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Background: Long noncoding RNA (lncRNA) have been implicated in the etiology of alcohol use.
Since lncRNA provide another layer of complexity to the transcriptome, assessing their expression in
the brain is the first critical step toward understanding lncRNA functions in alcohol use and addiction.
Thus, we sought to profile lncRNA expression in the nucleus accumbens (NAc) in a large postmortem
alcohol brain sample.

Methods: LncRNA and protein-coding gene (PCG) expressions in the NAc from 41 subjects with
alcohol dependence (AD) and 41 controls were assessed via a regression model. Weighted gene coex-
pression network analysis was used to identify lncRNA and PCG networks (i.e., modules) significantly
correlated with AD. Within the significant modules, key network genes (i.e., hubs) were also identified.
The lncRNA and PCG hubs were correlated via Pearson correlations to elucidate the potential biologi-
cal functions of lncRNA. The lncRNA and PCG hubs were further integrated with GWAS data to
identify expression quantitative trait loci (eQTL).

Results: At Bonferroni adj. p-value ≤ 0.05, we identified 19 lncRNA and 5 PCG significant mod-
ules, which were enriched for neuronal and immune-related processes. In these modules, we further
identified 86 and 315 PCG and lncRNA hubs, respectively. At false discovery rate (FDR) of 10%, the
correlation analyses between the lncRNA and PCG hubs revealed 3,125 positive and 1,860 negative
correlations. Integration of hubs with genotype data identified 243 eQTLs affecting the expression of 39
and 204 PCG and lncRNA hubs, respectively.

Conclusions: Our study identified lncRNA and gene networks significantly associated with AD in
the NAc, coordinated lncRNA and mRNA coexpression changes, highlighting potentially regulatory
functions for the lncRNA, and our genetic (cis-eQTL) analysis provides novel insights into the etiologi-
cal mechanisms of AD.
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accumbens.

ALCOHOL USE DISORDER (AUD) is a chronic and
debilitating disease, with an estimated heritability of

around 50% (Verhulst et al., 2015). Previous postmortem

brain expression studies have shown that chronic alcohol
consumption leads to broad transcriptional changes in differ-
ent brain regions (Warden and Mayfield, 2017). Gene
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expression studies in the prefrontal cortex have identified
genes encoding to GABAA receptor subunits or related to
mitochondrial function (Buckley et al., 2000; Fan et al.,
1999) as well as in functions related to myelination, cell
cycling, oxidative stress, and transcription (Farris et al.,
2015; Flatscher-Bader et al., 2005, 2006; Iwamoto et al.,
2004; Kapoor et al., 2019; Lewohl et al., 2000; Mayfield
et al., 2002; Ponomarev et al., 2012; Rao et al., 2019; Suther-
land et al., 2014; Zhang et al., 2014). Expression studies in
nucleus accumbens (NAc) and ventral tegmental area have
also revealed gene expression changes related to cell architec-
ture, signaling, vesicle formation, and synaptic transmission
(Flatscher-Bader et al., 2006, 2008, 2010; Mamdani et al.,
2015; Rao et al., 2019). These findings suggest that there are
region-specific susceptibilities and adaptations to chronic
alcohol consumption in the brain that are likely to have a dis-
tinct effect on the behavioral phenotypes comprising AUD
(Flatscher-Bader et al., 2010).
Evaluation of the regulatory mechanisms underlying

genetic differentiation is necessary for a better understanding
of the neurobiology of alcohol addiction (Ron and Messing,
2013). The recent emergence of Long noncoding RNA
(lncRNA) has provided an additional layer of transcriptional
and translational control, highlighting potentially important
neurobiological mechanisms of AUD that could be missed if
only the protein-coding genome was studied. LncRNA are
longer than 200 base pairs with limited or no protein-coding
potential (Jarroux et al., 2017), and while functionally not
fully characterized yet, they have been shown to participate
in chromatin remodeling (Han and Chang, 2015), transcrip-
tional and posttranscriptional regulation (Clark and Black-
shaw, 2014), and in sequestering miRNA (Du et al., 2016;
Shan et al., 2018). LncRNA have also been implicated in the
plasticity of neuronal circuity (Wang et al., 2017) and neu-
rodegenerative and neuropsychiatric disorders, including
substance abuse and alcohol dependence (AD; Bohnsack
et al., 2019; Zuo et al., 2016). The potential role of lncRNA
in the etiology of AUD is further supported by several recent
alcohol-related genomewide association scans (GWAS;
Adkins et al., 2017; Xu et al., 2015). Due to the complex nat-
ure of lncRNA functions, the relationship between lncRNA
and alcohol consumption is largely unknown; while miRNA
roles in the control of gene expression and functions in the
brains of subjects with AUD have been reported (Li et al.,
2013; Mamdani et al., 2015; Mizuo et al., 2012; Pietrzy-
kowski et al., 2008; Yadav et al., 2011), to our knowledge the
interactions between lncRNA and protein-coding gene
(PCG) are still understudied.
Gene expression alone cannot explain the complex etiol-

