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Summary 29 

The development of the human neocortex is a highly dynamic process and involves complex 30 
cellular trajectories controlled by cell-type-specific gene regulation1. Here, we collected paired 31 
single-nucleus chromatin accessibility and transcriptome data from 38 human neocortical 32 
samples encompassing both the prefrontal cortex and primary visual cortex. These samples span 33 
five main developmental stages, ranging from the first trimester to adolescence. In parallel, we 34 
performed spatial transcriptomic analysis on a subset of the samples to illustrate spatial 35 
organization and intercellular communication. This atlas enables us to catalog cell type-, age-, 36 
and area-specific gene regulatory networks underlying neural differentiation. Moreover, 37 
combining single-cell profiling, progenitor purification, and lineage-tracing experiments, we 38 
have untangled the complex lineage relationships among progenitor subtypes during the 39 
transition from neurogenesis to gliogenesis in the human neocortex. We identified a tripotential 40 
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intermediate progenitor subtype, termed Tri-IPC, responsible for the local production of 41 
GABAergic neurons, oligodendrocyte precursor cells, and astrocytes. Remarkably, most 42 
glioblastoma cells resemble Tri-IPCs at the transcriptomic level, suggesting that cancer cells 43 
hijack developmental processes to enhance growth and heterogeneity. Furthermore, by 44 
integrating our atlas data with large-scale GWAS data, we created a disease-risk map 45 
highlighting enriched ASD risk in second-trimester intratelencephalic projection neurons. Our 46 
study sheds light on the gene regulatory landscape and cellular dynamics of the developing 47 
human neocortex. 48 

 49 

Main Text 50 

Human neocortex development is a complex and coordinated process crucial for establishing the 51 
brain’s intricate structure and functionality. In the developing neocortex, radial glia (RGs) 52 
generate glutamatergic excitatory neurons (ENs) in a characteristic inside-out pattern, with deep-53 
layer neurons produced first, followed by upper-layer intratelencephalic (IT) projection neurons1. 54 
Subsequently, ENs migrate along the radial glial scaffold to the cortical plate, where they 55 
differentiate and form distinct cortical layers with coordinated synaptic connections. Meanwhile, 56 
GABAergic inhibitory neurons (INs) originating in the ganglionic eminence migrate to the 57 
cortex through the marginal and germinal zones, eventually becoming cortical interneurons of 58 
the adult cortex. During the late second trimester, RGs transition from neurogenesis to 59 
gliogenesis, producing astrocytes and oligodendrocyte lineage cells that populate the cortex. 60 
Cell-type-specific gene regulatory mechanisms that underlie cell proliferation and differentiation 61 
govern these highly regulated processes. However, our understanding of these mechanisms 62 
remains incomplete. 63 

Gene regulation involves epigenetic reprogramming and subsequent gene expression changes2. 64 
Over the past decade, single-cell transcriptome3–14 and chromatin accessibility11,15–17 analyses 65 
have expanded our knowledge of cellular diversity and the molecular changes that occur during 66 
human neocortical development. However, in many instances, measurements of the 67 
transcriptome and epigenome were conducted independently, limiting our understanding of how 68 
these two modalities coordinate with each other to form regulatory networks in the same cell. 69 
Recent studies explored gene-regulatory mechanisms in the developing human cortex by 70 
profiling chromatin accessibility and gene expression within the same nuclei18,19. However, these 71 
analyses were confined either to a restricted number of samples and cell types or to the first 72 
trimester, warranting further exploration to obtain a more comprehensive understanding. 73 

In this study, we conducted paired RNA sequencing (RNA-seq) and assay for transposase-74 
accessible chromatin with sequencing (ATAC-seq) on single nuclei from multiple regions and 75 
age groups of the developing human neocortex. In addition, spatial transcriptomic analysis was 76 
utilized to reveal cellular niches and cell-cell communication. These datasets have enabled the 77 
construction of a multi-omic atlas of the human neocortex across different developmental stages 78 
at single-cell resolution. Leveraging this atlas, we investigated molecular and cellular dynamics 79 
of the developing human neocortex, including cellular composition, spatial organization, 80 
intercellular signaling, gene regulatory networks, lineage potential, and disease susceptibility. 81 
Our results highlight novel multipotential intermediate progenitor cells (IPCs) and cellular 82 
trajectories and shed light on the mechanisms underlying brain cancer and neuropsychiatric 83 
disorders. 84 
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Results 85 

A single-cell multi-omic survey of the developing human neocortex 86 

To characterize transcriptomic and epigenomic changes during human neocortex development, 87 
we obtained 27 brain specimens and 38 unique biological samples across five major 88 
developmental stages ranging from the first trimester to adolescence, covering key events such as 89 
neurogenesis, neuronal migration, gliogenesis, synaptogenesis, and myelination (Fig. 1a, 90 
Supplementary Table 1). In addition, we included samples from both the prefrontal cortex (PFC) 91 
and primary visual cortex (V1), two poles of the rostral-caudal axis of the neocortex, to 92 
understand regional diversity. Applying the single-nucleus multiome (snMultiome) technique 93 
from 10x Genomics, we obtained paired single-nucleus ATAC-seq and RNA-seq data from 94 
243,535 nuclei after quality control (see Methods). Some early-stage samples included brain 95 
regions other than the neocortex, such as the diencephalon and striatum (Extended Data Fig. 1a–96 
d). We removed non-neocortical nuclei to focus our analysis on the neocortex, resulting in 97 
232,328 nuclei in the final dataset (Supplementary Table 2). We detected similar numbers of 98 
genes, transcripts, and ATAC peak region fragments across different samples, with a median of 99 
2289 genes, 4840 transcripts, and 4121 ATAC peak region fragments per nucleus (Extended Data 100 
Fig. 2a). 101 

We performed weighted nearest neighbor analysis20 to integrate information from the paired 102 
ATAC and RNA modalities. The resulting nearest neighbor graph was used for uniform manifold 103 
approximation and projection (UMAP) embedding and clustering. We used previously 104 
established hierarchical cortical cell-type architecture in the developing and adult human 105 
neocortex14,21 as references for cluster annotation. Meanwhile, we took into consideration that 106 
cell identities can be ambiguous and transient during development. Therefore, we carefully 107 
evaluated the expression of marker genes (Extended Data Fig. 3, Supplementary Table 3) and 108 
determined 5 classes, 11 subclasses, and 33 high-fidelity cell types (Fig. 1b, Extended Data Fig. 109 
1e, Supplementary Table 2). As expected, cells primarily clustered according to their lineages 110 
and, within individual lineages, further clustered by types, age groups, and regions (Fig. 1b,c, 111 
Extended Data Fig. 2b). ENs, oligodendrocytes, and astrocytes showed strong regional 112 
differences (Fig. 1b,c). By contrast, INs, oligodendrocyte precursor cells (OPCs), microglia, and 113 
vascular cells lacked strong region specificity (Fig. 1b,c). Compared with UMAP embeddings 114 
based on either ATAC or RNA, embeddings based on both modalities had a more precise 115 
separation between cell types, age groups, and regions, suggesting that the combination of both 116 
modalities better delineates spatiotemporal cell identities (Extended Data Fig. 2c). 117 

Cell type proportions were comparable between samples of the same age group and region 118 
(Extended Data Fig. 2a). However, cell type proportions became substantially different when 119 
samples across age groups or regions were compared (Fig. 1d, Supplementary Table 3). 120 
Specifically, progenitors (e.g., RG-vRGs [moderated t-test, Padj. = 1.61E−06] and IPC-ENs [Padj. 121 
= 9.03E−06]) and immature neurons (e.g., EN-Newborns [Padj. = 9.42E−08] and EN-IT-122 
Immatures [Padj. = 2.48E−09]) were more abundant in the first and second trimester but became 123 
depleted at later stages. Conversely, proportions of upper-layer intratelencephalic (IT) neurons 124 
(e.g., EN-L2_3-ITs [Padj. = 1.17E−03] and EN-L4-ITs [Padj. = 1.14E−03]) and macroglia (e.g., 125 
Astrocyte- Protoplasmic [Padj. = 6.27E−06] and Oligodendrocytes [Padj. = 3.14E−11]) became 126 
more abundant after birth. Moreover, EN-L4-ITs were more abundant in V1 than in PFC after the 127 
third trimester (Padj. = 1.10E−02), consistent with the expansion of the thalamorecipient layer 4 128 
in V1. 129 
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To further evaluate data quality, we compared gene expression, chromatin accessibility, and 130 
transcriptional regulatory activities of lineage-specific transcription factors (TFs) across cell 131 
types (Supplementary Table 4). We found that the three attributes were concordant with each 132 
other at most genomic loci (Fig. 1e). For example, PAX6 and EMX2, two TFs critical for cortical 133 
neural progenitor specification22, were selectively expressed, had high promoter accessibility, 134 
and exhibited enriched motif activities in RGs (Fig. 1e). Similar results were obtained with other 135 
lineage-specific TFs. Thus, dynamic changes in epigenome and transcriptome are highly 136 
coordinated during human neocortex development. 137 

