot

would try to construct a map of the surroundings and utilize this map to localize itself (please

see Fig 1)

Visual SLAM is the branch where a SLAM system uses a camera as the only extrinsic sensor.

It is of special interest as we intend to run the SLAM system on a Micro Aerial Vehicle (MAV)

(in Fig 2) due to its agility and freedom of movement in 6-DoF space. However, quad-copters

are known to have limited payload capacity and short battery life. Therefore, using a camera is

highly practical due to its low power consumption and lightweight. It also provides a rich

representation of the environment. Hence, Visual SLAM was chosen to build our system.
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Fig 1. SLAM system.

https://doi.org/10.1371/journal.pone.0195878.g001

Fig 2. Parrot Bebop drone during flight taken in Advanced Robotic Lab, University of Malaya, Malaysia.

https://doi.org/10.1371/journal.pone.0195878.g002
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Many researchers worked on solving SLAM using different sets of robots and sensors.

However, there are two dominant approaches to solve it and those are: The Filter-based

approach and the Keyframe-based one. (see Fig 3)

• Filtering methods [1–3] summarize the information at each step in a probability distribu-

tion. The camera pose Tn is computed using the information of all features of the map.

• Keyframe methods [4–6] retain the optimization approach of global Bundle Adjustment

(BA). Instead of relying on all the features in the map, only a few, from certain past frames

(aka Key-Frames), are chosen to calculate the current pose Tn. This approach is computa-

tionally better.

Keyframe based visual SLAM was used in our system based on the work of Strasdat et al.

[7]. They performed a thorough analysis of both filter and keyframe based visual SLAM with

monocular and stereo rigs in different scenarios and motion patterns, and they found that key-

frame BA based SLAM outperformed the filter-based approach in all tests.

In general, all SLAM systems aim to build a globally consistent representation of the envi-

ronment. The majority, [2, 5, 8–10] including the proposed system, can work on large-scale

environments, but they rely on the rigid constraint, while others [11–13] take in consideration

the dynamic deformation of shapes to build non-rigid maps, but they can retrieve only a small

scale reconstruction. All these systems operate by incorporating tracking, mapping, relocaliza-

tion after tracking-failure and loop closing. The main block in a SLAM system, specially when

operating in a large-scale environment, is loop closure as without loop closures, SLAM will be

reduced to odometry [14].

In [15], Castle et. al. used multiple maps concept to extend the work of Klein and Murray

on PTAM [4]. However, it does not address the previous principle of loop closing, as the maps,

despite being manually initialized, are not merged when they overlap, therefore, the work is

reduced to a relocalization rather than building a globally consistent map.

Our approach goes beyond the norm of standard SLAM systems. We argue that relocaliza-

tion is a redundant process that ‘causes’ loss of information. Therefore, we replaced relocaliza-

tion with Multi-Mapping approach. A new map is generated at the event of tracking loss, this

new map is merged with the original map when those two maps intersect using bag of visual

words [16].

In this paper, ORB-SLAM [5] was chosen as a base SLAM system due to its robustness and

ability to work in real-time indoor or outdoor, as well as its ability to close loops. Hence, we

called this implementation of Simultaneous Localization and Multi-Mapping as ORBSLAMM.

Despite the numerous features of ORB-SLAM, the implementation in S1 Link is found to

suffer from a number of problems such as the inconsistency in initialization, and the drift

caused by pure rotation. This is because ORB-SLAM, in its monocular implementation, needs

translation to deduce the depth and scale. In addition, when tracking is lost ORB-SLAM (as

Fig 3. Keyframe BA (left) vs filter based (right): T is a pose in time, x is the feature/landmark—Reproduced from

[7].

https://doi.org/10.1371/journal.pone.0195878.g003
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other conventional mono-map SLAM systems) attempts to re-localize, by trying to match the

current frame with all stored keyframes. Although, it is a very good way to re-localize, it is

greedy and, most importantly, it ignores all the information between the location where track-

ing is lost and the location of re-localization. Furthermore, the strength of loop closing strate-

gies reported in [5], such as Essential Graph optimization, is wasted as it needs an active

tracking (frame pose is known) to be performed while in the case of relocalization the PnP

(Perspective n Points) method is used to find the pose of the current frame. In this paper the

use of multiple maps is introduced by starting a new map at the moment of tracking-loss, and

then, merging these maps at the event of loop closure, it is similar to having multiple robots

mapping the same environment. Therefore, our proposed system is scalable to work with

either one or multiple robots.

Eade and Drummond [8] worked on the idea of generating a new map at tracking failures

and merging them at loop closure events. However, the relations, when closing the loop, were

made on node level (keyframe level) rather than propagating the relation to be on cycle level

(map level). Also, it is not reported what would happen when the new cycle intersects with

older cycles multiple times. This is crucial for optimization. Another problem is that the opti-

mization on cycles is done independently despite the relation between them. This is because of

the way the system is built with relations at node level. Moreover, it is not mentioned whether

the system is able to merge maps generated by different robots (cameras). The proposed sys-

tem here is able to propagate the relation to be on map’s level (all its keyframes and map

points), and can handle loop closure events happening in the same map and those between dif-

ferent maps. It also enhances map’s accuracy when maps intersect multiple times. Our system

is also able to merge maps generated by different cameras thanks to the work in [16]. Fig 4

shows the strength of our proposed system in building a unified global map in real-time of two

sequences (00 and 07) of KITTI dataset [17] that were recorded on different days and with dif-

ferent camera calibrations.

Fig 4. ORBSLAMM running on KITTI sequences 00 and 07 simultaneously. It took 494.2 seconds to get the final

map which contains 1934 keyframes, with translation error of 1% of trajectory’s dimensions.

https://doi.org/10.1371/journal.pone.0195878.g004
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Forster et al. [18] worked on the collaborative SLAM problem, where maps generated by

multiple robots are merged when they intersect. Their place recognizer accumulates the infor-

mation with every keyframe added to each map, which reduces the robustness as maps grow.

