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Abstract: Three new thiodiketopiperazines, geospallins A–C (1–3), together with nine known
analogues (4–12), were isolated from the culture of the deep-sea sediment-derived fungus
Geosmithia pallida FS140. Among them, geospallins A and B (1 and 2) represent rare examples
of thiodiketopiperazines featuring an S-methyl group at C-10 and a tertiary hydroxyl group
at C-11. Their structures were determined by high-resolution electrospray mass spectrometry
(HRESIMS), spectroscopic analyses, and electronic circular dichroism (ECD) calculations.
Their angiotensin-converting enzyme (ACE) inhibitory activity was reported, and geospallins A–C
(1–3) showed inhibitory activity with IC50 values of 29–35 µM.
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1. Introduction

2,5-Diketopiperazines are cyclodipeptides obtained by the condensation of two α-amino acids.
This subunit is often found alone or embedded in larger, more complex architectures in a variety
of natural products from fungi, bacteria, the plant kingdom, and mammals [1]. They are not only
a class of naturally occurring privileged structures that have the ability to bind to a wide range of
receptors, but they also have several characteristics that make them attractive scaffolds for drug
discovery [2,3]. Thiodiketopiperazines, such as gliotoxins, chetoseminudins, luteoalbusins, chetracins,
and apoaranotins, are common across the microbial world and have highly diverse organic structures
characterized by sulfur-containing functional groups. They also exhibit various pharmacological
activities, such as antifungal, antibacterial, and cytotoxic activities [4]. The angiotensin-converting
enzyme (ACE) is an important target and has broad effects in different systems, and ACE
inhibitors were originally developed for the treatment of congestive heart failure, diabetic kidney
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disease, and hypertension management [5]. ACE cleaves many peptides besides angiotensin I and
thereby affects diverse physiological functions, including renal development and male reproduction.
In addition, ACE has a role in both innate and adaptive responses by modulating macrophage and
neutrophil function—effects that are magnified when these cells overexpress ACE. Macrophages that
overexpress ACE are more effective against tumors and infections [5]. Sulfur-containing metabolites
are crucial for the inhibitory activity against ACE, which catalyzes the reaction from angiotensin I to
angiotensin II in the renin–angiotensin system and plays a major role in hypertension [6].

Recently, we initiated the investigation of microorganisms derived from deep-sea sediments,
aiming at discovering new metabolites with potent bioactivity [7–9]. As part of the program, the fungus
Geosmithia pallida FS140 was isolated from a sediment collected at a depth of 2403 m in the South
China Sea (19◦28.581′ N, 115◦27.251′ E). Chemical investigation of the fermentation broth led to
the isolation of a series of diketopiperazines including three new thiodiketopiperazines, named
geospallins A–C (1–3), as well as nine known analogues (4–12). Geospallins A and B (1 and 2) represent
rare examples of thiodiketopiperazines featuring an S-methyl group at C-10 and a tertiary hydroxyl
group at C-11. Biological tests verified that compounds 1−3 were responsible for the inhibition of ACE.
Details of the isolation, structure elucidation, and biological activities of diketopiperazines 1–12 are
presented below.

2. Results

The fermentation broth of the deep-sea-derived fungus G. pallida FS140 was extracted
with EtOAc and then concentrated under reduced pressure to give an extract. The EtOAc
extract was subjected to a series of solvent/solvent partitioning steps to afford compounds 1–12
(Figure 1). Three new structures were identified by the combination of spectroscopic analysis,
high-resolution electrospray mass spectrometry (HRESIMS), and electronic circular dichroism (ECD)
calculation, while twelve known analogues were identified as bisdethiobis (methylthio)gliotoxin
(4) [10,11], 6-acetylbis(methylthio)gliotoxin (5) [9,12], 6-deoxy-5a,6-didehydrogliotoxin (6) [13],
5a,6-didehydrogliotoxin (7) [14], 6-(phenylmethyl)-(3R,6R)-2,5-piperazinedione (8) [15],
3-(hydroxymethyl)-3,6-bis(methylthio)-6-(phenylmethyl)-(3R,6R)-2,5-piperazinedione (9) [15],
3-(hydroxymethyl)-6-(methoxyl)-6-(phenylmethyl)-(3R,6R)-2,5-piperazinedione (10) [16],
5a,6-anhydrobisdethiobis(methylthio)gliotoxin (11) [17], and bisdethiobis (methylthio)gliotoxin
(12) [12] by comparison of their spectroscopic data with those in the literature.
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2.1. Identification of New Compounds