Fig. 1 | A multi-omic survey of the developing human neocortex. a, Description of samples used in this study. b, 
UMAP plots of the snMultiome data showing the distribution of 33 cell types. c, UMAP plots showing the distribution 
of age groups (left) and regions (right). d, Proportion of individual cell types across developmental stages and cortical 
regions. Bars are color-coded by cell types, the legend of which can be found in panel a. e, Left, a dotplot of the 
signature transcriptional factors (TFs) in individual cell types. Middle, aggregated chromatin accessibility profiles on 
the promoter of signature TFs across cell types. The blue arrow represents each TF’s transcriptional starting site and 
gene body. Right, heatmap of normalized chromVar motif activity of signature TFs across cell types. 
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Molecularly defined cytoarchitecture of the developing human neocortex 138 

To localize the observed cell types from our snMultiome data, we performed spatial 139 
transcriptomic analysis of the developing human neocortex using multiplexed error-robust 140 
fluorescence in situ hybridization (MERFISH)23. First, guided by the snMultiome data, we 141 
designed a 300-gene panel composed of gene markers for the main cell types in the developing 142 
cortex (Supplementary Table 5). We then analyzed their expression patterns in PFC and V1 at 143 
three age groups from the second trimester to infancy (Supplementary Table 5). From six 144 
samples, we retained 404,030 high-quality cells, resulting in 29 cell types that had one-to-one 145 
correspondence to those at similar developmental stages in the snMultiome data (Fig. 2a, 146 
Extended Data Fig. 4a, Supplementary Table 6). The cell type proportions are comparable 147 
between MERFISH and snMultiome data within the same age group, indicating limited sampling 148 
bias for both assays (Extended Data Fig. 4b). To determine the cytoarchitecture of the developing 149 
neocortex, we defined a cell’s neighborhood as each cell’s 50 closest neighbors. We then 150 
unbiasedly divided cells into 10 niches based on the cell type composition of their 151 
neighborhoods. The 10 identified niches coincided well with histologically established cortical 152 
domains and were thus named after their closest counterpart (Fig. 2a). 153 

Different cell types exhibited distinct patterns of niche distribution. Neural progenitors were 154 
primarily localized in the ventricular/subventricular zone (VZ/SVZ), whereas mature ENs were 155 
confined to their specific cortical layers throughout development (Fig. 2b, Extended Data Fig. 156 
5a–f). Immature interneurons in the second trimester were enriched in both the marginal zone 157 
and VZ/SVZ, two routes they use to migrate into the cortex24. In the second trimester, the overall 158 
ratio of migrating interneurons in the marginal zone to VZ/SVZ was 1:4.1. Interestingly, this 159 
ratio was 1:3.3 for caudal ganglionic eminence (CGE)-derived interneurons and 1:5.2 for medial 160 
ganglionic eminence (MGE)-derived interneurons (odds ratio = 1.58, P < 2.2E−16, two-sided 161 
Fisher’s exact test), demonstrating lineage-specific preference in migration routes. 162 
Immunostaining using independent samples further validated this observation (Extended Data 163 
Fig. 6a,b, weighted average odds ratio = 1.56). This bias may contribute to the laminar 164 
distribution of interneuron subtypes at later stages, with CGE-derived interneurons enriched in 165 
upper layers and IN-MGE-PVs enriched in layers 4–6 (Fig. 2a,b, Extended Data Fig. 5a–f). 166 
Notably, in the developing mouse cortex, biases in tangential migratory route choices based on 167 
interneuron identities have been observed25. However, unlike our observations in humans, there 168 
were no significant differences between the overall MGE- and CGE-derived IN populations in 169 
mice. The dorsal lateral ganglionic eminence (dLGE) primarily gives rise to olfactory bulb 170 
interneurons26. Interestingly, we observed immature INs expressing MEIS2, SP8, TSHZ1, and 171 
PBX3, presumably originating from dLGE (IN-dLGE-Immatures), in the white matter across all 172 
three age groups (Extended Data Fig. 5a–f). These neurons will likely constitute a subset of the 173 
white matter interstitial GABAergic interneurons in adulthood. Regarding glial cells, OPCs were 174 
evenly distributed between gray and white matter from the second trimester to infancy. However, 175 
oligodendrocytes were predominantly present in the white matter for all three age groups (Fig. 176 
2b, Extended Data Fig. 5a–f). This difference supports a non-progenitor role of OPCs in cortical 177 
gray matter27. Microglia were highly enriched in the white matter (Fig. 2b, Extended Data Fig. 178 
5a–f), consistent with their spatial distribution in the adult brain28. 179 

In early neonatal and adult mammalian brains, neurogenesis continues in the VZ/SVZ of the 180 
lateral ventricles, and the interneurons produced migrate to the olfactory bulb29. Most of these 181 
olfactory bulb interneurons are GABAergic, but some could be glutamatergic30. We examined 182 
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our perinatal PFC sample, which contained VZ/SVZ. We found a surprisingly large number of 183 
glutamatergic EN-Newborns, along with a small number of IPC-ENs, specifically within the 184 
SVZ (Extended Data Fig. 5c). Remarkably, within the VZ/SVZ of this sample, the count of EN-185 
Newborns was 10.3-fold higher than that of IN-dLGE-Immatures, which are considered putative 186 
newborn GABAergic olfactory bulb interneurons. Whether these late-born EN-Newborns will 187 
migrate to the cortical gray matter, the subcortical white matter, or the olfactory bulb remains to 188 
be determined. 189 

Fig. 2 | Cell-cell communication in the developing human neocortex. a, Spatial transcriptomic analysis of six 
neocortical samples. Cells are color-coded by types or the niches to which they belong. b, Proportion of different cell 
types in individual niches. Niche numbers correspond to the legend in panel a. c, Heatmap showing neighborhood 
enrichment scores of the PFC sample at infancy. The row and column annotations are color-coded by cell types, the 
legend of which can be found in panel a. d, Heatmap showing the percentage of significant intercellular 
communication determined by NCEM identified across all datasets. The row and column annotations are color-coded 
by cell types, the legend of which can be found in panel a. e, Left, a circular plot showing the direction of cellular 
interactions mediated by neuregulin signaling. Right, a dotplot showing communication probability of example ligand-
receptor pairs in the neuregulin signaling pathway from EN-IT-Immature to other cell types. Empty space means the 
communication probability is zero. P-values were calculated by one-sided permutation test. f, Left, a circular plot 
showing the direction of cellular interactions mediated by somatostatin signaling. Right, a dotplot showing 
communication probability of example ligand-receptor pairs in the somatostatin signaling pathway from IN-MGE-SST 
to other cell types. Empty space means the communication probability is zero. P-values were calculated by one-sided 
permutation test. 
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Cell-cell communication in the developing human neocortex 190 