In our system, the new keyframes of each map are compared against keyframes databases of

other maps. This separation of databases ensures the robustness and real-time operation when

searching for potential similarities. The authors in [18] used a down-looking camera that

needed a texture-mat to be added in the indoor experiments which limits the application of

their system.

Although Howard’s work [3] is done using particle filter with range sensors, the merging

methodology of virtual robots traveling “backward in time” is interesting. However, this meth-

odology may cause discrepancy between the virtual robots and actual ones when another over-

lapping is detected or optimization is performed. Our merging methodology expands on this

concept, allowing to update, in real-time, the poses of all keyframes and map points based on

the transformation matrix between the matched keyframes of the matched maps. The subse-

quent keyframes and map points of the matched maps will then be in the common coordinate

system.

When the relative poses between different robots/maps is not known a priori, it is necessary

to have a loop closure (maps’ intersection) to merge their maps otherwise those maps will

remain unconnected. Regardless of this, it is still better in terms of preserving the information

after tracking-loss, and these unconnected maps can be utilized in Augmented Reality applica-

tions similar to the ones reported in Castle’s work [15].

Another advantage of the proposed system is the ability to recover from wrong initializa-

tion. Fig 5 shows how a wrong initialization may cause the failure of a SLAM system.

In the conventional mono-map SLAM systems after tracking is lost an attempt to relocalize

the camera is started, but due to wrong initialization the system gets stuck at the place where it

lost tracking, while, in ORBSLAMM a new map is generated enabling tracking and mapping

to continue. A comparison video about this issue can be found in S1 Video. Therefore, ORB-

SLAMM via reinitialization and multi mapping provides the ability to correct errors and

recover from failures, and most importantly, preserve the information.

2 ORBSLAMM system overview

This section describes the proposed system and its different blocks. It also serves as a road map

for this paper. Fig 6 shows an overview of the system, and S1 Fig, in supporting information,

provides a better understanding of the different threads in the system and their interactions.

ORBSLAMM is an extension to ORB-SLAM [5]. It preserves the old system which consists

of three threads for tracking, mapping and loop closing, and adds a fourth thread that handles

Fig 5. ORB-SLAM getting stuck in wrong initialization freiburg2_large_with_loop fromTUMRGB-D dataset [19].

https://doi.org/10.1371/journal.pone.0195878.g005
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the multiple maps generated either by the tracking-thread at the time of tracking-failure, or by

running multiple robots to map the environment.

The system starts by grabbing an image frame, then passing it to the tracking thread (pre-

sented in section 4) where ORB features are extracted. Once the features are extracted the

tracking thread tries to create an initial map by triangulating feature points in the Initializer

(aka bootstrapping) (presented in section 3), where it tries to recover the motion and the struc-

ture from motion (SfM). ORB-SLAM computes two geometrical models in parallel, the first is

a homography assuming a planar scene, and the other is fundamental matrix assuming non-

planar scene. After extensive experiments on the public datasets [17, 19, 20] it was found that

homography initialization was not contributing in initializing the system, and most of the time

the system is initialized correctly using the fundamental matrix. Therefore, homography ini-

tialization was removed from the auto Initializer which enhanced the initialization process

making it faster and more consistent.

At the time of tracking-failure, the tracking-thread creates a new map and instructs all

other threads to swap their associations to the newly created map, then it passes the new map

to the Multi-Mapping thread (presented in section 7), after that, it starts the automatic boot-

strapping. Once the initial map is created and keyframes start to be inserted by local mapping

(presented in section 5), the Multi-Mapping thread begins to search for matches between key-

frames of the first map and those of the new map using Bag of Words (BoW) [16], similar to

the way loop closing thread (presented in section 6) deals with keyframes of the same map. To

visualize the new system, maps are processed in a similar manner to keyframes of the conven-

tional mono-map SLAM systems. For more information on tracking, mapping and loop clos-

ing refer to [5].

3 Initialization

Map initialization is an essential step in monocular SLAM to calculate the depth and retrieve

the 3D location of map points and keyframes. It starts by extracting ORB features (xc) in the

Fig 6. ORBSLAMM system overview.

https://doi.org/10.1371/journal.pone.0195878.g006
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current frame Fc and tries to match it with the features (xr) in the reference frame Fr. The refer-

ence frame is initially the first frame. If not enough matches are found, the reference frame is

reset. Otherwise, a parallel thread is run to calculate the fundamental matrix Fcr:

xTc Fcrxr ¼ 0 ð1Þ

Then the Essential Matrix is calculated from the Fundamental Matrix using the Calibration

Matrix K:

Erc ¼ KTFrcK ð2Þ

Then the Essential Matrix is decomposed to generate 4 motion hypotheses. These 4 pro-

spective solutions are triangulated and checked to get the best one in terms of the maximum

number of points seen in front of both cameras (of Fr and Fc) with good parallax and low pro-

jection error. If there is no dominant solution with enough triangulated points, the initializa-

tion is rejected and the reference frame is reset. Once a solution is chosen, a full BA is

performed to refine the initial reconstruction.

4 Tracking

The tracking thread is the backbone of the system. It communicates with all other threads and

arranges their work. Tracking is started by grabbing an image frame, then extracting FAST

corners at eight pyramid levels with a scale factor of 1.2. The number of retained corners is

adapted depending on the size of the image and the distribution of the corners inside it. Then,

ORB descriptors are computed. After that, the tracking thread checks whether there is an ini-

tial estimation of pose, if not, it runs the initializer described in section 3. Once an initial esti-

mation is found, a constant velocity motion model is used to predict the current camera pose.