ogy of AUD, and assessing lncRNA and PCG expression in
the context of available genetic data is necessary to discern
the genetic basis of AUD susceptibility. This approach mod-
els associations between genetic variants and gene expression
as quantitative traits, that is, expression quantitative trait loci
(eQTL; Farris et al., 2010; Li, 2013; Nica and Dermitzakis,
2013). EQTLs can help discover unknown AUD risk loci or

offer specific, testable, hypotheses for the genetic impact of
polymorphisms associated with AUD (Hindorff et al., 2009;
Liu, 2011; Shastry, 2009). Linkage disequilibrium (LD) of
eQTLs with genetic variants implicated in AUD can further
establish a biological mechanism for disease-associated vari-
ants with no apparent functions; there is empirical evidence
suggesting that eQTLs are overrepresented among GWAS
signals (Nica et al., 2010; Nicolae et al., 2010).
We hypothesize that lncRNA are involved in the neu-

ropathology of AUD and that, on a molecular level, this
involvement is manifested by dysregulated patterns of expres-
sion between cases with AD and controls. To further eluci-
date the lncRNA disease functions in subjects with AD, we
performed a weighted gene coexpression network analysis
(WGCNA) that led to the identification of lncRNA and PCG
modules significantly correlated with AD. Key genes from
these lncRNA and PCG modules (i.e., “hubs”) were then
integrated to identify a set of interacting lncRNA and PCG.
Since lncRNA are not yet annotated, we used system
approaches to assign biological functions for the PCG hubs
interacting with the lncRNA hubs. By integrating our geno-
mewide SNP and expression data, we also identified eQTL
affecting the expression of lncRNA and PCG in NAc. Thus,
the overall goals of this study were first to profile the lncRNA
and PCG expressions in NAc, identify protein-coding and
lncRNA networks, and finally test whether these are under
the control of specific genetic elements. To our knowledge,
this is the only study to comprehensively assess the lncRNA
expression inNAc between subjects with AD and controls.

MATERIALS ANDMETHODS

Postmortem Tissue

Brain tissue from 41 cases with AD and 41 controls was received
from the Australian Brain Donor Program, New South Wales Tis-
sue Resource Centre, which is supported by The University of Syd-
ney, National Health and Medical Research Council of Australia,
Schizophrenia Research Institute, National Institute of Alcohol
Abuse and Alcoholism, and the New South Wales Department of
Health (http://sydney.edu.au/medicine/pathology/trc/; Supplemen-
tal Methods; Table S1).

RNA Isolation and Sample Selection

Total RNA was isolated from 50 mg of frozen tissue from NAc
using the mirVana-PARIS kit (Thermo Fisher, Carlsbad, CA), fol-
lowing manufacturer’s protocols. RNA concentration was mea-
sured using the Quant-iT Broad Range RNA Assay kit (Life
Technologies), and the RNA integrity number (RIN) was measured
on the Agilent 2100 Bioanalyzer (Agilent Technologies, Inc., Santa
Clara, CA).

Expression Arrays and Data Normalization

The RNA samples were assayed using the Arraystar Human
lncRNA Array v3.0 (Rockville, MD) that is designed to profile both
30,586 lncRNA and 26,109 PCG. Linear Models for Microarray
Data (limma) v3.42 (Ritchie et al., 2015) package in R environment
(v3.6.1) was used to log2 transform, background correct
(method = “normexp”), and normalize (method = “quantile”) each
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microarray. Control probes were removed prior to downstream anal-
ysis, leaving 61,464 probes remaining. As each probe recognizes a
specific and unique transcript, probes were used in all subsequent
analyses. The final number of probes that were used in the subsequent
analyses was 61,464. The efficiency of batch effect removal and over-
all array quality were assessed using principal components analysis
on the expression values in which each array is plotted along the first
3 principal components (PCs) to identify potential outliers. Of the 82
samples, 9 samples were excluded due to low RINs (i.e., RINs ≤ 4),
leaving 73 samples for the microarray run. Of the 73 samples run on
the array, 8 samples (5 cases and 3 controls) did not load on 2 of the
first 3 PCs andwere removed from the subsequent analysis. Finally, 2
subjects lacked corresponding genotypic data and were excluded
leaving a final sample of 63 subjects for all subsequent analyses.

Statistical Analyses

Differential Expression Analysis. Differential expression analysis
was performed by limma using ordinary least square. Number
Cruncher Statistical Software (NCSS) v12 was used to extract the
first 3 PCs for all technical (e.g., Batch, RIN, PMI, pH) and biologi-
cal (e.g., sex, smoking, age, brain weight, hemisphere, neuropathol-
ogy) confounds, which were then used as covariates in the
subsequent analysis (Mamdani et al., 2015). Microarray reliability
was validated by assessing the expression of 5 genes at the Arraystar
facilities using quantitative PCR (qPCR). The assessed genes
showed a high mean correlation (Pearson r = 0.88 [SD � 0.049])
between the 2 platforms (Supplemental Methods and Table S2).