To identify cell-cell communication in the developing human neocortex, we first evaluated the 191 
spatial proximity of cell types in each MERFISH sample through neighborhood enrichment 192 
analysis. We found that different types of ENs were enriched in their own neighborhoods, 193 
consistent with their strong layer specificity. Interestingly, we also observed robust neighborhood 194 
enrichment between specific types of ENs and INs, such as EN-IT-Immatures and IN-CGE-VIPs, 195 
as well as EN-L4-ITs and IN-MGE-SSTs (Fig. 2c, Extended Data Fig. 7a). To determine if the 196 
gene expression of a cell type was influenced by its proximity to a neighboring cell type, we 197 
performed node-centric expression modeling (NCEM)31. Cell communication inference via 198 
NCEM revealed strong interactions among various types of ENs and between ENs and INs 199 
across multiple datasets (Fig. 2d, Extended Data Fig. 7b, Supplementary Table 7). Notably, EN-200 
IT-Immatures (sender) affected gene expression in various IN types (receivers). In contrast, IN-201 
MGE-SSTs (sender) influenced gene expression in multiple EN types (receivers). 202 

Since most of the MERFISH samples were collected from stages preceding the peak of 203 
synaptogenesis in humans, we resorted to ligand-receptor analysis using CellChat32 to identify 204 
potential mechanisms underlying the communication between ENs and INs (Extended Data Fig. 205 
7c). Focusing on EN-IT-Immatures and IN-MGE-SSTs as ligand producing cells, we found that 206 
neuregulin and somatostatin were potential mediators for their communication with INs and 207 
ENs, respectively (Fig. 2e,f, Supplementary Table 8). To explore the role of somatostatin 208 
signaling in EN differentiation, we treated midgestational human cortical organotypic slice 209 
cultures with two different somatostatin receptor agonists. We then performed single-cell RNA 210 
sequencing (scRNA-seq) to analyze gene expression changes in individual EN subtypes 211 
(Extended Data Fig. 8a,b, Supplementary Tables 9 and 10). Both agonists inhibited neuron 212 
projection development and synaptogenesis while activating multiple metabolic processes, 213 
effects observed consistently across multiple EN subtypes (Extended Data Fig. 8c, 214 
Supplementary Tables 11 and 12). These results suggest that somatostatin produced by IN-MGE-215 
SST regulates EN maturation. Together, our findings highlight the reciprocal communications 216 
between the two major neuronal subclasses during human cortical development. 217 

Gene regulatory networks in the developing human neocortex 218 

To establish the gene regulatory networks (GRNs) governing human neocortical development, 219 
we employed SCENIC+33, a computational framework that combines single-cell ATAC and gene 220 
expression data with motif discovery to infer enhancer-driven regulons (eRegulons), linking 221 
individual TFs to their respective target cis-regulatory regions and genes. Our analysis identified 222 
582 eRegulons, comprising 385 transcriptional activators and 197 repressors (Supplementary 223 
Table 13). These eRegulons collectively targeted 8134 regions and 8048 genes. To validate the 224 
predicted eRegulons, we evaluated the overlap between eRegulon-predicted target regions and 225 
ChIP-seq data of the corresponding TFs from human neocortex34. We found that 79% of the 226 
tested TFs exhibited higher-than-expected overlap, with 58% showing significant enrichment 227 
(Extended Data Fig. 9a, Supplementary Table 14). Additionally, the predicted enhancer-to-gene 228 
connections were significantly enriched in enhancer-promoter loops identified through 3D 229 
genome profiling of the developing human neocortex35 (Extended Data Fig. 9b, Supplementary 230 
Table 14, odds ratio = 2.47, P value = 1.1E-7). These findings support the validity of the 231 
identified eRegulons. 232 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2024.01.16.575956doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.16.575956
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

We quantified the activity of each eRegulon in each nucleus using the AUCell algorithm36, 233 
assessing region-based and gene-based AUC scores according to the overall accessibility of 234 
target enhancers and expression levels of target genes, respectively. Consistent with expectations, 235 

Fig. 3 | Gene regulatory networks that establish cell identities. a, A heatmap-dotplot showing the min-max 
normalized TF expression levels, region-based AUC scores, and gene-based AUC scores of selective eRegulons across 
cell types. b, Gene regulatory networks of selective eRegulons in three distinct cell types (RG-vRG, EN-L4-IT, and 
IN-MGE-PV). TF nodes and their links to enhancers are individually colored. The size and the transparency of the TF 
nodes represent their gene expression levels in each cell type. c, UMAP plots of cells belonging to excitatory neuron 
lineages showing the nine trajectories. Cells are color-coded by types, regions, age groups, or pseudotime. d, 
Standardized gene-based AUC scores of six eRegulon modules along the trajectories of excitatory neuron lineages. 
eRegulons are color-coded by neuronal trajectories. Thick, non-transparent lines represent the average AUC scores of 
each module in each trajectory. e, Gene ontology enrichment analysis for target genes of individual eRegulon modules. 
Empty space means adjusted P values > 0.05. One-sided hypergeometric test; nominal P values were adjusted by the 
Benjamini and Hochberg method. f, Bifurcation points during excitatory neuron differentiation. g, Trajectories of four 
intratelencephalic neuron lineages. h, Volcano plots highlighting differentially expressed genes between V1-specific 
and common EN-L4-IT neurons. Likelihood ratio test; nominal P values were adjusted by the Benjamini and Hochberg 
method. i, A dotplot highlighting representative eRegulons (activators) involved in trajectory determination at 
bifurcation points. j, UMAP plots highlighting representative eRegulons involved in trajectory determination at 
bifurcation points. 
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expression levels of transcriptional activators exhibited a positive correlation with the AUC 236 
scores of their target regions and genes, whereas transcriptional repressors negatively correlated 237 
with their targets (Extended Data Fig. 9c). Focusing on activators, we not only recovered 238 
established master regulators of cortical progenitors (e.g., EMX1 and SALL1), ENs (e.g., FOXP1 239 
and TBR1), INs (e.g., ARX and LHX6) but also uncovered novel cell-type- and age-specific 240 
eRegulons that potentially serve as lineage-determining factors (Fig. 3a, Extended Data Fig. 9d, 241 
Supplementary Table 15). 242 

In addition, we observed that many cell-type-specific eRegulons shared target regions and target 243 
genes (Extended Data Fig 10a). Notable instances included TCF7L1 and TCF7L2 in RG-vRGs, 244 
GLIS1 and SMAD3 in EN-L4-ITs, MAF and PRDM1 in IN-MGE-PVs, PAX6 and SOX9 in 245 
Astrocyte-Protoplasmics, as well as OLIG2 and VSX1 in OPCs (Fig. 3b, Extended Data Fig. 246 
10b). These cooperative TFs exhibit three modes of action: they share the same motif and 247 
binding sites (Extended Data Fig. 10c), they bind in tandem at the same enhancer (Extended 248 
Data Fig. 10d), or they target different enhancers but converge on the same target gene (Extended 249 
Data Fig. 10e,f). The cooperative sharing of regulatory targets likely serves to increase the 250 
specificity and robustness of GRNs during cortical development37,38. 251 

Genetic programs that determine excitatory neuron identities 252 

Having established the GRNs, we sought to understand how the activation of cell-type-specific 253 
eRegulons controls cortical neuron differentiation. To this end, we selected nuclei from EN 254 
lineages, inferred nine differentiation trajectories originating from RG-vRG, and calculated 255 
pseudotime values for each nucleus (Fig. 3c, Extended Data Fig. 11a–f, Supplementary Table 256 
16)39. Except for one trajectory leading to late-stage radial glia (oRG and tRG), the remaining 257 
eight trajectories ended with terminally differentiated ENs. Utilizing a generalized additive 258 
model40, we analyzed eRegulon activity along each trajectory, categorizing all eRegulons into six 259 
modules based on their temporal patterns of activity (Fig. 3d, Supplementary Table 17). Overall, 260 
all six modules exhibited distinct activity patterns along the pseudotime but comparable patterns 261 
across trajectories (Fig. 3d). Modules specifically active in the early, intermediate, and late stages 262 
respectively promoted cell division, cell projection morphogenesis, and synaptic plasticity (Fig. 263 
3e, Supplementary Table 17). These findings highlight that most eRegulons demonstrate 264 
conserved activity across various types of ENs, governing shared cellular processes during 265 
neuronal differentiation. 266 