T0
cw
¼ M � Tcw ð3Þ

where M is a 4x4 matrix that encodes the changes in rotation and translation (aka camera

motion), it is a member of Lie group SE(3). T
0

cw and Tcw are the poses of the recent frame and

the last frame respectively in camera-coordinates c.
Map points in the last frame are projected in the current frame and checked for matches. If

not enough matches are found (� 20) the matcher searches in a wider window. If sufficient

matches are found (> 20), the pose of the current frame is optimized and outliers are dis-

carded. Otherwise, an attempt is made to track the pose by matching ORB features of the map

points in the current frame with the ones in the reference keyframe. If an initial pose estima-

tion is obtained, the tracker continues by trying to track all points in the local map (refer to the

flowchart in S1 Fig). If tracking succeeds, the system checks whether a new keyframe is needed,

and instructs the local mapping to process it and add it to the map. Then, the loop closing

thread adds the newly processed keyframe to the keyframes database with an inverted index

where each visual word in the vocabulary is linked to the list of keyframes it was seen in. This

is used to efficiently check for loop closures candidates. However, if tracking fails, a new map

is created and passed to the Multi-Mapping thread, and the initialization process in section 3 is

rerun.

5 Local mapping

The map in ORBSLAMM is a group of keyframes and map points that are located in the world

coordinate frame w. A map point is the 3D location of an ORB feature that is triangulated and

observed by at least three views (keyframes). Map points can be generated by the tracking

SLAMM
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thread (in section 4) when creating the initial map, and by the local mapping thread. However,

the local mapping thread can also remove bad points that have low visibility and are not

trackable.

Once the tracking thread finishes the initialization, local mapping starts by inserting the

first two views as the initial keyframes. It then continuously checks if the tracking thread has

inserted any new keyframes to process them. If there are any, it calculates their BoW structure

based on the ORB descriptors generated from the original image frame, then it associates the

map points of the original image frame with its keyframe.

The BoW structure contains bags of words vectors, which are samples in the descriptor

space (aka visual vocabulary). It helps in map points matching and triangulation. The vocabu-

lary is generated offline using ORB descriptors of features taken from a large set of images.

The images should be generic so that the resulted vocabulary can be used with different data-

sets or environments.

Local Mapping also updates the covisibility graph, which is an undirected weighted graph

where each node represents a keyframe and the edges connect keyframes that share a mini-

mum of 15 map points in the local map. The weight of the edge is the number of the shared

map points between the two keyframes.

When local mapping is free from processing new keyframes, it performs local BA which

optimizes the last processed keyframe and all its neighbors in the covisibility graph.

To summarize, local mapping processes new keyframes and creates new map points. It also

removes redundant keyframes and bad map points to maintain a scalable and reliable map. In

addition, it updates the covisibility graph among keyframes and runs local BA for optimization.

6 Loop closing

This section describes the work of closing loops and correcting the drift in the map. The loop

closing thread receives the keyframe generated by the tracking thread after being processed by

the local mapping thread, and inserts it into a local database of keyframes. It searches all key-

frames in the database that share a word with the current keyframe (the last processed key-

frame), using their BoW vectors as described in section 5.

During the loop closing cycle, the loop closing thread checks for new keyframes that are

inserted in the local map, then, it queries the keyframes database for a potential matches to the

current keyframe. Only those which have a similarity higher than a threshold and are not

directly connected to the current keyframe are taken. The threshold is defined by calculating

the minimum similarity score between the BoW vector of the current keyframe and all its

neighbors in the covisibility graph.

Once a list of candidates is found, a similarity transformation (SIM3) is computed from the

current keyframe to each candidate. This gives an insight on the accumulated error. It has the

notation 3 as it is calculated in the 3D space W, using the 3D to 3D correspondences between

the map points seen in the current keyframe and those in the candidate. If these correspon-

dences are more than a threshold (20 matches) a RANSAC solver with 20 iterations is set to

find the transformation matrix Tc2c1
. If found, a guided matching and an optimization with all

correspondences are performed. If optimization is successful with enough inliers (� 20) all the

Map points seen in the candidate keyframe and its neighbor keyframes are retrieved and pro-

jected using the computed transformation to find more matches:

Tc2w ¼ Tc2c1
� Tc1w ð4Þ

where Tc2w is the transformation from world coordinates w to candidate’s camera coordinates,

Tc2c1
is the SIM3 transformation from the current keyframe’s camera coordinates to the

SLAMM
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candidate’s one, and Tc1w is the transformation from world coordinates w to current key-

frame’s camera coordinates. If the total matches were enough (� 40), the candidate is accepted

as a loop keyframe, and its pose along with the poses of its neighbor keyframes in the covisibil-

ity graph and all the map points seen by them are corrected accordingly. Then all map points

are fused to remove any redundancy with the other side of the loop, and a new connection in

the covisibility graph is established between the two sides of the loop. After that, a graph opti-

mization and global BA using g2o framework [21] is performed to enhance the accuracy of the

map.

7 Multi-mapping

In this section lies the main contribution of the presented work. It describes the work done in

the Multi-Mapping thread and the interactions with other threads to merge maps, and correct

their poses (i.e. the poses of their keyframes and map points).

7.1 Single robot scenario

In a single robot scenario, maps are generated at tracking failure events only, therefore the pre-

vious maps are fixed in size (This means that the map which is generated before tracking fail-

ure does not grow). The only map that is growing is the current map, where tracking and

mapping is running. Each map M has an ID, the bigger the ID the newer the map.

When the system starts, it registers the first map M0 and its Keyframe Database at the

multi-mapping thread, at this moment both M0 and its Keyframe Database are empty. Then,

the system fires the tracking-thread (at section 4). As long as tracking is working successfully,

the multi-mapper is in an idle state. Once the tracker fails due to a corrupted frame, occlusion

or low texture, it creates a new empty map Mn, and passes its reference to the multi-mapper

along with its Keyframe Database (refer to Fig 6). It also informs local mapper and loop closer

to switch their work to the newly created map. After that it tries to initialize the map (as in sec-

tion 3). Once initialization is successful and new keyframes are started to be processed and reg-

istered in the database, the multi-mapper scans for potential matches between these new

keyframes of the new map and those stored in the keyframes databases of previous maps. The

matching process works in a similar way to the one in section 6.

All the keyframes which are connected to the current keyframe Kc in Mn are retrieved and a

minimum similarity score smin based on their BoW is computed. Then, the multi-mapper

loops through the Keyframe Databases of previous maps (M0 to Mn−1) and queries each for

matches with the current keyframe Kc imposing the calculated minimum similarity score smin.