Compound 1, a colorless oil, had the molecular formula of C18H26N2O7S2, as determined by
HRESIMS (m/z 469.1063 [M + Na]+, calcd for 469.1074), corresponding to seven degrees of unsaturation.
The 1H NMR spectrum revealed the presence of five methyl singlets (δH 3.15, 2.99, 2.26, 2.05, and 1.76),
a disubstituted double bond (δH 6.00 (2H, m)), and a series of aliphatic methylene or methine multiplets
(5.60 (1H, s), 5.52 (1H, s), 5.48 (1H, d, J = 5.6 Hz), 4.23 (1H, d, J = 1.8 Hz), 3.93 (1H, dd, J = 11.7, 6.7 Hz),
3.68 (1H, m), 3.66 (1H, m), 2.54 (1H, m), and 1.86 (1H, d, J = 14.2 Hz)). The 13C NMR, in combination
with HSQC experiments, resolved 18 carbon resonances attributed to three carbonyl groups (δC 169.4,
167.6, and 163.5), a disubstituted double bond (δC 137.2 and 127.4), three sp3 quaternary carbons
(δC 90.6, 81.0, and 76.8), three sp3 methines (δC 70.5, 65.2, and 51.8), two sp3 methylene (δC 62.8 and
42.3), a methoxyl group (δC 52.1), an N-methyl group (δC 28.6), and three methyl groups (δC 20.6, 16.1,
and 11.0) (Table 1). The 1D NMR data of 1 showed resonance characteristics of a thiodiketopiperazine
framework similar to that of 5, except for the absence of a double bond and presence of a methoxy
group. In comparison with 5, the 13C NMR spectroscopic data for 1 differed significantly from C-10
to C-13, with the distinctly upfield-shifted carbon at C-13 (δC 90.6 in 1 and δC 75.2 in 5) and the
downfield-shifted at C-10 and C-11 (δC 51.8 and 81.0 in 1 and δC 120.5 and 135.7 in 5, respectively).
Detailed 2D NMR analyses (1H–1H COSY, HSQC, and HMBC) allowed the establishment of the gross
structure of 1 as depicted in Figure 2. HMBC correlations from H-7 (δH 5.48) and H3-18 (δH 2.05) to C-17
(δC 169.4), from H3-19 (δH 2.26) to C-10 (δC 51.8), and from OH-11 (δH 5.60) to C-6/C-10/C-11/C-12
(δC 70.5, 51.8, 81.0, and 42.3, respectively), and 1H–1H COSY correlations of H-6/H-7/H-8/H-9/H-10
confirmed the presence of fragment A (Figure 2). Fragment B was very similar to 5, except for the
distinct downfield-shifted of the O-methyl group when compared with the S-methyl group (δC 52.1 in
1 and δC 15.1 in 5). The methyl group was assigned to C-13 by the HMBC correlations from the methyl
group (δH 3.15) to the severely downfield-shifted C-13 (90.6 ppm in 1 and 75.2 ppm in 5, respectively).

The relative configuration of 1 was established on the basis of the interpretation of the NOESY data
and 1H−1H coupling constants (Figure 2 and Table 1). The strong NOE interactions of H-10/OH-11,
OH-11/H-6, H-6/H-7, OH-11/H-12β, and H-12β/H3-20 indicated that H-10, OH-11, H-6, H-7,
and CH3-20 occupied the axial bonds of the cyclohexane-ring portion in a chair conformation and
were arbitrarily assigned β-orientations. Additionally, the axial orientation of both H-6 and H-7 were
in good accordance with their small coupling constant of 1.8 Hz.
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Table 1. 1H (400 MHz) and 13C (100 MHz) NMR data for compounds 1–3 (in DMSO-d6)a.