Our subsequent objective was to explore gene regulatory mechanisms that determine EN 267 
identities. To achieve this, we pinpointed five bifurcation points (BPs) along the eight 268 
differentiation trajectories (Fig. 3f). An intriguing finding emerged regarding EN-L4-ITs, which 269 
delineated into two distinct trajectories based on their region of origin (Fig. 3c,f). Specifically, 270 
the divergence occurred at BP2, where V1-specific EN-L4-ITs continued their trajectory 271 
alongside EN-L2_3-IT, while the EN-L4-ITs shared between PFC and V1 followed a trajectory 272 
partially overlapping with EN-L5-IT (Fig. 3f,g). To further discriminate between the two EN-L4-273 
IT subtypes, we performed differential gene expression analysis, identifying 1,908 differentially 274 
expressed genes between V1-specific and common EN-L4-ITs (Fig. 3h, Extended Data Fig. 275 
12a,b, Supplementary Table 18). We then examined the expression patterns of top differentially 276 
expressed genes using in situ hybridization (ISH) data from Allen Brain Atlas. Notably, CUX1 277 
and KCNIP1, two genes preferentially expressed in V1-specific EN-L4-IT, exhibited stronger 278 
ISH signals in layer 4 of V1 compared to the adjacent secondary visual cortex (V2) (Extended 279 
Data Fig. 12c). In contrast, the common EN-L4-IT biased gene KCNAB1 showed robust and 280 
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specific signals in layer 4 of V2 but only displayed scattered signals in V1 (Extended Data Fig. 281 
12c). Moreover, both V1-specific and common EN-L4-ITs expressed markers of their 282 
counterparts recently reported in the adult human cortex41 (Extended Data Fig. 12d). These 283 
findings confirm the presence of V1-specific EN-L4-ITs in the developing neocortex and 284 
underscore their distinct developmental trajectory compared to EN-L4-ITs found in other cortical 285 
regions. 286 

To identify eRegulons associated with lineage bifurcation, we segmented the differentiation 287 
trajectories into five parts and conducted trajectory-based differential eRegulon activity analysis 288 
within specific segments encompassing each BP (Extended Data Fig. 11g, Methods). Among the 289 
top-ranked differentially active eRegulons at BPs were those featuring well-established TFs 290 
crucial for cell identity acquisition, including CUX2 for upper-layer IT neurons, FEZF2 for non-291 
IT neurons, and NR4A2 for EN-L6bs (Fig. 3i, Supplementary Table 19). Furthermore, our 292 
analysis revealed novel candidate regulators at multiple levels of lineage bifurcation, such as 293 
POU3F1 for IT neurons, SMAD3 for upper-layer IT neurons, and CUX1 for V1-specific EN-L4-294 
ITs, among many others (Fig. 3i,j, Extended Data Fig. 11h). Collectively, these results reveal 295 
genetic programs that control the divergence of EN identities. 296 

Lineage potential of glial progenitors in the late second trimester 297 

Between gestational week (GW) 18 and 26, RGs in the human neocortex gradually transition 298 
from neurogenesis to gliogenesis42. However, our understanding of gliogenesis in the human 299 
neocortex is still limited compared to neurogenesis. In the snMultiome dataset, we identified a 300 
total of 10 different cell types within the macroglia lineage, including three RGs types, IPC-Glia, 301 
and other cell types associated with either the astrocyte or oligodendrocyte lineages (Extended 302 
Data Fig. 13a,b). Among these cell types, EGFRhighOLIG2+ IPC-Glia has been previously 303 
reported by us and others as “pre-OPC”43, “pri-OPC”44, “mGPC”16, “bMIPC”45, “gIPC”10, or 304 
“GPC”46 in humans. A similar cell type has been noted in mice as “pri-OPC”47, “tri-IPC”48, or 305 
“MIPC”49. Studies using human tissue have demonstrated IPC-Glia’s capacity to generate OPCs 306 
43 and astrocytes46. Moreover, genetic labeling experiments in mice suggested their additional 307 
potential to produce olfactory bulb interneurons48. Despite these advancements, ongoing debates 308 
and uncertainties persist regarding the origin and lineage potential of human glial progenitors, 309 
especially in the late second trimester, when various glial progenitor types emerge. 310 

To address this uncertainty, we leveraged our snMultiome data collected between GW20 and 311 
GW24 and explored the expression patterns of surface protein markers (Extended Data Fig. 312 
13c.d). We identified five proteins whose combinatorial expression effectively distinguishes 313 
between different glial cell types in the late second trimester (Fig. 4a, Extended Data Fig. 13e). 314 
Employing tissue dissection, surface protein staining, and fluorescence-activated cell sorting, we 315 
isolated four different glial progenitors–RG-tRGs, RG-oRGs, IPC-Glia, and OPCs (Fig. 4b, 316 
Extended Data Fig. 13f) from the late second-trimester human cortex. We first assessed the 317 
isolated cells morphologically after culturing for five days in basal culture medium without 318 
growth factor supplement (Fig. 4b). RG-tRGs and RG-oRGs were mostly unipolar, featuring a 319 
large soma and a thick, long primary process akin to the radial fiber. IPC-Glia appeared mostly 320 
bipolar or oligopolar, with shorter processes compared to RGs. OPCs exhibited a “bushy” 321 
morphology, suggesting they had started differentiating into pre-myelinating oligodendrocytes. 322 
Most cells in the OPC culture died within eight days, consistent with their dependence on 323 
specific growth factors for survival46. Thus, our subsequent analysis focused on the remaining 324 
three progenitor types. We immunostained the sorted cells on day one in vitro (DIV1) to validate 325 
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their identities (Extended Data Fig. 14a–e). Isolated RG-tRGs and RG-oRGs were positive for 326 
the progenitor marker, TFAP2C, whereas the tRG marker, CRYAB, was specifically expressed in 327 
RG-tRGs. In contrast, IPC-Glia were positive for both OLIG2 and EGFR. Few cells across all 328 

Fig. 4 | Multipotent progenitors during transition from neurogenesis to gliogenesis. a, Violin plots showing the 
expression patterns of surface proteins used for progenitor isolation. b, Left, schematic diagram showing the sorting 
strategy for isolation of progenitor subtypes. Right, phase-contrast images of progenitor subtypes after five days in 
culture. VZ & iSVZ, ventricular zone and inner subventricular zone; oSVZ, outer subventricular zone; CP & SP, 
cortical plate and subplate. c, Proportion of individual cell types across progenitor subtypes and differentiation stages 
during progenitor differentiation in vitro. d, Clonal analysis demonstrating multipotency of individual progenitor cells 
(n = 26, 29, 22 clones across three independent experiments). e, Immunostaining of progenies of Tri-IPCs 12 weeks 
after transplantation into mouse cortex, demonstrating presence of astrocytes (GFAP+), OPCs or oligodendrocytes 
(SOX10+), and IN (GABA+) (n = 2 injections). HNA, human nuclear antigen. f, SingleCellNet predicted identities of 
interneurons (INs) and astrocytes derived from Tri-IPCs. g, Graphical summary of cell lineage relationships in late 
second-trimester human neocortex. h, UMAP plots of malignant GBM cells color-coded by their main cellular states. 
i, UMAP plots of malignant GBM cells color-coded by SingleCellNet-predicted cell types. j, Proportion of predicted 
cell types across different cellular states in malignant GBM cells. The legend can be found in panel i. 
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three cultures displayed positivity for the EN marker, NeuN, the astrocyte marker, SPARCL1, or 329 
the IN lineage marker, DLX5. In addition, few cells were OLIG2+ only, suggesting minimum 330 
contamination from OPCs or oligodendrocytes. 331 