For each keyframe Kj of map Mi 2 [M0, Mn−1] that has more than 15 matching points with

Kc, a solver to calculate the similarity transformation is set. This transformation contains the

information of changes in rotation, translation and scale (7 DoF). Alternatively, RANSAC iter-

ations are performed on each candidate Kj, until either a match with enough inliers is found or

all candidates fail. If RANSAC returns a similarity transformation, a guided matching is per-

formed to find more correspondences and the transformation is optimized. If enough inliers

remain after optimization, Kj is accepted as a loop keyframe.

All the map points which are seen in Kj and its neighbors are retrieved and reprojected on

Kc using the computed similarity transformation, then more matches are searched. If the total

correspondences were above a threshold (40 matches), the loop is accepted and multi-mapper

fuses both sides of the loop and performs a global BA.

7.1.1 Loop fusion. The multi-mapper starts loop fusion by attaching maps (Mn & Mi) to

each other using the calculated similarity transformation Scw between Kc and Kj. If this was the

first fusion between the new map Mn and Mi, all the keyframes and map points of Mn are

SLAMM
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retrieved. Otherwise, only the neighbors of Kc in the covisibility graph are retrieved. Then, the

pose of Kc is corrected by setting it to Scw, while the pose of each retrieved keyframe is trans-

formed to Mi’s world coordinates using equations in 5

Tic ¼ Tiw � Twc ð5aÞ

Tcorr ¼ Tic � Scw ð5bÞ

Where Tiw is the pose of the retrieved keyframe before correction and Twc is the inverse pose

of Kc before correction. Tcorr is the corrected pose of the retrieved keyframe in Mi’s world

coordinates.

All the map points which are observed by each retrieved keyframe and its neighbors are

corrected to match the new world-coordinates (refer to Fig 7(a)). Then, the map points

Fig 7. Scenarios of merging the matched maps in the multi-mapper. In the upper row (a) we see the matching

between map Mn and map Mi and how the multi-mapper transforms Mn to Mi’s coordinates to form a global map Mg.

In the middle row (b) is the scenario whereMn continues to grow then it intersects with map Mj that is not attached to

any other map, so the multi-mapper transformsMj toMn’s new global coordinates which are map Mi’s coordinates. In

the lower row (c) is another scenario where map Mn intersects with map Mj which is already matched with another

map Mk. Here the multi-mapper transformsMj and all its attached maps (map Mk) to Mn’s new coordinates. They are

now considered the global coordinates. The other option is to transform Mn and Mi to Mj’s world coordinates. The

solid circles at the end of the line in Mn represent Keyframe Kc while the empty circles in Mi and Mj represent

Keyframe Kj. The dots show the location where two maps are matched and merged. All transformations are SIM3

(have 7DoF). Notice how the size of the transformed map has changed along with its location and orientation. New

maps always start with first Keyframe at (0, 0). These maps are hand drawn and inspired by sequence 00 of the KITTI

dataset [17].

https://doi.org/10.1371/journal.pone.0195878.g007
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observed by Kj and its neighbors are projected into Kc and its neighbors using the corrected

poses and the duplicates are fused.

7.1.2 Discussion. If the multi-mapper finds another keyframe Kj of map Mj that matches

one of Mn keyframes after being matched with Mi and updated to its world coordinates, then

Mj’s keyframes and map points are transformed to the ‘global’ coordinates of Mi and Mn (Fig

7(b)). If Mj was matched with another map Mk, then the ‘global’ coordinates could be of either

Mj or Mn. However, the transformation must be propagated to all attached maps using the

respective similarity transformation. Refer to Fig 7(c).

7.2 Multiple robots scenario

In a multiple robots scenario, each ORBSLAMM system in each robot starts by registering its

initial Map M0 along with its Keyframe Database at the multi-mapper (Fig 8). The multi-map-

per will ensure the assignment of a unique ID to each map. These robots have no prior infor-

mation of their relative positions in the world. Their ORBSLAMM systems continue the

process described in section 7.1, which starts by firing the tracking thread, and then processing

new keyframes. Initially the multi-mapper has n maps that belong to n robots. Unlike the sin-

gle robot scenario, all maps are growing and being updated simultaneously. Therefore, the

multi-mapper continuously checks every map for matches with all other maps. Once a match

is found, the multi-mapper transforms the poses of map’s keyframes and map points to the

world coordinates of the matched map and attaches both maps to each other. The loop fusion

process and the discussion in the single robot scenario (section 7.1) applies in the multiple

robots scenario.

If the tracking in any system fails, a new map will be generated and added to the multi-map-

per. Therefore, the multi-mapper may have m maps that belong to n robots, where m� n.

8 Experiments and results

Extensive experiments were performed to test the proposed system. Tests were run on two

public datasets in single and multiple robot scenarios. The first dataset is the TUM RGB-D

Benchmark [19], which was used to test the speed of initialization and the amount of preserved

Fig 8. Multiple robots scenario. Each robot has its own ORBSLAMM system running which provides a local map and

a keyframe database to the multi-mapper. The multi-mapper tries to merge maps into a global map that can be used by

a mission control center to control the position and distribution of the robots.

https://doi.org/10.1371/journal.pone.0195878.g008
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information. The second is the KITTI dataset [17], which was used to test the amount of pre-

served information compared to the location where tracking is lost. Evaluation against ground

truth is presented using ATE (Absolute Trajectory Error). A comparison between the perfor-

mance of ORB-SLAM [5], PTAM [4], LSD_SLAM [10], RGBD_SLAM [9] and the proposed

system is reported. Some sequences in the KITTI dataset [17], which have loop closures, were

modified by adding one blank frame to imitate a corrupted or occluded frame. The system

works in real time and at the recorded video frame-rate speed of each dataset. The reported

results are the average of several successful tests that were run on a Dell-Precision-M3800

(Intel Core i7-4702HQ CPU @ 2.2GHz x 8 cores with 16 GB RAM) workstation.