No.
1 2 3

1H 13C 1H 13C 1H 13C

1 163.5 166.1 165.0
3 76.8 77.9 70.8
4 167.6 167.6 162.6
6 4.23, d (1.8) 70.5 4.32, d (1.8) 70.5 4.96, d (11.0) 69.8
7 5.48, d (5.6) 65.2 5.32, d (3.2) 66.4 5.80, d (11.0) 75.1
8 6.00, m 127.4 5.96, d (3.2) 127.4 191.6
9 6.00, m 137.2 5.96, d (3.2) 137.2 6.09, d (10.3) 125.4
10 3.66, m 51.8 3.65, s 51.3 6.98, d (10.3) 150.5
11 81.0 81.4 75.1

12 2.54, m
1.86, d (14.2) 42.3 2.28, d (8.5)

2.12, d (14.2) 45.6 3.07, d (14.9)
2.95, d (14.9) 49.3

13 90.6 86.3 69.1

14 3.93, dd (11.7, 6.7)
3.68, m 62.8 3.81, m

3.71, dd (10.9, 3.6) 62.2 4.18, dd (11.5, 6.0)
3.74, dd (11.5, 4.7) 62.6

N-Me 2.99, s 28.6 2.99, s 29.1 2.99, s 28.8
SMe-3 1.76, s 11.0 1.80, d (3.6) 10.6 2.16, s 13.0
OAc-7 169.4 169.4 168.9

2.05, s 20.6 2.05, s 20.6 2.07, s 20.4
SMe-10 2.26, s 16.1 2.26, s 16.1
OMe-13 3.15, s 52.1 2.18, s 14.6
11-OH 5.60, s 5.68, s 6.00, s
13-OH 6.04, brs
14-OH 5.52, s 6.64, brs 5.34, t (5.4)

a Chemical shifts are in ppm; coupling constant J is in Hz.

In order to define the absolute configuration of 1, the ECD spectrum of (3R, 6R, 7R, 10S, 11R, 13R)-1,
(3R, 6R, 7R, 10S, 11R, 13S)-1, (3S, 6S, 7S, 10R, 11S, 13R)-1, and (3S, 6S, 7S, 10R, 11S, 13S)-1 were
calculated by the time-dependent density functional theory (TDDFT) computational method and
compared with the experimental spectra of 1 (for details of calculations, see Supplementary Materials).
The experimental ECD spectrum of 1 showed an ECD curve with positive Cotton effects around 219 nm
(Figure 3a). The calculated ECD spectrum for (3S, 6S, 7S, 10R, 11S, 13S)-1 showed a similar ECD curve
with positive Cotton effects at 220 nm, indicating that 1 had an (3S, 6S, 7S, 10R, 11S, 13S)-configuration.
Compound 1 was given the trivial name geospallin A.

The HRESIMS data of 2 exhibited a sodium adduct ion at m/z 455.0907 [M + Na]+ (calcd 455.0917),
consistent with the molecular formula C17H24N2O7S2Na, showing 14 mass units less than that of 1.
The 1D NMR data of 2 were similar to those of 1, except for the absence of a methoxy group in 2,
indicating 2 was a demethylated derivative of 1. The additional hydroxy group was located at C-13
by HMBC correlation from the hydroxyl group (δH 6.04) to C-13 (δC 86.3) (Figure 2). The absolute
configuration of 2 was confirmed by using the same methods as described for 1. The experimental
ECD spectrum for 2 showed a similar ECD curve with positive Cotton effects at 220 nm (Figure S46 in
Supplementary Materials), indicating that compound 2 has a (3S, 6S, 7S, 10R, 11S, 13S)-configuration.
Compound 2 was given the trivial name geospallin B.