Having validated our isolation strategy, we allowed cells to spontaneously differentiate without 332 
growth factor supplement for 14 days and performed scRNA-seq at DIV0, 7, and 14 to track 333 
their differentiation (Extended Data Fig. 15a, Supplementary Table 20). In the UMAP space, 334 
cells clustered according to the stage of differentiation, the seeding cell type, and their identity 335 
(Extended Data Fig. 15b–d). The scRNA-seq data revealed ten distinct cell types (Extended Data 336 
Fig. 15d,e, Methods). These cell types closely matched the in vivo populations observed in the 337 
snMultiome data (Extended Data Fig. 15f, Supplementary Table 21), confirming that the in vitro 338 
differentiation faithfully recapitulates the cell types found in vivo. Data from DIV0 reaffirmed 339 
the identities of the sorted cells (Fig. 4c, Extended Data Fig. 15g). On DIV7, three different types 340 
of descendants emerged in the IPC-Glia culture—astrocytes (9.4%), OPCs (1.1%), and a notable 341 
population of IN lineage cells, namely DLX5+BEST3+ IPC-INs (26.2%) and DLX5+BEST3− INs 342 
(19.9%) (Fig. 4c, Extended Data Fig. 15e,g). Hence, we renamed IPC-Glia Tri-IPC to highlight 343 
their tripotency. The relatively low proportion of OPCs observed (1.1% on DIV7 and 1.8% on 344 
DIV14) could be attributed to the absence of specific growth factors required for their survival. 345 
In contrast, both RG-tRGs and RG-oRGs differentiated into IPC-ENs at DIV7 and further into 346 
ENs by DIV14, indicating their continued production of ENs into the late second trimester (Fig. 347 
4c, Extended Data Fig. 15g). Interestingly, Tri-IPCs emerged in both the RG-tRG and RG-oRG 348 
cultures by DIV7 (3.0% and 6.3%), along with a small proportion of IPC-INs (1.0% and 3.0%) 349 
but not INs (0.1% and 0.2%). By DIV14, astrocytes (0.7% and 1.8%), OPCs (1.5% and 1.8%), 350 
and INs (5.4% and 9.1%) were all present (Fig. 4c, Extended Data Fig. 15g). The delayed 351 
appearance of INs from RG cultures was consistent with our recent report that oRGs can produce 352 
INs50, but provided additional evidence that they do so indirectly through Tri-IPCs. 353 
Immunostaining further validated these results (Extended Data Fig. 14f–j). 354 

The lineage tracing experiments described so far were conducted at the population level. To 355 
assess the lineage potential of glial progenitors at the single-cell level, we isolated individual 356 
RG-tRGs, RG-oRGs, and Tri-IPCs and cultured them for 14 days to produce clonal descendants. 357 
For both RG-tRGs and RG-oRGs, approximately 30% of all clones contained both IPC-ENs and 358 
Tri-IPCs, illustrating that individual RGs can generate both cell types (Fig. 4d, Supplementary 359 
Table 22). Moreover, about 80% Tri-IPC clones contained astrocytes, OPCs, and INs, confirming 360 
the tripotential nature of individual Tri-IPCs (Fig. 4d, Supplementary Table 22). Additionally, we 361 
transplanted isolated glial progenitors onto cultured human cortical slices ex vivo to provide a 362 
more physiologically relevant environment (Extended Data Fig. 16a). Consistent with our in 363 
vitro findings, RGs predominantly produced IPC-ENs within 8 days, whereas Tri-IPCs produced 364 
astrocytes, OPCs, and INs (Fig. 4f, Extended Data Fig. 16b–e). While Tri-IPCs maintained their 365 
tripotential nature in both in vitro and ex vivo conditions, we observed changes in the 366 
proportions of descendant cell types. Specifically, there was an increase in the production of 367 
OPCs in the ex vivo condition (Extended Data Fig. 16e), suggesting that cellular environment 368 
influences Tri-IPC fate decisions or descendant survival. To determine the lineage potential of 369 
Tri-IPCs in vivo, we performed xenograft experiments by transplanting Tri-IPCs into the cortex 370 
of early postnatal immunodeficient mice (Extended Data Fig. 16f). After 12 weeks of 371 
differentiation in vivo, the transplanted Tri-IPCs produced GFAP+ astrocytes, SOX10+ 372 
oligodendrocyte lineage cells, and GABA+ INs, predominantly in the deep layers of cortex, white 373 
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matter, and subventricular zone (Fig. 4e, Extended Data Fig. 16g,h). Together, these results 374 
demonstrate that Tri-IPCs are tripotential neural progenitor cells. 375 

To determine the specific subtype of INs produced by Tri-IPCs, we obtained scRNA-seq data 376 
from human ganglionic eminence as a reference51 and annotated interneuron subtypes based on 377 
marker genes reported in the literature52 (Extended Data Fig. 17a,b). We then trained a random-378 
forest-based classifier using SingleCellNet53 based on this reference dataset, revealing that INs 379 
derived from Tri-IPCs closely resembled MEIS2+PAX6+ INs from dLGE and CGE (Fig. 4f). The 380 
finding is consistent with the fact that INs derived from Tri-IPCs map to IN-dLGE-Immatures in 381 
the snMultiome data (Extended Data Fig. 15f). These cells were also SP8+SCGN+ and were 382 
projected to develop into olfactory bulb interneurons and white matter interneurons52. This aligns 383 
with the presence of Tri-IPCs and IN-dLGE-Immatures in the white matter of both prenatal and 384 
postnatal human telencephalon observed in our MERFISH data (Extended Data Fig. 5a–f) and 385 
suggests that some of these IN-dLGE-Immatures may originate from Tri-IPCs. We, therefore, 386 
renamed IN-dLGE-Immatures as IN-NCx_dGE-Immatures to highlight their origin beyond 387 
dLGE. Similar results were obtained with a nearest-neighbor-based label transfer approach using 388 
Seurat (Fig. 4f, Extended Data Fig. 17c,d). Additionally, we aimed to categorize the types of 389 
astrocytes derived from Tri-IPCs. A recent study delineated two lineage origins of astrocytes in 390 
the mouse neocortex—an Olig2 lineage primarily producing gray matter or protoplasmic 391 
astrocytes and an S100a11 lineage primarily producing white matter or fibrous astrocytes54. We 392 
applied similar classification analysis using scRNA-seq data from the developing mouse 393 
neocortex55 and human snMultiome data from this study as references (Extended Data Fig. 394 
17e,f,i,j). We found that Tri-IPC-derived astrocytes were mapped to both Olig2 and S100a11 395 
lineages, indicating their potential to produce both protoplasmic and fibrous astrocytes (Fig. 4f, 396 
Extended Data Fig. 17g,h,k,l). Based on these results, we propose an updated model of the origin 397 
and lineage potential of human neural progenitors in the late second trimester (Fig. 4g). 398 

A majority of glioblastoma multiform cells resemble Tri-IPCs 399 

Tri-IPCs produce neurons, oligodendrocyte lineage cells, and astrocytes, all considered important 400 
components of glioblastoma multiform (GBM)56. Previous studies also suggested the existence 401 
of glial progenitor cell-like populations in malignant GBM cells10,57. We aimed to leverage our 402 
comprehensive developmental atlas as a reference to map GBM cells to their closest counterparts 403 
in the developing human cortex. To this end, we trained a multi-class classifier using 404 
SingleCellNet based on our snMultiome data. We then used the trained model to assign cell types 405 
to malignant GBM cells from GBMap58. Our analysis revealed that more than half of malignant 406 
GBM cells transcriptionally resemble Tri-IPCs (Fig. 4h–j). Moreover, Tri-IPC was the most 407 
abundant mapped cell type across all four tumor cell states defined by Neftel et al. (Fig. 4j)56, 408 
and it was present in 87% of all GBM samples (Extended Data Fig. 17m). The second most 409 
abundant cell type is Vascular, which likely correspond to the glial-like wound response state 410 
(Fig. 4j)59. Other cell types substantially present in GBM include OPC, Oligodendrocytes-411 
Immature, Astrocyte-Fibrous, and IN-NCx_dGE-Immature (Fig. 4j), all of which can be 412 
descendants from Tri-IPCs. These findings suggest that GBM cells hijack developmental 413 
processes, particularly the multipotency and proliferative capacity of Tri-IPCs, to achieve tumor 414 
heterogeneity and rapid growth. 415 

Cell type relevance to human cognition and brain disorders 416 
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Approximately 90% of variants identified in genome-wide association studies (GWASs) were 417 
found within non-protein-coding regions of the genome60,61. Leveraging the chromatin 418 
accessibility data we obtained from the developing human neocortex, we applied SCAVENGE62 419 