8.1 TUM’s RGB-D benchmark [19]

This Dataset contains 39 sequences that were recorded in two environments, an office and an

industrial hall. All sequences were captured using a hand-held Kinect sensor, except for four

sequences, where the Kinect was mounted on a Pioneer 3 robot. The images have a resolution

of (640 x 480) and were acquired at 30 fps. The sequences differ in camera motion patterns

and speed, the number of loop closures and whether the environment contains static or mov-

ing objects. The ground truth trajectories were obtained using eight motion capture cameras

with 100 fps.

The most interesting sequence in this dataset is freiburg2_large_with_loop (Fig 9) because in

the middle of the trajectory a wall (no texture) is observed which causes the loss of tracking.

After passing this wall the environment returns to have enough features for a successful track-

ing. Later the camera closes the loop by returning to the starting point. However, the conven-

tional mono-map SLAM systems, as in ORB-SLAM, fail to map the portion between tracking

loss and loop closing, despite its richness in trackable features. This sequence was one of the

main motivations to work on ORBSLAMM. In Fig 9, the portion in the rectangle is the second

map M1 which is successfully transformed to M0 coordinates after the loop closure.

In a similar case, the sequence of freiburg2_360_kidnap (Fig 10) where the camera is moved

in a circular trajectory and in the middle of its movement the camera is covered for some time

(kidnapped). This causes the tracking loss and, subsequently, the loss of all information until

Fig 9. Comparison between ORBSLAMM and ORB-SLAM on the sequence freiburg2_large_with_loop without

alignment or scale correction. The portion of trajectory shown in rectangle (Map M1) is completely missed in ORB-

SLAM because of the relocalization approach. The portion in the circle is missing in the ground-truth due to a limited

number of motion capture cameras. The straight line is where tracking is lost due to a low number of features (wall).

The triangles mark the beginning of the wall and the tracking-loss. The square in ORB-SLAM marks the relocalization,

and the one in ORBSLAMM marks the loop closure and similarity transformation fromM1 to M0.

https://doi.org/10.1371/journal.pone.0195878.g009

SLAMM

PLOS ONE | https://doi.org/10.1371/journal.pone.0195878 April 27, 2018 12 / 22

https://doi.org/10.1371/journal.pone.0195878.g009
https://doi.org/10.1371/journal.pone.0195878


the camera returns to its starting point (closes the loop) where the relocalization retrieves the

camera pose to continue mapping and tracking. However, and as reported in [5], ORB-SLAM

has worse RMSE than PTAM [4] and that is because relocalization does not correct the drift.

On the other hand, both fail to retrieve the information between tracking-loss and loop clo-

sure. Figs 9 and 10 show the superior results of ORBSLAMM over ORB-SLAM in terms of

information preservation. In Fig 10, the difference in the beginning of the trajectory (Trajecto-

ries start at 0) is because ORBSLAMM initializes faster and therefore it registers more informa-

tion, and also because it performs bundle adjustment after loop closure. S2 Video shows the

difference in action. S2 Fig shows the comparison against ground-truth after alignment and

scale correction.

Table 1 contains the mean results of 5 successful experiments due to the fact that ORB-

SLAM has a frequent inconsistency in initialization. For instance, in the experiment

Fig 10. Comparison between ORBSLAMM and ORB-SLAM on the freiburg2_360_kidnap sequence without

alignment or scale correction. The triangle marks the moment of the kidnap. The circle marks the first keyframe in

the second map M1 of ORBSLAMM, transformed to map M0’s world coordinates after the loop closure. The square

marks the relocalization keyframe of ORB-SLAM. Ground truth trajectory is shown for reference on the accuracy and

data preservation of ORBSLAMM.

https://doi.org/10.1371/journal.pone.0195878.g010

Table 1. Comparison between ORBSLAMM and ORB-SLAM in a single robot scenario in TUM RGB-D benchmark [19].

ORBSLAMM ORB-SLAM

Sequence Trade-off RMSE nKFs TTI Trade-off RMSE nKFs TTI

fr2_360_kidnap 0.09 6.06 64(64) 1.67 0.09 3.12 33(33) 2.38

fr2_large_with_loop 0.07 5.4 272(75) 2.57 0.05 1.9 210(34) 11.55

fr3_nostr_tex_far 0.06 2.12 33(32) 2.5 x x x x

fr3_nostr_tex_near 0.02 1.35 62(61) 3.09 0.02 1.35 62(61) 3.07

fr3_walking_xyz 0.03 1.20 32 (32) 5.77 0.04 1.4 30 (30) 15.13

fr3_walking_halfsph 0.05 2.24 43(43) 9.66 0.038 1.7 44(44) 13.39

fr1_xyz 0.02 0.85 31(31) 0.41 0.04 1.12 31(29) 7.53

fr1_floor 0.01 1.81 133(128) 1.04 x x x x

fr1_desk 0.02 2.11 80(80) 1.5 0.02 1.62 67(67) 4.5

fr2_desk 0.00 0.69 163(124) 2.10 0.00 0.92 164(125) 5.6

RMSE is the ATE (Absolute Trajectory Error in cm), nKFs is the number of keyframes and TTI is the Time To Initialize (in seconds), Trade-off is RMSE
nKFs . The number of

keyframes between brackets are the ones matched with the ground truth using the ‘evaluate_ate_scale’ tool which is an upgrade of the ‘evaluate_ate’ tool provided by the

benchmark. It aligns trajectory with ground-truth using a similarity transformation based on the method of Horn [22]

https://doi.org/10.1371/journal.pone.0195878.t001
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fr3_walking_xyz, it took 10 runs to get 5 initializations and one of them has a wrong planar

with a mean-time to initialize equals to 15.85 seconds. While in ORBSLAMM, using the funda-

mental matrix only, the first 5 runs were successful with correct initialization and the mean-

time to initialize is 5.77 seconds. Note that, generally, the number of keyframes can not be

used to measure the amount of information as ORB-SLAM (and ORBSLAMM) has a culling

algorithm that removes redundant Keyframes which do not hold new information (as in

sequences fr2_desk and fr3_walking_halfsphere). However, since it is the same algorithm in

both systems, the additional keyframes in ORBSLAMM (as in sequences fr2_360_kidnap and

fr2_large_with_loop) are coming from the faster initialization and the data registered after

tracking loss, therefore, they hold new information as clearly visible in Figs 9 and 10. The dif-

ference between number of keyframes and the matched ones in fr2_large_with_loop is because

the ground-truth information is available only for the beginning and end of the trajectory. The

trade-off is calculated by dividing the error by the number of keyframes. It shows that ORB-

SLAMM preserves more information without affecting the accuracy. Fig 11 complements

Table 1 by comparing the mean and standard deviation of our approach against ORB-SLAM

in the sequences that both run successfully.