WGCNA. WGCNA has been heavily applied to cancer pheno-
types, which are associated with dramatic changes to the transcrip-
tome (Gibb et al., 2011; Peng et al., 2015; Uhlen et al., 2016). Given
that the effect sizes for neuropsychiatric and addiction disorders are
substantially lower, preselection of genes to be included inWGCNA
is necessary for the identification of propitious targets without vio-
lating the assumption of scale-free topology. Thus, a relaxed nomi-
nal significance for differentially expressed genes (i.e., p-
value ≤ 0.10) was chosen to: (i) include genes with smaller effect
sizes, albeit true positive signals, (ii) exclude genes with low disease
variance, and (iii) provide a sufficient number of genes for the net-
work analysis, which was performed separately on the differentially
expressed lncRNA and PCG using the WGCNA v1.68 package in
R environment v3.6.1. While WGCNA allows for the inclusion of
additional variables, it does not correct for their effects; therefore,
the gene networks were built using the residuals from the regression
model, that is, fitting a regression model with all potential con-
founds, except disease status. WGCNA relies on pairwise Pearson
correlations to generate a signed similarity matrix, selecting for posi-
tive correlations only. The signed similarity matrix of the lncRNA
and PCG expression data was raised to the lowest power (b = 5 and
b = 10, respectively) that approximated a scale-free network topol-
ogy (R2 > 0.85), to generate an adjacency matrix (Fig. S1A,B). A
topological overlap measure (TOM) was calculated to assess tran-
script interconnectedness. A dissimilarity measure was derived from
TOM and was subsequently used for average linkage hierarchical
clustering. The clustered genes were defined into modules using the
“tree” method with a minimum module size of 25 genes and a mini-
mummodule merge height of 0.8.

Following module definition, the first principal component of
each module—the module eigengene (ME)—was calculated as a
synthetic gene representing the expression profile of all genes within
a given module. With the exception of the gray module, which con-
tains genes poorly defined by other modules, modules are arbitrary
named after a conventional color scheme. After naming, modules
are correlated to AD case status, matching demographics, and rele-
vant covariates. Statistical significance was assessed at Bonferroni
adj. p ≤ 0.05 (corrected for the number of tested modules).

As previously outlined, for the identification of genes with a high
module membership (MM) and strong phenotype association (i.e.,
the hub genes), we applied 2 selection criteria: (i) genes with the high
intramodular connectivity (r2 ≥ 0.7) and (ii) significantly correlated
with AD (i.e., p-value ≤ 0.05; Mamdani et al., 2015; Ponomarev
et al., 2012).

Weighted Key Driver Analysis. As lncRNA genes can act
locally, near their transcription site, and mechanically heterogenous,
there was concern that some lncRNAs would build smaller mod-
ules, which may not be captured by WGCNA (Marchese et al.,
2017). To overcome this limitation, we used the weighted key driver
analysis (WKDA) from the mergeomics v1.14.0 R package (Shu
et al., 2016). WKDA identifies “key drivers,” which are genes whose
local connectivity to neighboring genes of prespecified modules (i.e.,
modules significantly correlated with AD) is greater than what
would be expected by chance. This connectivity score takes into
account the topology and edge weights of a gene to its neighbors,
which was generated by WGCNA as a TOM matrix. As the TOM
matrix topology is complete, the edgefactor parameter was set to 1
to maximize the influence of the edge weights. Key drivers, which
had an FDR of 5%, were identified as hub genes and merged with
those found byWGCNA.

Gene Set Enrichment Analysis. Prior to running the enrichment
analysis, all transcript IDs from the PCG modules significantly cor-
related with AD case status were converted to HUGO Gene
Nomenclature Committee (HGNC; Gray et al., 2013). Our gene
enrichment analysis was based on 2 approaches: (i) a brain-related
enrichment and (ii) enrichment for specific gene ontology terms. In
the brain-related enrichment, we created a curated list derived from
both of WGCNA’s brain-related cell-type lists, PsychENCODE’s
brain cell-type marker genes, and a neural gene set comprised of
physiological and behavioral marker genes (Schrode et al., 2019;
Wang et al., 2018). The significance of the brain-related enrichment
was estimated via a hypergeometric test using WGCNA’s
“userListEnrichment” function with a significant enrichment
declared at FDR of 10%.

To detect a broader enrichment for known biological processes
and pathways, we used the gene set enrichment analysis (GSEA)
software (v4.0.1) from the Broad Institute as previously described
(Hung et al., 2012; Subramanian et al., 2005). Due to the poor
lncRNA annotation, in this analysis, the individual genes from each
of the significant PCG modules only were generated by rank-order-
ing all genes by their MM to each of the significant AD modules.
We derived the a priori gene sets from the Molecular Signatures
Database v7.0 (MSigDB; http://www.broadinstitute.org/gsea/
msigdb) from the Broad Institute. A total of 5,501 gene sets from
the Canonical Pathways subset of the C2: Curated Pathways collec-
tion of MSigDB were assessed. Default parameters were then
applied to give a minimum, and maximum a priori gene set size
between 15 and 500 genes, respectively. The identified enriched
pathways of both approaches were further adjusted for multiple
testing at FDR of 10%.