Compound 3, a colorless oil, had the molecular formula of C17H22N2O7S2, as determined by
HRESIMS (m/z 453.0764 [M + Na]+, C17H22N2O7S2Na, calcd for 453.0761), corresponding to eight
degrees of unsaturation. The 1H and 13C NMR spectra (Table 1) of 3 showed high similarity to those of
5, except for the presence of an α,β-unsaturated ketone moiety (δC 191.6, 125.4, and 150.5) in 3 instead
of two double bonds in 5, indicating that 3 was an oxidative derivative of 5. This was supported by
detailed 2D NMR spectra analyses (Figure 4). The location of the α,β-unsaturated ketone moiety was
assigned at C-11 by HMBC correlations from OH-11 (δH 6.00) to C-10, C-11, C-6, and C-12 (δC 150.5,
75.1, 69.8, and 49.3, respectively); from H-10 (δH 6.98) to C-6 and C-8 (δC 191.6); and from H-7 (δH 5.80)
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to the carbonyl group (δC 191.6, C-8) and acetyl group (δC 168.9). The relative configuration of 3 was
deduced by NOESY correlations of H-6/H-12β, H-7/H12α, and H-12α/SMe-13.
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The absolute structure of 3 was also deduced by comparison of the experimental and calculated
ECD spectra generated by TDDFT calculations in the Gaussian 16 program (Figure 3b). As illustrated in
Figure 3b, the experimentally acquired ECD spectrum for 3 agreed well with the ECD curve computed
for (3S, 6S, 7S, 11S, 13S)-3. Compound 3 was given the trivial name geospallin C.

2.2. Angiotensin-Converting Enzyme (ACE) Inhibitory Assay

The twelve thiodiketopiperazines (1−12) reported in this study were produced in sufficient
amounts to allow testing for the inhibition of angiotensin-converting enzyme (Table 2). IC50 values
above 100 µM were not determined, while compounds 1−3 showed inhibitory activity against ACE
with an IC50 value range of 29−35 µM.

Table 2. IC50 values of compounds 1–3 against angiotensin-converting enzyme (ACE).

Compounds IC50 (µM)

1 35 ± 5.2
2 31 ± 3.3
3 29 ± 3.3

Captopril 0.041 ± 0.005
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2.3. α-Glucosidase Inhibitory Activity Assay

All compounds were evaluated in vitro for α-glucosidase inhibitory activity. However, none of
the compounds showed inhibitory activity against α-glucosidase at a concentration of 100 µM.

3. Materials and Methods

3.1. General Experimental Procedures

IR spectra were carried out on a Shimadzu IR Affinity-1 spectrophotometer (Shimadzu
Corporation, Kyoto, Japan). UV data was acquired using a Shimadzu UV-2600 spectrophotometer
(Shimadzu Corporation, Kyoto, Japan). Optical rotations were obtained on an Anton Paar MCP-500
(Anton Paar, Graz, Austria). Circular dichroism (CD) spectra were recorded on a Jasco 820
spectropolarimeter (Jasco Corporation, Kyoto, Japan). NMR spectra were determined on a Bruker
Avance-400 spectrometer (Bruker Corporation, Fremont, CA, USA). ESI-MS spectra were measured
on an Agilent Technologies 1290-6430A Triple Quad LC/MS (Agilent Technologies Inc., Santa Clara,
CA, USA), and HRESIMS was measured on a Thermo MAT95XP high-resolution mass spectrometer
(Thermo Fisher Scientific, Bremen, Germany). A Shimadzu LC-20 AP (Shimadzu Corporation, Kyoto,
Japan) equipped with an SPD-M20A Photo-Diode Array (PDA) detector (Shimadzu Corporation,
Kyoto, Japan) was used for HPLC analysis. A YMC-pack ODS-A column (250 × 20 mm, 5 µm, 12 nm,
YMC CO., Ltd., Kyoto, Japan) was used for preparative HPLC separation. Column chromatography
was conducted using a commercial silica gel (SiO2; 200–300 mesh; Qingdao Haiyang Chemical Co. Ltd.,
Qingdao, China) and Sephadex LH-20 gel (Amersham Biosciences, Uppsala, Sweden). All solvents
were of analytical grade (Guangzhou Chemical Regents Company, Ltd., Guangzhou, China).