Fig. 5 | Cell type association with human cognition and brain disorders. a, Standardized per-cell SCAVENGE trait 
relevance score (TRS) for four cognitive functions. Boxplot center: median; hinges: the 25th and 75th percentiles; 
whiskers: standard error. b, Standardized per-cell SCAVENGE TRS for five brain disorders, including autism 
spectrum disorder (ASD), major depressive disorder (MDD), bipolar disorder (BPD), attention-deficit/hyperactivity 
disorder (ADHD), and schizophrenia (SCZ). Boxplot center: median; hinges: the 25th and 75th percentiles; whiskers: 
standard error. Two-sided hypergeometric test, *FDR < 0.01 & odds ratio > 1.4. c, Heatmap showing the proportion of 
the cells with enriched trait relevance across cell types. Tiles with significant TRS enrichment (two-sided 
hypergeometric test, *FDR < 0.01 & odds ratio > 1.4) are annotated by their odd ratios. d, Standardized SCAVENGE 
TRS of four brain disorders plotted along the intratelencephalic (IT) neuron lineage pseudotime. The best-fitted 
smoothed lines indicate the average TRS and the 95% confidence interval in each pseudo-time bin. e, Heatmaps of 
standardized gene-based AUC scores for top ten disease-relevant eRegulons ranked by Spearman’s ρ along the IT 
neuron lineage psuedotime. eRegulons with SFARI ASD-associated genes as core TFs are highlighted in red. 
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to map GWAS variants to their relevant cellular context at single-cell resolution. Specifically, the 420 
algorithm quantifies the enrichment of GWAS variants within the open chromatin regions of a 421 
cell and overcomes the sparsity issue of single-cell profiles via network propagation. The 422 
enrichment strength was quantified by trait-relevance scores (TRSs) at the single-cell level and 423 
the proportion of significantly enriched cells at the cell-group level. Using this approach, we 424 
analyzed four cognitive traits and five neuropsychiatric disorders, revealing that they all had 425 
significant associations with specific cell types (Fig. 5a–c, Supplementary Table 23). Concerning 426 
cognitive traits, we found that fluid intelligence and processing speed were associated with IT 427 
neurons, aligning with previous results in the adult human brain (Fig. 5a,c) 41. In addition, we 428 
were surprised to observe an association between RGs and executive function and between 429 
microglia and working memory (Fig. 5a,c). The exact mechanisms underlying these associations 430 
remain to be elucidated. Regarding psychiatric disorders, all exhibited significant associations 431 
with various types of ENs (Fig. 5b,c). Bipolar disorder (BPD), schizophrenia (SCZ), and 432 
attention-deficit/hyperactivity disorder (ADHD), but not autism spectrum disorder (ASD) or 433 
major depressive disorder (MDD), were additionally linked to INs (Fig. 5b,c), highlighting 434 
differential disease association between the two major neuronal subclasses. Notably, some of the 435 
strongest associations were found between ASD and specific IT types (EN-IT-Immatures and 436 
EN-L6-ITs). As a control, we evaluated the association between neocortical cell types and 437 
Alzheimer’s disease, which is known to have a strong heritability component in microglia63,64. 438 
We not only observed the strongest enrichment of Alzheimer’s disease-associated variants in 439 
microglia but also identified significant enrichment in vascular cells and astrocytes (Extended 440 
Data Fig. 18a,b), consistent with their involvement in the disease65,66. It is important to note that 441 
our analysis was based on common variants and may not uncover contributions from other cell 442 
types due to the involvement of rare variants or environmental factors. 443 

Besides cell types, we also compared trait associations among brain regions and age groups, 444 
revealing that differences between age groups were more pronounced than between regions 445 
(Extended Data Fig. 18c–f, Supplementary Table 24). For example, risk variants associated with 446 
neuropsychiatric disorders displayed distinct patterns of enrichment across age groups, with ASD 447 
risk enrichment peaking in the second trimester (Extended Data Fig. 18e–f). Given the 448 
predominant enrichment of these risk variants in ENs (Fig. 5b,c), we postulated that they target 449 
distinct stages of EN differentiation and maturation. To test this hypothesis, we selected EN 450 
lineage cells and examined the patterns of TRSs along their pseudotime (Fig. 5d). Indeed, ASD 451 
showed the earliest TRS peak, followed by MDD, BPD, and SCZ. This pattern is consistent with 452 
the earlier onset of ASD compared to other disorders and explains why previous heritability 453 
analyses of ASD in the adult brain found only a modest signal in ENs41. To pinpoint potential 454 
gene regulatory networks disrupted by disease risk variants during EN differentiation, we 455 
identified eRegulons whose activity positively correlated with the TRSs for each disorder (Fig. 456 
5e, Supplementary Table 25). Among the core TFs of the top ten eRegulons correlated with ASD, 457 
six were recognized as ASD risk genes and listed in the SFARI gene database67. Together, our 458 
analysis not only pinpoints the most relevant cell types and developmental stages for cognitive 459 
traits and brain disorders but also elucidates potential disease mechanisms at cellular and 460 
molecular levels. 461 

Discussion 462 

In this study, we extensively characterized the developing human neocortex at multiple stages, 463 
regions, and dimensions, including transcriptomic, epigenomic, spatial, and functional analyses. 464 
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These data collectively establish an atlas of the developing human neocortex at single-cell 465 
resolution. The integration of multi-omic data provides insights into diverse aspects, including 466 
cellular composition, spatial organization, gene regulatory networks, lineage potential, and 467 
susceptibility to diseases during brain development. By combining spatial and snMultiome data, 468 
we further elucidate intricate cell-cell communication networks during development, 469 
emphasizing robust interactions between EN and IN subclasses mediated by specific signaling 470 
pathways. 471 

V1 in humans, primates, and other binocular mammals exhibits a specialized cytoarchitecture 472 
characterized by an enlarged layer 4 that receives inputs from the thalamus68. Recent brain cell 473 
census studies in humans and non-human primates have identified a distinct population of EN-474 
L4-ITs exclusively present in V121,69. However, the mechanisms responsible for their emergence 475 
and the factors determining their identity have been unknown. Our results suggest that common 476 
and V1-specific EN-L4-ITs initially share a common developmental trajectory until the third 477 
trimester, after which they diverge. Common EN-L4-ITs follow a trajectory similar to that of 478 
EN-L5-IT, whereas V1-specific EN-L4-ITs partially share a trajectory with EN-L2_3-IT. 479 
Furthermore, we have identified TFs and eRegulons responsible for V1-specific EN-L4-ITs 480 
differentiation, including SMAD3, GLIS3, and CUX2 at early stages, as well as POU6F2, JDP2, 481 
and CUX1 at later stages. These results elucidate genetic programs governing sequential neuronal 482 
fate determination. They also offer crucial insights and serve as a benchmark for the future 483 
development of area-specific in vitro models of human cortical development. 484 

Previous studies in rodents have demonstrated that following the peak neurogenesis of ENs, RGs 485 
within the dorsal telencephalon gradually transition to gliogenesis. Concurrently, they begin 486 
transitioning into a specific subtype of VZ/SVZ stem cells that produces olfactory bulb 487 
interneurons or becomes quiescent70–73. In humans and other non-human primates, however, a 488 
longstanding debate persists concerning two fundamental questions: firstly, whether cortical 489 
progenitors, particularly cortical RGs, can generate INs during embryonic development, and 490 
secondly, what subtype of neurons these INs eventually mature into74–79. Regarding the first 491 
question, most evidence supporting the “local production” hypothesis focuses primarily on 492 
identifying IN progenitors in the cortex, albeit not conclusively ruling out the possibility that 493 
these IN progenitors originate in the ventral telencephalon80. Recently, we and others have 494 
demonstrated that cortical RGs in the second trimester can produce LGE- and CGE-like INs that 495 
share a lineage with ENs50,81. However, whether these INs are generated directly from RGs or 496 
indirectly via IPCs remained uncertain. In this study, we observed that both oRGs and tRGs give 497 
rise to INs through Tri-IPCs, which are tripotential and capable of producing INs, 498 
oligodendrocyte lineage cells, and astrocytes locally in the neocortex. Based on the expression of 499 
EGFR and OLIG2, human Tri-IPCs likely correspond to “MIPCs” found in mice49 and proposed 500 
in humans45. The onset of Tri-IPC production occurs in the late second trimester (after GW18), 501 
potentially due to increased sonic hedgehog signaling during later stages of cortical 502 
development82–85. These findings provide an explanation for the limited production of INs 503 
observed in short-term cultures of human organotypic slices before GW1876. The involvement of 504 
Tri-IPCs in GBM is another interesting observation and helps explain how GBM cells maintain 505 
their stemness and achieve heterogeneity. Future research to understand Tri-IPC biology will 506 
offer insights into the cellular origins and potential vulnerabilities of GBM cells. 507 