eQTL Detection. The genotype calls were generated as part of a
larger meta-GWAS study (Adkins et al., 2017) and were integrated
with the lncRNA and PCG hubs expression values to identify
eQTLs for the lncRNA and PCG. To reliably estimate the eQTL
effects, we excluded SNPs with missingness of ≥20% and a minor
allele frequency of ≤10%, thus retaining a final set of 3,494,304
SNPs for the eQTL analysis. As previously outlined and to maintain
power, we focused on using only local, cis-eQTLs (Mamdani et al.,
2015). Specifically, SNPs located 500 kilobase pairs (kbp) upstream
and downstream from the selected lncRNA and PCG hubs (i.e., cis-
eQTL) were extracted and filtered with Plink v1.90 to exclude vari-
ants in LD (R2 ≥ 0.7, window size = 250 kbp, step size = 25 kbp;
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Purcell et al., 2007). EQTL impact on gene expression was detected
by MatrixEQTL software package in R using a linear regression
framework and adjusting for the potential effects of technical and
biological covariates as summarized by the first 3 PCs (Shabalin,
2012). The significant eQTL results were adjusted for multiple test-
ing at FDR of 10%. Visualization of eQTLs and subsequent inte-
gration analysis was conducted utilizing ggplot2 package in R
environment v3.6.1 (Wickham, 2016).

Integration Analyses. To increase the robustness of our integra-
tion analyses, we followed a 2-pronged approach. First, the MEs
from the significant lncRNA and PCG modules were correlated
using Pearson product–moment correlations, and only the signifi-
cant module correlations at FDR of 10%were selected for consider-
ation. In the second round, all individual hubs from the significant
PCG and lncRNA module correlations were extracted and corre-
lated to identify the significant individual mRNA/lncRNA pairs. All
pairs surviving this second round of correction for multiple testing at
an FDRof 10%were then selected for additional series of tests.

RESULTS

Chronic Alcohol Consumption Leads to Generalized Gene
Expression Changes Between Cases and Controls

At the single gene expression analysis (p ≤ 0.10), we identi-
fied a total of 6,469 probes differentially expressed between
AD cases and controls, representing 3,645 lncRNA and 2,725
PCG that compromise 5.9% and 4.4% of the total gene pool
assayed, respectively. Among the differentially expressed
genes, we also identified 99 pseudogenes. The complete list of
significant results from the univariate gene expression analy-
ses is provided in the supplementary table (Table S3).

lncRNA and PCG Show a Disease Relevant Network Pattern

While the gene expression analysis identifies differentially
expressed genes in NAc of subjects with AD, these do not
provide an integrative, systemic view of the interaction
between the lncRNA and mRNA genes. Therefore, to better
understand the higher-order (system biology impact) of the
interactions between lncRNA and PCG, we performed a
WGCNA (Langfelder and Horvath, 2008; Zhang and Hor-
vath, 2005). WGCNA identified 36 lncRNA and 12 mRNA
modules (Fig. 1A,B). In the lncRNA network analysis, we
identified 19 modules (Mbrown, Msienna3, Msteelblue, Mblack,
Mdarkmagenta, Mtan, Mviolet, Mplum1, Mskyblue, Msalmon,
Mlightyellow, Msaddlebrown, Mdarkorange, Mgreen, Mdarkgreen,
Mdarkolivegreen, Mcyan, Morange, and Mgray) significantly corre-
lated with AD at a Bonferroni adj. p ≤ 0.001(Fig. 2), with
Mblack being the largest containing 200 genes. In the PCG
network analysis, we identified 5 modules (Mgray60, Mgreen,
Mred, Mblack, Mgray) significantly correlated with AD at a
Bonferroni adj. p ≤ 0.004 (Fig. 3), with Mblack being the lar-
gest containing 407 genes. In addition to the primary
dichotomous case/control status, we also tested additional
quantitative phenotypes such as the age of initiation of alco-
hol drinking, the amount of daily alcohol consumption, and
years of drinking. We identified only 2 PCG modules (Mgray

andMred) as significantly correlated with the amount of daily
alcohol consumption at a Bonferroni adj. p-value ≤ 0.004.
Full tables with module size, correlations, and p-values for
all PCG and lncRNA modules correlated with AD are pro-
vided in supplementary tables (Tables S4A,B).
To ensure the robustness of our gene coexpression net-

works and reduce the potential influence of outlier samples
on network structure, we used the robust “bootstrapped”
version of WGCNA (rWGNCA). We performed 100 itera-
tions, that is, generated 100 networks after randomly subset-
ting two-third of the total samples, as previously suggested
(Gandal et al., 2018) with the resulting networks then merged
into 1 large, final consensus network. The individual subnet-
works showed reasonably high consistency with the final
lncRNA and mRNA networks (Fig. S2A,B).
In scale-free network topology, “hubs” are the most highly

connected genes (of which there are relatively few among all
the nodes within a network). Hubs were identified by exam-
ining modules that were significantly associated with disease
status and extracting genes with a high MM (MM ≥ 0.70)
and a significant correlation with disease status (p ≤ 0.05).
Among the significant PCG and lncRNA modules, we iden-
tified a total of 86 and 20 hubs, respectively. The smaller
number of detected lncRNA hubs could be due to the lower
expression values that are typical for lncRNA genes, which
may lead to the formation of weaker network structures.
Thus, we applied the wKDA analysis to increase our power
to identify a larger set of lncRNA hubs based on their con-
nectivity to neighboring genes within a module. At FDR of
5%, we identified 295 lncRNA hubs significantly correlated
with AD (p ≤ 0.05), which, in the wKDA analysis, are also
designated as key drivers (Table S5). The 295 lncRNA hubs
were then combined with the initially identified 20 hubs for a
total of 315 lncRNA hubs.