We also ran the comparison tests on sequences sit_halfsph, sit_xyz, str_tex_near, str_tex_far
but the results were similar in both systems. However, in sit_halfsph ORB-SLAM tends to ini-

tialize a corrupted planar, while ORBSLAMM always initializes correctly.

In addition to ORB-SLAM [5], we used this Benchmark to compare our work with other

state-of-the-art systems, namely, PTAM [4], LSD_SLAM [10] and RGBD_SLAM [9]. In

Table 2 we report the RMSE results of the absolute translation error of these tests. We built on

the information reported in Table 3 (of [5], page 11). We added an extra sequence (fr2_large_
with_loop). We also added the results of RGBD_SLAM on the fr3 dataset and updated the

results of some sequences where our tests showed different values than the ones reported in

the aforementioned table. We ran the tests using the source code of PTAM and ORB-SLAM,

and the ROS implementation of LSD_SLAM and RGBD_SLAM. We found that LSD_SLAM

performs poorly in initializing the system and it, along with PTAM, fail to relocalize in both

fr2_360_kidnap and fr2_large_with_loop sequences. On the other hand, RGBD_SLAM per-

formed well on all sequences, retrieving a rich representation of the environment, however,

its accuracy was lower than the one of the sparse based approaches and ran much slower.

Although RGBD_SLAM uses the depth information to retrieve the true scale, however, we also

Fig 11. Comparison of absolute translation error’s mean and standard deviation. Comparing the mean and

standard deviation of the absolute translation error between our approach and ORB-SLAM using TUM-RGBD

benchmark [19]. fr1_floor and fr3_nostr_tex_far sequences are not reported because ORB-SLAM fails to initialize.

RMSE and other comparison information are reported in Table 1.

https://doi.org/10.1371/journal.pone.0195878.g011
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reported its results after performing 7DoF alignment with ground-truth in a similar way to the

results reported by other solutions.

8.1.1 Multi-robots. In the multi-robots scenario, we used two threads to imitate two

robots. We provided each thread with half of the sequence, then we created the multi-mapper

thread and linked both robots (threads) to it. After that, we triggered all seven threads (3 for

Robot-1, 3 for Robot-2 and the multi-mapper). We ran the experiments on three sequences of

the dataset that contain a loop closure. Table 3 shows the comparison results between ORB-

SLAMM and ORB-SLAM. ORBSLAMM with two robots takes half the time taken by ORB-

SLAM to finish each sequence while retrieving double the amount of information with a nota-

bly better trade-off in terms of accuracy relative to preserved information.

Fig 12 shows the result of running two threads on fr2_large_with_loop sequence, these two

‘robots’ were run simultaneously with no prior knowledge of their relative initial poses. Each

one was given half of the sequence’s images. The mean tracking time is 38 milliseconds per

frame, and total time to finish the sequence is 2 minutes and 44 seconds (164.075 seconds)

including the time required to load the ORB vocabulary and 125.289 seconds excluding vocab-

ulary loading time, compared to ORB-SLAM’s 225.916 seconds and 216.113 seconds respec-

tively. This map contains 365 keyframes compared to 210 keyframes in ORB-SLAM due to its

inability to map the thick-blue portion with its relocalization approach.

Table 2. Comparison of RMSE of the absolute translation error in a single robot scenario among state-of-the-art systems using TUM RGB-D benchmark [19].

ORBSLAMM ORB-SLAM PTAM LSD_SLAM RGBD_SLAM

fr2_360_kidnap 6.06 3.12 2.63 X 47.95(44.95)

fr2_large_with_loop 5.4 1.9 X X 42.12(32.02)

fr3_nostr_tex_far 2.12 X 4.92 18.31 7.03(5.50)

fr3_nostr_tex_near 1.35 1.35 2.74 7.54 4.73(2.26)

fr3_walking_xyz 1.2 1.4 X 12.44 2.97(2.77)

fr3_walking_halfsph 2.24 1.7 X X 4.82(4.82)

fr1_xyz 0.85 1.12 1.15 9.00 1.34(1.34)

fr1_floor 1.81 X X 38.07 3.51(3.51)

fr1_desk 2.11 1.62 X 10.65 2.58(2.52)

fr2_desk 0.69 0.92 X 4.57 9.5(3.94)

RMSE values are in (cm). The values of ORBSLAMM, ORB-SLAM, PTAM and LSD_SLAM are after performing 7DoF alignment with the ground-truth. X means the

system failed in initialization or lost tracking early in the sequence. The values of RGBD_SLAM is after applying 6DoF alignment with ground-truth while the numbers

between brackets are after applying 7DoF alignment. The larger difference in RMSE between our approach and ORB-SLAM in sequences fr2_Large_with_loop and

fr2_360_kidnap is due to the extra information retrieved by our system (Refer to Table 1).

https://doi.org/10.1371/journal.pone.0195878.t002

Table 3. Comparison between ORB-SLAM and ORBSLAMM in a multi-robot scenario.