3.2. Fungal Material and Identification

The fungal strain FS140 was isolated from a deep-sea sludge in the South China Sea (19◦28.581′ N,
115◦27.251′ E, depth 2403 m) in September 2011. The isolate was identified as Geosmithia pallida FS140 by
sequence analysis of the internal transcribed spacer (ITS) region of the ribosomal DNA. The sequence
data have been submitted to GenBank (accession no. MK047400), and FS140 has 99% similarity with
Geosmithia pallida CCF4279 (accession no. KF808303). The strain was deposited in the Guangdong
Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute
of Microbiology, Guangzhou, People’s Republic of China. Working stocks were prepared on potato
dextrose agar (PDA) slants and stored at 4 ◦C.

3.3. Fermentation, Extraction, and Isolation

Three pieces (0.5 × 0.5 cm2) of mycelial agar plugs of G. pallida FS140 were inoculated into 250 mL
of PD medium (potato 200 g/L, glucose 20 g/L, KH2PO4 3 g/L, MgSO4·7H2O 1.5 g/L, vitamin B1

10 mg/L, sea salt 15 g/L) in 500 mL Erlenmeyer flasks and incubated for 2 days in a rotary shaker
(200 r/m) at 28 ◦C. The seed cultures (10%) were then aseptically transferred into 500 mL of PD
medium in 1000 mL Erlenmeyer flasks and kept shaking (120 r/m) at 28 ◦C for 7 days. The whole
fermentation broth (80 L) was filtered through cheese cloth to separate the supernatant from the
mycelia. The supernatant was extracted with EtOAc (4× 25 L) and evaporated under reduced pressure
to give a dark brown oily residue (31 g). The EtOAc-soluble fraction was separated over a column
of silica gel and eluted with petroleum ether/EtOAc in a linear gradient (30:1→ 1:1) and followed
by CHCl3/MeOH in linear gradient (10:1→ 0:1) to give 18 fractions (F1–F18). F7 was separated on
a preparative reversed-phase (RP) HPLC system equipped with a C-18 column (YMC*GEL ODS-A,
120A S-5 µm, 250 × 20 mm, MeOH/H2O, 0.1:0.9→ 1.0:0, 10 mL/min) to give 25 fractions (F7a–F7y).
F7c was chromatographed over a Sephadex LH-20 column eluted with CHCl3/MeOH (1:1, v/v),
then further separated by preparative RP HPLC on the ODS-A column (MeCN/H2O, 40:60, 10 mL/min)
to yield 2 (4.5 mg, tR = 16.0 min), 9 (23.0 mg, tR = 25.0 min), 10 (6.1 mg, tR = 31.0 min), and 8
(7.6 mg, tR = 34 min), sequentially. F7f was successfully separated by preparative RP HPLC on the
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ODS-A column (MeCN/H2O, 45:55, 10 mL/min) to afford 1 (5.9 mg, tR = 12.1 min) and 3 (6.8 mg,
tR = 13.4 min). F7k was separated on a preparative RP HPLC on the ODS-A column (MeCN/H2O, 50:50,
10 mL/min) to yield 4 (427 mg), and F7m was purified by column chromatography on a Sephadex
LH-20 (CHCl3/MeOH, 1:1, v/v) to afford 5 (312 mg). F9 was purified by preparative HPLC on the
ODS-A column (MeCN/H2O, 60:40, 10 mL/min) to give 7 (28 mg, tR = 14.2 min) and 12 (16.8 mg,
tR = 19.3 min), while F10 was subjected to a Sephadex LH-20 column elution with CHCl3/MeOH (1:1),
then further separated by preparative HPLC on the ODS-A column (MeCN/H2O, 65:35, 10 mL/min)
to obtain 6 (39 mg, tR = 9.6 min) and 11 (18.1 mg, tR = 11.8 min), successively.

Geospallin A (1): colorless oil; [α]25
D +87.7 (c 0.1, MeOH); CD (MeOH, c 0.001 mg/mL) 219 nm

(∆ε + 3.16); IR νmax 3443, 2924, 1739, 1662, 1372, 1237, 1095, 1022 cm−1; 1H and 13C NMR data,
see Table 1; HRESIMS m/z 469.1063 ([M + Na]+, calcd for 469.1074).