Concerning the identity of INs born in the cortex, our classification suggests that most Tri-IPC-508 
derived INs are transcriptomically similar to MEIS2+PAX6+ INs presumed to originate from the 509 
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dLGE52. Interestingly, these INs are also found in scRNA-seq data from the CGE51, consistent 510 
with the fact that MEIS2+ cells have been observed in the CGE86. Moreover, MEIS2+PAX6+ INs 511 
emerge in dorsally patterned human cerebral organoids, particularly at their later developmental 512 
stages50. Thus, instead of an IN type whose origin is confined to the LGE, we propose that 513 
MEIS2+PAX6+ INs represent the most dorsal type of IN generated within the germinal zone of the 514 
cortex and its neighboring ganglionic eminence. In mice, INs derived from MIPCs were reported 515 
to differentiate into olfactory bulb interneurons 49. However, our spatial transcriptomic data 516 
demonstrate the presence of MEIS2+PAX6+ INs in the white matter of both the prenatal and 517 
postnatal human brain, indicating their potential role as white matter interneurons. With recent 518 
reports of a shared origin between some cortical interneurons and ENs87,88, it remains to be 519 
determined whether INs derived from Tri-IPCs also differentiate into cortical interneurons. 520 

Most genetic risk for ASD comes from common variants found in non-coding regions of the 521 
genome89. However, understanding the underlying cellular and molecular mechanisms has 522 
remained challenging due to a lack of comprehensive cell-type-resolved epigenomic data from 523 
the developing human brain. Our variant mapping at single-cell resolution reveals pronounced 524 
enrichment of ASD-linked common risk variants within chromatin-accessible regions specific to 525 
IT neurons in the second trimester, aligning with ASD as a neurodevelopmental disorder 526 
primarily originating at midgestation. The relevance of midgestational cortical development to 527 
ASD is further supported by data from gene expression analysis of both common and rare de 528 
novo ASD variants90–92. Moreover, our analyses indicate that disrupting intratelencephalic 529 
connectivity, particularly by impacting IT neurons in early development, may contribute to ASD 530 
pathophysiology. Notably, EN-IT-Immatures in the second trimester differentiate predominantly 531 
into EN-L2_3-ITs and EN-L4-ITs postnatally. Intriguingly, EN-L2_3-ITs and EN-L4-ITs are 532 
among the most affected cell types in post-mortem ASD brain93, highlighting how early-acting 533 
ASD risk variants cascade into postnatal deficits within IT neurons. Our analysis extends beyond 534 
ASD and reveals temporal- and cell-type-specific risk patterns associated with multiple brain 535 
disorders. For example, ASD exhibits the earliest risk, succeeded by MDD, and then followed by 536 
BPD and SCZ. Moreover, BPD, SCZ, and ADHD, but not ASD or MDD, were linked to 537 
inhibitory neurons, consistent with observations from the adult brain41. These findings 538 
underscore the significance of studying the typical trajectory of brain development in 539 
understanding the deviations leading to specific diseases.  540 
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Methods 801 

Brain tissue samples 802 

Human brain tissue samples (Supplementary Table 1 and 5) were acquired from four sources. 803 

Four de-identified first-trimester human tissue samples were collected from the Human 804 
Developmental Biology Resource (HDBR), staged using crown-rump length, dissected, and 805 
snap-frozen on dry ice. 806 

Thirteen de-identified second-trimester human tissue samples were collected at the Zuckerberg 807 
San Francisco General Hospital (ZSFGH). Acquisition of second-trimester human tissue samples 808 
was approved by the UCSF Human Gamete, Embryo and Stem Cell Research Committee (study 809 
number 10-05113). All experiments were performed in accordance with protocol guidelines. 810 
Informed consent was obtained before sample collection and use for this study. 811 

Two de-identified third-trimester and early postnatal tissue samples were obtained at the UCSF 812 
Pediatric Neuropathology Research Laboratory (PNRL) led by Dr. Eric Huang. These samples 813 
were acquired with patient consent in strict observance of the legal and institutional ethical 814 
regulations and in accordance with research protocols approved by the UCSF IRB committee. 815 
These samples were dissected and snap-frozen either on a cold plate placed on a slab of dry ice 816 
or in isopentane on dry ice. 817 

Twenty-three de-identified third trimester, early postnatal, and adolescent tissue samples without 818 
known neurological disorders were obtained from the University of Maryland Brain and Tissue 819 
Bank through NIH NeuroBioBank. 820 

Samples used for single-nucleus analysis were listed in Supplementary Table 1, and those for 821 
spatial transcriptomic analysis were listed in Supplementary Table 5.  822 

 823 

Nuclei isolation and generation of single-nucleus multiome (snMultiome) data 824 

A detailed protocol can be found at ref94. All procedures were done on ice or at 4°C. Briefly, 825 
frozen tissue samples (20–50 mg) were homogenized using a pre-chilled 7 ml Dounce 826 
homogenizer containing 1 ml cold homogenization buffer (HB) (20 mM Tricine-KOH pH 7.8, 827 
250 mM sucrose, 25 mM KCl, 5 mM MgCl2, 1 mM dithiothreitol, 0.5 mM Spermidine, 0.5 mM 828 
Spermine, 0.3% NP-40, 1× cOmplete protease inhibitor [Roche], and 0.6 U/mL RiboLock 829 
[Thermo Fisher]). The tissue samples were homogenized 10 times with the loose pestle and 15 830 
times with the tight pestle. Nuclei were pelleted by spinning at 350 × g for 5 min, resuspended in 831 
25% iodixanol solution, and loaded onto 30% and 40% iodixanol layers to make a gradient. The 832 
gradient was spun at 3,000 × g for 20 min. Clean nuclei were collected at the 30%–40% interface 833 
and diluted in wash buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 1 mM 834 
dithiothreitol, 1% BSA, 0.1% Tween 20, and 0.6 U/mL RiboLock [Thermo Fisher]). Next, nuclei 835 
were pelleted by spinning at 500 × g for 5 min and resuspended in diluted nuclei buffer (10x 836 
Genomics). Nuclei were counted using a hemocytometer, diluted to 3220 nuclei/μL, and further 837 
processed following 10x Genomics Chromium Next GEM Single Cell Multiome ATAC + Gene 838 
Expression Reagent Kits user guide. We targeted 10,000 nuclei per sample per reaction. Libraries 839 
from individual samples were pooled and sequenced on the NovaSeq 6000 sequencing system, 840 
targeting 25,000 read pairs per nucleus for ATAC and 25,000 read pairs for RNA. 841 

 842 
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snMultiome data pre-processing 843 

The raw sequencing signals in the BCL format were demultiplexed into fastq format using the 844 
“mkfastq” function in the Cell Ranger ARC suite (v.2.0.0, 10x Genomics). Cell Ranger-ARC 845 
count pipeline was implemented for cell barcode calling, read alignment, and quality assessment 846 
using the human reference genome (GRCh38, GENCODE v32/Ensembl98) following the 847 
protocols described by 10x Genomics. The pipeline assessed the overall quality to retain all 848 
intact nuclei from the background and filtered out non-nucleus-associated reads. All gene 849 
expression libraries in this study showed a high fraction of reads in nuclei, indicating high RNA 850 
content in called nuclei and minimal levels of ambient RNA detected. The overall summary of 851 
data quality for each sample is listed in Supplementary Table 1. Next, we further assessed the 852 
data at the individual nuclei level and retained high-quality nuclei with the following criteria: (1) 853 
Gene expression count (nCount_RNA) is in the range of 1,000 to 25,000; (2) The number of 854 
detected genes (nFeature_RNA) is greater than 400; (3) The total ATAC fragment count in the 855 
peak regions (atac_peak_region_fragments) is in the range of 100 to 100,000; (4) The 856 
transcription start site (TSS) enrichment score for ATAC-seq is greater than 1; (5) The strength of 857 
nucleosome signal (the ratio of mononucleosome to nucleosome-free fragments) is below 2. To 858 
ensure only single nuclei were analyzed, we measured the doublet probability by Scrublet95 and 859 
excluded all potential doublets receiving a score greater than 0.3 for downstream analyses. In 860 
total, 243,535 nuclei that passed all QC criteria were included for further analysis. 861 