ORBSLAMM ORB-SLAM

Sequence Trade-off RMSE nKFs TTF Trade-off RMSE nKFs TTF

fr2_large_with_loop 0.088 6.76 315(76) 125.28 0.192 6.56 210(34) 216.11

fr2_360_kidnap 0.070 4.42 63(63) 30.92 0.097 3.21 33(33) 69.27

fr3_nostr_tex_near 0.026 1.66 62(62) 37.04 0.026 1.60 62(61) 73.56

RMSE is the ATE (in cm), nKFS is the number of keyframes and TTF is the Time To Finish the sequence (in seconds) excluding loading time of ORB vocabulary,

Trade-off is RMSE
nKFs , in TUM RGB-D benchmark [19]. The number of keyframes between brackets is the one matched with the ground truth using the evaluate_ate tool

provided by the benchmark

https://doi.org/10.1371/journal.pone.0195878.t003
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8.2 KIT’s KITTI dataset [17]

The KITTI odometry dataset contains 22 sequences, 11 of them are available with ground

truth for training/tuning and the other 11 are used for evaluation. These sequences were

recorded using a car equipped with multiple sensors. The car was driven in different environ-

ments like inside a city, on the highway and in rural areas. Besides environment, these

sequences differ in the length of the trajectory, the speed of driving, the number of static and

moving objects (e.g. cars, pedestrians) and the number of loop closures. The images were

recorded at 10 fps with a resolution of (1226 x 370). The ground-truth trajectories were

obtained using a Velodyne laser scanner and a GPS.

ORB-SLAM performs well in the KITTI Dataset, and specifically in the sequences that have

loop closures. Aside from the sequences 01 and 08, the trajectory error in sequences (00 to 10)

is around 1% of the trajectory’s dimensions. Therefore, in each sequence that has a loop clo-

sure we added a single blank frame to imitate occlusion or camera malfunction. Due to fast

movement of the car and low frame rate of 10 fps, one blank-frame was sufficient to cause

tracking-loss. To test the accuracy and data preservation of our system against conventional

mono-map SLAM systems we changed the position of this blank frame to be at (10%, 50% and

Fig 12. ORBSLAMM in multi-robot scenario while running on fr2_large_with_loop sequence. Two robots (threads)

were run simultaneously with no prior knowledge of their relative poses. The thin-blue is the trajectory of Robot-1

(M0) and the thick-blue is the trajectory of Robot-2 (M1) after closing the loop and performing similarity

transformation to M0 world-coordinates. The green square is the current keyframe Kc in M1. Note that all the features

fromM0 are now visible to Kc (in red color). The line betweenM0 and M1 with no features is where the wall is located.

The green lines link keyframes in the co-visibility graph.

https://doi.org/10.1371/journal.pone.0195878.g012
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90%) of the trajectory’s total frames number. Table 4 shows the modified sequences and the

frame that was replaced by the blank-frame in each sequence and at each percentage. Table 5

shows the results in comparison with the performance of ORB-SLAM. S3–S8 Figs, in support-

ing information, show the results graphically.

In sequence 05, the corrupted frames at 50% and 90% (001380 and 002485 respectively)

come right after the first and second loop closures (Fig 13 shows the locations of the loops),

therefore ORB-SLAM is able to relocalize immediately. The lower number of keyframes is due

to the culling algorithm, so no information is missing. If we change the location of the cor-

rupted frame to be before the second loop closure (frame 002420) the nKFs in ORB-SLAM,

slightly, drops to 971 but the RMSE rises to 15.55 m while in ORBSLAMM the nKFs remains

high at 1017 and the error rises to 13.37 m.

8.2.1 Multi-robots. We ran two threads, each mapping a different sequence (00 and 07)

simultaneously. Even though the sequence-07 was recorded on 30th of September 2011 and

the sequence-00 was recorded 3 days later, on 3rd of October 2011, and despite the fact that

each sequence has different calibration settings, the multi-mapper detected the overlapping

portion and merged both sequences in one map. The total time to get the full map of 1934 key-

frames is 494.2 seconds, with RMSE of 7.13(m) which is around 1% of trajectory’s dimensions

(564m x 580m). Fig 14 shows the resulted trajectory against the ground-truth of both

sequences. The ground truth of Sequence 07 was translated to its correct location relative to

sequence 00. The timestamps of sequence 07’s ground truth and Map1’s keyframes were made

continuous to the ones in sequence 00 to enable running the comparison program.

Table 4. The modified KITTI dataset.

Sequence Frames # 10% 50% 90%

00 4541 000454 002270 004086

02 4661 000466 002330 004215

05 2761 000276 001380 002485

06 1101 000110 000550 000991

07 1101 000110 000550 000991

09 1591 000159 000795 001432

Frames# is the total number of frames in the sequence. 10%, 50% and 90%, show the frame that was replaced by the blank-frame to induce tracking loss.

https://doi.org/10.1371/journal.pone.0195878.t004

Table 5. Comparison between ORB-SLAM and ORBSLAMM Results on the different sequences of the Modified KITTI dataset.

ORBSLAMM ORB-SLAM

Seq. 10% 50% 90% 10% 50% 90%

nKFs RMSE nKFs RMSE nKFs RMSE nKFs RMSE nKFs RMSE nKFs RMSE

00 1618 4.93 1641 7.41 1615 9.14 1346 5.84 1574 5.38 1529 7.61

02 1964 19.48 2251 23.43 2227 35.8 245 1.11 1306 28.37 1867 36.68

05 1007 5.33 979 4.3 1015 5.54 231 4.01 958 4.66 973 5.59

06 427 13.59 399 35.42 425 12.19 147 0.35 273 30.14 420 17.73

07 400 12.22 414 19.49 420 1.72 51 0.27 218 8.41 377 18.79

09 688 37.95 752 36.74 743 53.67 82 0.63 381 3.78 675 44.77

RMSE is the Absolute Trajectory Error in meters (m), nKFs is the number of keyframes. The 10%, 50% and 90% are the locations of the corrupted frame (blank-frame)

relative to sequence’s total number of frames (refer to Table 4).

https://doi.org/10.1371/journal.pone.0195878.t005
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9 Conclusion and discussion