Geospallin B (2): colorless oil; [α]25
D +84.9 (c 0.1, MeOH); CD (MeOH, c 0.001 mg/mL) 225 nm

(∆ε + 3.21); IR νmax 3315, 3056, 2923, 1738, 1667, 1422, 1373, 1265, 1236 cm−1; 1H and 13C NMR data,
see Table 1; HRESIMS m/z 455.0907 ([M + Na]+, calcd for 455.0917).

Geospallin C (3): colorless oil; [α]25
D −28.2 (c 0.1, MeOH); CD (MeOH, c 0.001 mg/mL) 202 (∆ε − 3.52),

234 (∆ε − 2.36) nm; UV (MeOH) λmax (log ε) 210 (4.26) nm; IR νmax 3407, 2925, 1749, 1703, 1654, 1415,
1376, 1222, 1085, 1038 cm−1; 1H and 13C NMR data, see Table 1; HRESIMS m/z 453.0764 ([M + Na]+,
calcd for 453.0761).

3.4. Quantum Chemical ECD Calculation

The quantum chemical ECD calculation methods were used to establish the absolute configurations
of compounds 1–3. The 3D structures were generated by Discover Studio 2.5. The conformational search
was performed by the Conformer Searching module of Open Babel 2.4.1 using a genetic algorithm
and the MMFF94 molecular mechanics force field. The geometry optimizations were then performed
by using density functional theory (DFT) at the b3lyp/6-311+g(2d,p) level. These stable conformers,
which had no imaginary frequency, were subsequently submitted to ECD calculations by TDDFT
calculations at the b3lyp/6-311+g(2d,p) level. The solvent effects were taken into account by the
integral equation formalism polarizable continuum model (IEFPCM, methanol). All calculations were
performed with the Gaussian 16 A.03 program [18]. The calculated spectra were drawn using SpecDis
software with a UV shift to the ECD spectra.

3.5. Angiotensin-Converting Enzyme (ACE) Inhibitory Assay

ACE inhibitory activity was determined by a previously reported method [19]. In brief, 20 µL
thiodiketopiperazines dissolved in DMSO with different concentrations were added to 120 µL
N-hippuryl–His–Leu substrates, then preheated in water for 3–5 min; next, 10 µL ACE enzymatic
solution was added and mixtures were incubated at 37 ◦C for 60 min, and 150 µL 1 M HCl was added to
stop the reaction. The mixture was loaded for HPLC with a flow rate of 0.5 mL/min by 60% methanol,
and the absorbance at 228 nm was detected. To serve as a blank, 10 µL pH 8.3 boric acid replaced the
thiodiketopiperazines. Hippuric acid solutions at 10, 20, 40, 60, 80, and 100 µg/mL were prepared
using 10 µL pH 8.3 boric acid. One enzymatic unit was defined as the amount giving the production
of 1 µM hippuric acid by the catalyzation of the substrate N-hippuryl–His–Leu at 37 ◦C in 1 min.
Captopril was used as a positive control. Physiological saline with a concentration of 0.9% (w/w) was
used as a negative control in our experiment, which exhibited no inhibitory activity towards ACE.
The IC50 values of thiodiketopiperazines were calculated after the ACE inhibitory experiments were
conducted, using different concentrations of thiodiketopiperazines.

3.6. α-Glucosidase Inhibitory Activity Assay

An assay of α-glucosidase inhibitory activity was performed as previously described [20].
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4. Conclusions

In this study, twelve diketopiperazines, including three new thiodiketopiperazines, were isolated
from the deep-sea-derived fungus Geosmithia pallida. All the stereochemical configurations of the new
compounds, including their absolute configurations, were established. Geospallins A and B (1 and 2)
represent rare examples of thiodiketopiperazines featuring an S-methyl group at C-10 and a tertiary
hydroxyl group at C-11, and their S-configuration at both C-7 and C-13 is the first report of such.
These thiodiketopiperazines were examined for their angiotensin-converting enzyme inhibitory assay,
and geospallins A–C (1–3) showed inhibitory activity, with IC50 values of 29–35 µM.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/16/12/464/s1,
The 1H- and 13C-NMR data of 1–12 and the HRESIMS and 2D-NMR spectra of compounds 1–3 (Figures S1–S47).
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