AD Gene Modules Are Enriched in Alcohol-Related Processes

Previous studies have shown that coexpressed genes are
enriched for specific cell types and biologically relevant func-
tions (Guttman and Rinn, 2012; Long et al., 2017; Mamdani
et al., 2015; Marty and Spigelman, 2012). As lncRNA are
poorly annotated for the enrichment analyses, we focused on
the PCG modules significantly associated with AD. The
brain-related enrichment analysis was conducted in
WGCNA using a curated list of brain-related gene markers.
At an FDR of 10%, 3 separate modules (Mblack, Mred, and
Mgreen) showed significant brain-related enrichment
(Table S6). The Mblack module was enriched for microglia,
while theMred module was enriched for gene markers specific
to the Raphe nuclei. TheMgreen module was enriched for cell
attributes such as postsynaptic membrane and glutamatergic
synapse. Using the default parameters in GSEA, at FDR of
10%, we identified 111 a priori gene sets significantly
enriched in the Mblack module and 1 a priori gene set signifi-
cantly enriched in theMgreen module (Table S7). Specifically,
Mblack was enriched for genes up-regulated in basal neuron
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processes (i.e., dendritic maturation) and immune-related
systems (i.e., innate immunity, interferon signaling, etc.).

lncRNA and PCG Show a Complex Pattern of Interactions

Since lncRNA can function as potential molecular “scaf-
folders” (Guttman et al., 2011; Guttman and Rinn, 2012),
that is, by bringing different sets of genes near each other, we
were interested in identifying PCG hubs significantly corre-
lated with lncRNA hubs. Limited studies have shown that
lncRNA can affect gene functions by interfering with the
expression of their specific gene targets (Long et al., 2017).
For maximum power, the MEs from the significant AD
modules were correlated with each other (Fig. S3), and all
hubs within the significantly correlated PCG and lncRNA
modules were extracted. At FDR of 10%, we observed 4,985
correlations, of which the positive (N = 3,125) significantly
exceeded the negative (N = 1,860) correlations (Mann–Whit-
ney U-test p = 2.2E�16). The strongest positive correlation
(Pearson r = 0.95, q = 8.34E�27) was observed between
RP11-23J18.1 in the Msteelblue lncRNA module and IFITM1
in the mRNA Mblack module, while the strongest negative

correlation (Pearson r = 0.80, q = 6.52E�12) was observed
between RP11-356J5.12 in the Mlightyellow lncRNA module
and YBX3 in the mRNA Mblack module. The entire list of
positive and negative lncRNA/PCG hub correlations is pro-
vided in the supplementary table (Table S8A,B).

Genetic Variants Affect lncRNA and PCG Expression in a
Disease-SpecificManner

To understand the underlying genetic mechanisms of AD
risk polymorphisms, we further integrated the lncRNA and
PCG hub expression data from our significant modules with
previously GWAS data collected on the sample (Adkins
et al., 2017). To maintain sufficient power, we focused on
testing cis-eQTLs only. At FDR of 10%, we identified a total
of 150 eQTLs impacting hubs’ expression, with a higher
number of eQTLs for the lncRNA (n = 135) versus PCG
(n = 15) hubs (Table S9A,B). The most significant PCG
eQTL was between Interferon regulatory factor 7 (IRF7)
and rs11246386 (Fig. 4). The most significant lncRNA eQTL
was between AK128400 and rs1669681 (Fig. 5). In a follow-
up analysis, to identify potential disease risk eQTLs, we fur-
ther tested the significant lncRNA and PCG eQTLs for an
interaction (SNP 9 AD) term between genotype and AD
status. A significant genotype/disease interaction for a SNP/
gene pair indicates that the effect of genotype on expression
is significantly different in AD cases versus controls. At FDR
of 10%, we identified 93 eQTL with significant (SNP 9 AD)
interaction terms that mediate the expression of 24 PCG
hubs and 69 lncRNA hubs (Table S10A,B). The most signifi-
cantly interacting PCG eQTL was between FK506 binding
protein 51 (FKBP5) and rs2766532 (Fig. 6A,B), whereas the
most significantly interacting lncRNA eQTL was between
G006838 and rs12142153 (Fig. 7A,B). We further tested for
enrichment of our 243 significant eQTLs among the signifi-
cant GWAS hits of addiction phenotypes via the Cauchy
and Simes test. These are powerful, mutually complement-
ing, tests that compute the p-values to control for type I error
due to background enrichment, and are appropriate for
assessing eQTL enrichment in GWAS significant signals with
either numerous and smaller (i.e., Cauchy) or fewer and lar-
ger (i.e., Simes) effect sizes (Suppl. Methods). We observed
our eQTLs to be significantly enriched for cigarettes per day
[Cauchy; p-value = 0.036, Simes; p-value = 0.047] and smok-
ing initiation [Simes; p-value = 0.031]. We further observed a
marginal significance for smoking cessation [Cauchy; p-
value = 0.072, Simes; p-value = 0.073] and drinks per week
[Cauchy; p-value = 0.099]. Finally, as lncRNA and mRNA
are capable of interacting with each other, we tested whether
any of the significant eQTLs are also capable of modulating
the lncRNA and PCG interaction. We applied this test to the
negatively interacting lncRNA/PCG pairs, and while we
observed nominally significant genotype effects modulating
lncRNA and PCG interactions (Table S11), none of these
achieved statistical significance at FDR of 10%, most likely
due to the limited sample size.