We have presented the concept of Simultaneous Localization and Multi-Mapping (SLAMM)

where a new map is generated when tracking fails, later these maps are merged when they

intersect in a loop closure event. We showed the results of the proposed system on public

Fig 14. ORBSLAMM running on KITTI sequences 00 and 07 simultaneously. The ground truth of sequence 07 was

translated to the correct location relative to sequence 00. ORBSLAMM successfully merged both sequences in one map

and in real-time. It took 494.2 seconds to get the final map which contains 1934 keyframes, with translation error of

1% of trajectory’s dimensions.

https://doi.org/10.1371/journal.pone.0195878.g014

Fig 13. KITTI sequence 05 loops. The circle marks the first loop closure. The triangle marks the second and the

square marks the third loop closure. The unique red arrow marks the beginning of the sequence. The black arrows

show the direction of movement.

https://doi.org/10.1371/journal.pone.0195878.g013
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datasets in indoor and outdoor sequences with hand-held and car-mounted cameras. We also

showed the ability of our system to map and merge multiple large scale sequences (00 and 07)

from the KITTI dataset [17] that share a portion of the trajectory, in real-time, despite the dif-

ference in recording days and camera calibrations. This was possible, thanks to the excellent

work of Mur-Artal et al. on ORB-SLAM [5] which we used as a base SLAM system and hence

we named this solution as ORBSLAMM. We also presented the comparison results between

the proposed system and ORB-SLAM, in terms of accuracy and information preservation, on

a modified version of the KITTI dataset where a blank-frame was added at different locations

(10%, 50% and 90% of the trajectory’s size) to imitate occlusion or sensor malfunction. We

also presented the flexibility of our system to handle maps generated by single robot due to

tracking failures or by multiple robots by dividing the sequences among multiple threads

which reduces the time required to finish the sequence without compromising the accuracy.

In this work, we argued that relocalization approach causes information loss and reduces

map’s accuracy, and we proved this argument using the modified KITTI dataset and TUM

RGB-D benchmark [19] specifically in the sequences fr2_large_with_loop and fr2_360_kidnap.

We also showed that using only the fundamental matrix to initialize the map is sufficient and

enhances the speed and consistency of operation. One case that relocalization can outperform

the proposed system is when the robot is kidnapped to a previously visited location as the PnP

(Perspective n Points) approach will be able to retrieve the pose faster than our solution that

needs to initialize the map first (perform bootstrapping). Therefore, one may argue in favor of

keeping the relocalization running until a new map is initialized.

The reinitialization and multi-mapping approach is able to recover from failures whether in

map’s initialization or tracking; leading to information preservation by maximizing the recon-

structed portion of the environment.

9.1 Future work

In the proposed system we use the camera as the only sensor to observe and reconstruct the

environment, therefore, maps’ intersection is necessary to merge them as we do not know

their relative positions a priori. If maps do not intersect they will remain disconnected, this

limitation in a single robot scenario (maps generated at tracking failure events) can be solved

by exploiting the Inertial Measurement Unit (IMU) of the robot. Therefore, a work on iORB-

SLAMM (inertial ORBSLAMM) is ongoing and will enable connecting the multiple maps gen-

erated at tracking-loss events without the need for loop closures (Maps’ intersections).

Supporting information

S1 Link. https://github.com/raulmur/ORB_SLAM2.

(TXT)

S1 Video. ORBSLAMM vs. ORB-SLAM in fr2_large_with_loop with wrong initialization.

Please note that the corrupted planar initialization is caused by using the dual model initializa-

tion of ORB-SLAM (i.e Homography and Fundamental Matrix models). ORBSLAMM uses

only the fundamental matrix model and thus, does not suffer from this error. However, we

enabled the Homography model to initiate this error and demonstrate the robustness of our

approach, in terms of recovery from failure, in comparison to the state-of-the-art.

(MP4)

S2 Video. ORBSLAMM vs. ORB-SLAM in fr2_360_kidnap.

(MP4)
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S1 Fig. ORBSLAMM system flowchart.

(TIF)

S2 Fig. ORBSLAMM vs. ORB-SLAM in TUM RGB-D. Comparison against ground-truth

after alignment and scale correction. The upper row is sequence fr2_360_kidnap and the lower

row is sequence fr2_large_with_loop. The left column is for ORBSLAMM while the right col-

umn is for ORB-SLAM.

(TIF)

S3 Fig. ORBSLAMM vs. ORB-SLAM in the modified KITTI dataset—Sequence 00. The

first row is for error at 10%, the second row is for error at 50% and the third row is for error at

90%. The left column is for ORBSLAMM and the right column is for ORB-SLAM.

(TIF)

S4 Fig. ORBSLAMM vs. ORB-SLAM in the modified KITTI dataset—Sequence 02. The

first row is for error at 10%, the second row is for error at 50% and the third row is for error at

90%. The left column is for ORBSLAMM and the right column is for ORB-SLAM.

(TIF)

S5 Fig. ORBSLAMM vs. ORB-SLAM in the modified KITTI dataset—Sequence 05. The

first row is for error at 10%, the second row is for error at 50% and the third row is for error at

90%. The left column is for ORBSLAMM and the right column is for ORB-SLAM.

(TIF)

S6 Fig. ORBSLAMM vs. ORB-SLAM in the modified KITTI dataset—Sequence 06. The

first row is for error at 10%, the second row is for error at 50% and the third row is for error at

90%. The left column is for ORBSLAMM and the right column is for ORB-SLAM.

(TIF)

S7 Fig. ORBSLAMM vs. ORB-SLAM in the modified KITTI dataset—Sequence 07. The

first row is for error at 10%, the second row is for error at 50% and the third row is for error at

90%. The left column is for ORBSLAMM and the right column is for ORB-SLAM.

(TIF)

S8 Fig. ORBSLAMM vs. ORB-SLAM in the modified KITTI dataset—Sequence 09. The

first row is for error at 10%, the second row is for error at 50% and the third row is for error at

90%. The left column is for ORBSLAMM and the right column is for ORB-SLAM.

(TIF)
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