Fig. 1. Gene dendrogram of lncRNA (A) and mRNA (B) merged mod-
ules, defined by the "tree" method, minimum module size of 25 genes, and
minimummodulemerge height of 0.8.
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DISCUSSION

The main goal of this study is to profile the expression pat-
terns of the noncoding and coding transcriptome of NAc in
a large sample of subjects with AD and controls. The NAc is
a central component of the mesocorticolimbic system and is
known to be involved in addictive behaviors (Marty and
Spigelman, 2012; Russo et al., 2010; Tabakoff and Hoffman,
2013). By integrating GWAS data on the sample (Adkins

et al., 2017) with our expression data, we further attempted
to reveal hitherto unknown relationships between lncRNA
and PCG and to assess how genetic variants modulate this
relationship in the brain. In agreement with previous post-
mortem brain expression studies, we identified differentially
expressed PCG, supporting the notion that chronic alcohol
consumption is associated with widespread transcriptomic
changes in the brain. We further identified numerous
lncRNA differentially expressed between AD cases and
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Fig. 2. Module–trait relationships for lncRNA. The residuals of the expression values used to generate the lncRNA module MEs are correlated (Pear-
son) to the dichotomous AD case/control status (Diagnosis) and to quantitative alcohol measures such as daily alcohol consumptions (Alc-Cons), total
amount of drinks (Tot_drinks), and initial age of drinking (Age_began). The lncRNA modules were also correlated to the first 3 PCs to assess for con-
founding. p-values shown are unadjusted for multiple testing. After adjusting for number of modules tested, 19modules (Mbrown,Msienna3,Msteelblue,Mblack,
Mdarkmagenta, Mtan, Mviolet, Mplum1, Mskyblue, Msalmon, Mlightyellow, Msaddlebrown, Mdarkorange, Mgreen, Mdarkgreen, Mdarkolivegreen, Mcyan, Morange, and Mgray) were
significantly correlated with AD case status.
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controls, supporting their role in the neuroadaptation pro-
cesses associated with chronic alcohol consumption. Among
the most significant differentially expressed PCG were serpin
peptidase inhibitor clade A (alpha-1 antiproteinase, antit-
rypsin) member 3 (SERPINA3), interferon-induced trans-
membrane protein 2 and 3 (IFITM2 and IFITM3), solute
carrier family 14 (urea transporter), member 1 (Kidd blood
group; SLC14A1) that were also identified in previous alco-
hol postmortem brain gene expression reports (Lewohl et al.,

2000; McClintick et al., 2013). While not the main topic of
the study, interestingly, we also detected a limited number of
differentially expressed pseudogenes, such as the annexin A2
pseudogenes 2 and 3 (ANXA2P2 and ANXA2P3) and inter-
feron-induced transmembrane protein 4 pseudogene
(IFITM4P) on chromosomes 9, 10, and 6, respectively. Previ-
ous postmortem brain expression studies have shown
ANXA2P2 to be involved in stress response pathways in
chronic alcoholics (McClintick et al., 2013); however, little is

PCG Module−trait relationships
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Fig. 3. Module–trait relationships for PCG. The PCG module MEs are correlated (Pearson) to the dichotomous AD case/control status (Diagnosis)
and to quantitative alcohol measures such as daily alcohol consumptions (Alc-Cons), total amount of drinks (Tot_drinks), and initial age of drinking
(Age_began). The lncRNA modules were also correlated to the first 3 PCs to assess for confounding. p-values shown are unadjusted for multiple testing.
After adjusting for number of modules tested, Mgray60, Mgreen, Mred, Mblack, Mgray are significantly correlated with AD case status (Class) and Mgray and
MEred also with daily alcohol consumption.
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known about the functions of ANXA2P3 and IFITM4P; it
appears that ANXA2P3 is involved in reducing lipid levels in
response to statins (Barber et al., 2010) and chronic obstruc-
tive pulmonary disease (Wilk et al., 2007), while no known
functions were reported for IFITM4P.
A major limitation of the single gene expression analysis

to identify and prioritize a set of genes associated with a
given phenotype is its inability to consider the complex
molecular interactions between such identified genes (Wu
et al., 2013); this is especially relevant in studying the non-
coding transcriptome, which is poorly annotated, with many
lncRNA still of unknown function. To address this limita-
tion, we performed a WGCNA, which allowed us to identify
a set of coregulated PCG and lncRNA. We identified 19
lncRNAmodules and 5 PCGmodules that were significantly
correlated with AD. Among the significantly correlated with
AD status lncRNA and PCGmodules was alsoMgray. Genes
in the gray module are frequently considered as “noise,”
although there are suggestions that this interpretation may
not always be accurate (Saelens et al., 2018). In general,
observations have indicated that the genes in the gray mod-
ule are usually ubiquitously expressed, exhibit oscillating, or
highly variable patterns of expression, or in some cases could
be simply assigned to a wrong module (Greenfest-Allen
et al., 2017). Regardless, a potential explanation for Mgray

being significant in our analyses could be that certain
lncRNA and mRNA loci may impact the neuropathology of
AD in isolation and not as a part of a gene network. Indeed,
other studies have also reported similar observations, where,
despite their unassigned status, genes in Mgray have shown
significant disease associations (Li et al., 2018; Reinhold
et al., 2017). Using the available quantitative measures of
alcohol consumption, we further identified 2 PCG modules
significantly correlated with the amount of daily alcohol con-
sumption. Interestingly, while we observed the same PCG
modules to be significantly correlated with both AD status
and quantitative alcohol phenotype, no such relationship

was revealed for the lncRNA module. This suggests that dif-
ferent sets of lncRNA genes may impact these related, yet
distinct, measures of alcohol-related phenotypes.

Fig. 4. Plot showing the most significant mRNA eQTL between IRF7
and rs11246386. The alternative allele of rs11246386 confers a lower
IRF7 expression.

Fig. 5. Plot showing the most significant lncRNA eQTL between
AK128400and rs1669681. Thealternative allele of rs1669681 confers a lower
AK128400 expression.

Fig. 6. Plot showing the most significant mRNA eQTL between FKBP5
and rs2766532 with (A) and without (B) the group interaction term. The
alternative allele of rs2766532 confers a higher expression of FKBP5 in
controls and a lower expression in cases.
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To further understand the potential regulatory functions
of lncRNA, we performed a series of correlation analyses
between the hub genes identified from the significant
lncRNA and PCG modules. In these analyses, we observed
highly significant positive and negative correlations, in which
the positive correlations significantly outnumbered the nega-
tive correlations. From our GSEA, we observed that similar
to other studies (Mamdani et al., 2015; Osterndorff-Kahanek
et al., 2015; Ponomarev et al., 2012), some of the PCG mod-
ules are enriched for immune-related or neurodegenerative
processes. Activation of immune-related processes in the
brain as a result of chronic alcohol consumption has been
well documented (Crews et al., 2013; Kelley and Dantzer,
2011). Likewise, the neurodegenerative processes observed
for some of our modules may reflect the nature of our post-
mortem sample composed exclusively from chronic alco-
holics, that is, subjects that have been drinking for over 2
decades. Both animal and human genetic models have
demonstrated that prolonged exposure to alcohol leads to
activation of the microglial population with the concurrent
activation of immune processes in the brain (Cui et al., 2014;
Robinson et al., 2014). It has been well known, for over

several decades now, that prolonged and excessive alcohol
drinking leads to loss of a brain matter (Harper and Kril,
1985; Kubota et al., 2001) and, consequently, activation of
genes involved in neurodegenerative disorders.

Integrating our expression and genetic data led to the iden-
tification of eQTLs that affect lncRNA and PCG expression.
Having an integrated view on the expression of lncRNA and
PCG, we were also interested in identifying eQTL that can
impact lncRNA and PCG expressions. We focused our
attention on eQTL impacting negatively correlated lncRNA/
mRNA hub pairs, due to the likely regulatory nature of the
negative interactions as well as to increase our statistical
power. While we observed some interesting genotype effects
on lncRNA/PCG interactions, none of these, however, sur-
vived correction for multiple testing at FDR of 10%. For
instance, the lncRNA G081251 locus was negatively corre-
lated with 2 genes, leukocyte elastase inhibitor (SERPINB1)
and S100 calcium-binding protein A11 (S100A11; Fig. S4A,
B). SERPINB1 has been linked to neuroinflammation (Hou
et al., 2019), whereas S100A11 exhibits one of the most sig-
nificant coexpression differences between schizophrenia and
bipolar disorder (Baumont et al., 2015). Nevertheless, our
results demonstrate that the complex interactions between
the coding and noncoding transcriptome observed in the
neuropathology of AD are, at least partially, modulated by
the genetic factors (Mamdani et al., 2015; Sartor et al., 2012).

Among the eQTLs affecting PCG expression, we also
detected strong genetic interactions between PCG expression
and disease status, with the strongest interaction effect
observed between FKBP5 and rs2766532. Several studies have
implicated FKBP5 in the severity of alcohol withdrawal
(Huang et al., 2014), alcohol drinking patterns in rodents (Qiu
et al., 2016), problematic drinking (Dragan et al., 2018), as well
as other psychiatric ailments, such as posttraumatic stress dis-
order (PTDS;Wilker et al., 2014).We further identified eQTLs
impacting the expression of PCG with potential functions
linked to neuroinflammation (SERPINB1), alcohol-induced
neuroinflammation (interferon regulatory factor 7, IRF7
[Coleman et al., 2017; Erickson et al., 2019]), neurodegenera-
tive diseases (neural precursor cell expressed, developmentally
down-regulated 9, or NEDD9 [Li et al., 2008]), nicotine addic-
tion (DNA methyltransferase 3 beta or DNMT3B [Hancock
et al., 2015]), and ethanol exposure (solute carrier organic
anion transporter family member 4A1 or SLCO4A1 [Ostern-
dorff-Kahanek et al., 2015]). Among the eQTLs associated
with lncRNA disease expression differences, many appear to
be novel discoveries, likely due to the limited number of
reports studying lncRNA role in alcohol addiction. For
instance, within our results, we found only 1 lncRNA locus
(i.e., AK128400), whose expression was previously reported to
be associated with autism (Tang et al., 2017).

The importance of our postmortem brain expression study
to assess lncRNA expression in NAc is further supported by
3 recent GWAS of AUD that has reported genomewide sig-
nals near lncRNA genes: (i) a study conducted by Gelernter
and colleagues (2014) that implicated the ADH gene cluster

Fig. 7. Plot showing the most significant lncRNA eQTL between
G006838 and rs12142153 with (A) and without (B) the group interaction
term. The alternative allele rs12142153 confers a higher expression of
G006838 in cases and a lower expression in controls.
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on chromosome 4 and the LOC100507053 locus, (ii) a study
conducted by the COGA group (Wetherill et al., 2015) that
identified a polymorphism near LOC151121 on chromosome
2, and (iii) a study conducted by our group that has reported
several polymorphisms in LOC339975 (Adkins et al., 2017).
However, in agreement with a previous report from our
group, none of these 3 loci showed evidence for differential
expression, although the expression of LOC339975 was nom-
inally affected by the most significantly associated with AD
polymorphism (rs11726136) in NAc (Adkins et al., 2017).
In summary, the main goal of this study was to test the

hypothesis that lncRNA, as a novel class of none coding
RNAs, contribute to the neuropathology of AD. While our
study is novel in its approach to address the potential role of
lncRNA in the neuropathology of AD by integrating both
genetic and molecular data generated in postmortem brains
from subjects with AD, it is not without limitations. First,
postmortem brain studies are observational as manipulation
of living human subjects is not possible. Although the cross-
sectional nature of these studies limits the causal inference
we can make, we believe the eQTL analysis is a major step
toward clarifying the directionality of these observations.
Secondly, although our sample size (N = 63) is small, we
believe with our careful experimental design and implemen-
tation of integrative multivariate approaches, we can circum-
vent some of these limitations and further broaden our
understanding of alcohol addiction processes. And finally,
we acknowledged that examining AD through a lens of
lncRNA’s interaction with mRNA overlooks epigenetic
mechanisms (Bohnsack et al., 2019; Marchese et al., 2017).
We hope that our study will provide additional molecular
targets that will help translate these advances into effective
therapeutic strategies for patients suffering from alcohol
addiction. In conclusion, we believe our study makes an
important contribution to the field of alcohol research. To
the best of our knowledge, ours is among the first studies to
date to pave the road for future lncRNA research in the neu-
ropathology of alcohol addiction.
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SUPPORTING INFORMATION

Additional supporting information may be found online
in the Supporting Information section at the end of the arti-
cle.

Fig. S1A. Scale-free topology fit graphs of (A) lncRNA
and (B) mRNA. Showing the scale free topology fitting index
(R2) or mean connectivity against various power (b) settings.

Fig. S1B. Scale-free topology fit graphs of (A) lncRNA
and (B) mRNA. Showing the scale free topology fitting index
(R2) or mean connectivity against various power (b) settings.

Fig. S2A. Robust, bootstrapped version of WGCNA
(rWGCNA).

Fig. S2B. Robust, bootstrapped version of WGCNA
(rWGCNA).

Fig. S3. Heatmap of the Pearson correlations between
modules, which were significantly correlated with disease sta-
tus.

Fig. S4A. Evidence of genotype (A:rs2446448 B:
rs1496042) modulating lncRNA (G081251) and PCG (A:
SERPINB1 B:S100A11) hubgenes, which were from signifi-
cantly correlated AD modules and significantly negatively
correlated with each other.

Fig. S4B. Evidence of genotype (A:rs2446448 B:
rs1496042) modulating lncRNA (G081251) and PCG (A:
SERPINB1 B:S100A11) hubgenes, which were from signifi-
cantly correlated AD modules and significantly negatively
correlated with each other.

Fig. S5. Pearson Correlation of t-values between limma’s
Empirical Bayes methodology with robust model and ordi-
nary least square.

Table S1. Description of sample demographics per diag-
nostic group.

Table S2. Microarray expression data validation using
quantitative PCR.

Table S3. Results from the univariate gene expression
analysis at p≤0.10.

Table S4. Description of PCG(A) and lncRNA(B) with
module membership, correlation with AD, significance of
correlation, and module associations.

Table S5. Results from wKDA analysis of lncRNA within
modules significantly correlated with disease status.

Table S6. Gene set enrichment analysis of PCG utilizing
WGCNA’s userListEnrichment function and curated list.

Table S7. Gene set enrichment analysis of PCG utilizing
GSEA.

Table S8. Positive(A) and negative(B) significant correla-
tions of hubgenes from modules significantly associated with
AD.

Table S9. Results from the PCG(A) and lncRNA(B)
eQTL analysis at FDR p≤0.10.

Table S10. Results from the PCG(A) and lncRNA(B)
eQTL with group interaction analysis at FDR p≤0.10.

Table S11. Genotype modulation of negatively correlated
lncRNA and PCG hubs.

Table S12. Primer set for lncRNA validation.
Methods S1. Supplementary methods
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