 862 

snMultiome data integration, dimensionality reduction, clustering, and cell type identification 863 

For ATAC data of snMultiome analysis, open chromatin region peaks were called on individual 864 
samples using MACS2 (v2.2.7)96. Peaks from all samples were unified into genomic intervals, 865 
and the intervals falling in the ENCODE blacklisted regions were excluded97. Among all 398,512 866 
processed ATAC peaks, the top 20% of consensus peaks (n = 82,505) across all nuclei were 867 
selected as variable features for downstream fragment counting and data integration. The peak-868 
by-nuclei counts for each sample were integrated by reciprocal LSI projection functions using 869 
the R package Signac (v1.10.0)98. For RNA-seq data, normalization and data scaling were 870 
performed using SCTransform v299 in Seurat v420. The cell cycle difference between the G2M 871 
and S phase for each nucleus was scored and regressed out before data integration. The 872 
transformed gene-by-nuclei data matrices for all nuclei passing quality control were integrated 873 
by reciprocal PCA projections between different samples using Seurat v4 following the best 874 
practice described in Stuart et al.98 and Butler et al.100. 875 

Weighted nearest neighbor analysis was done using Seurat v4 with 1–50 PCA components and 876 
2–40 LSI components. The resulting nearest neighbor graph was used to perform UMAP 877 
embedding and clustering using the SLM algorithm101. Clusters with known markers expressed 878 
in the striatum (ISL1 and SIX3) and diencephalon (OTX2 and GBX2) were discarded. In addition, 879 
clusters with both transcripts present in neurites (NRGN) and oligodendrocyte processes (MBP), 880 
likely due to debris contamination, were discarded. These filtering steps resulted in 232,328 881 
nuclei in the final dataset (Extended Data Fig. 1, Supplementary Table 2). Weighted nearest 882 
neighbor, dimension reduction, and clustering were re-calculated using the filtered data. Cell 883 
identities were determined based on the expression of known marker genes, as is shown in 884 
Extended Data Fig. 3 and Supplementary Table 3. The 5 identified classes were progenitor, 885 
neuron, glia, immune cell, and vascular cell. The 11 identified subclasses were radial glia, 886 
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intermediate progenitor cell for excitatory neurons (IPC-EN), glutamatergic neuron, GABAergic 887 
neuron, intermediate progenitor cell for glia (IPC-Glia), astrocyte, oligodendrocyte precursor cell 888 
(OPC), oligodendrocyte, Cajal-Retzius cell, microglia, and vascular cell. The 33 identified cell 889 
types were ventricular radial glia (RG-vRG), truncated radial glia (RG-tRG), outer radial glia 890 
(RG-oRG), intermediate progenitor cell for excitatory neurons (IPC-EN), newborn excitatory 891 
neuron (EN-Newborn), immature intratelencephalic neuron (EN-IT-Immature), layer 2–3 892 
intratelencephalic neuron (EN-L2_3-IT), layer 4 intratelencephalic neuron (EN-L4-IT), layer 5 893 
intratelencephalic neuron (EN-L5-IT), layer 6 intratelencephalic neuron (EN-L6-IT), immature 894 
non-intratelencephalic neuron (EN-Non-IT-Immature), layer 5 extratelencephalic neuron (EN-895 
L5-ET), layer 5–6 near-projecting neuron (EN-L5_6-NP), layer 6 corticothalamic neuron (EN-896 
L6-CT), layer 6b neuron (EN-L6b), immature dorsal lateral ganglionic eminence inhibitory 897 
neuron (IN-dLGE-Immature), immature caudal ganglionic eminence inhibitory neuron (IN-898 
CGE-Immature), VIP inhibitory neuron (IN-CGE-VIP), SNCG inhibitory neuron (IN-CGE-899 
SNCG), LAMP5 inhibitory neuron (IN-Mix-LAMP5), immature medial ganglionic eminence 900 
inhibitory neuron (IN-MGE-Immature), SST inhibitory neuron (IN-MGE-SST), PVALB 901 
inhibitory neuron (IN-MGE-PV), intermediate progenitor cell for glia (IPC-Glia), immature 902 
astrocyte (Astrocyte-Immature), protoplasmic astrocyte (Astrocyte-Protoplasmic), fibrous 903 
astrocyte (Astrocyte-Fibrous), oligodendrocyte precursor cell (OPC), immature oligodendrocyte 904 
(Oligodendrocyte-Immature), oligodendrocyte (Oligodendrocyte), Cajal-Retzius cell, microglia 905 
(Microglia), and vascular cell (Vascular). 906 

 907 

Cell type proportion analysis 908 

The investigation of variations in cell type proportions across different age groups and brain 909 
regions was conducted using a linear model approach implemented in the R packages speckle 910 
(v1.2.0)102 and limma (v3.58.1)103. To determine changes in cell type proportions over time, we 911 
logit-transformed the proportions within each sample and fitted a linear model (~ log2_age + 912 
region) using limma. Moreover, to address the potential correlation among samples from the 913 
same individual, the duplicateCorrelation function in limma was applied. Once the model was fit, 914 
a moderated t-test with empirical Bayes shrinkage was used to test the statistical significance of 915 
the log2_age coefficient for each cell type. To determine cell type proportion differences between 916 
PFC and V1, a similar analysis was done, but only samples in the third trimester and older were 917 
used. Cell types with Benjamini–Hochberg adjusted P-values < 0.05 were determined significant 918 
(Supplementary Table 3). 919 

 920 

Transcription factor motif enrichment analysis 921 

The per-cell regulatory activities of transcription factors (TFs) were quantified by chromVAR 922 
(v1.16.0)104. In brief, peaks were combined by removing any peaks overlapping with a peak with 923 
a greater signal, and only peaks with a width greater than 75bp were retained for motif 924 
enrichment analysis. We computed the per-cell enrichment of curated motifs from the 925 
JASPAR2020 database105. In total, 633 unique human transcriptional factors were assigned to 926 
their most representative motifs. The per-cell-type transcriptional activity of each TF was 927 
represented by averaging the per-cell chromVAR scores within the cell type, and the cell-type-928 
specific TFs were chosen for further analysis and visualization (Supplementary Table 4). 929 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2024.01.16.575956doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.16.575956
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

 930 

Spatial transcriptomic analysis using Multiplexed Error-Robust Fluorescence in situ 931 
Hybridization (MERFISH) 932 

Spatial transcriptomic analysis using MERFISH was done using the Vizgen MERSCOPE 933 
platform. We designed a customized 300-gene panel composed of cell-type markers 934 
(Supplementary Table 5b) using online tools at https://portal.vizgen.com/. Fresh frozen human 935 
brain tissue samples were sectioned at a thickness of 10 µm using a cryostat and mounted onto 936 
MERSCOPE slides (Vizgen). Sections were fixed with 4% formaldehyde, washed three times 937 
with PBS, photo-bleached for 3 h, and stored in 70% ethanol for up to one week. Hybridizations 938 
with gene probes were performed at 37°C for 36–48 h. Next, sections were fixed using 939 
formaldehyde and embedded in a polyacrylamide gel. After gel embedding, tissue samples were 940 
cleared using a clearing mix solution supplemented with proteinase K for 1–7 days at 37°C until 941 
no visible tissue was evident in the gel. Next, sections were stained for DAPI and PolyT and 942 
fixed with formaldehyde before imaging. The imaging process was done on the MERSCOPE 943 
platform according to the manufacturer’s instructions. Cell segmentation was done using the 944 
Watershed algorithm based on Seed Stain (DAPI) and Watershed Stain (PolyT). 945 

 946 

MERFISH data integration, dimensionality reduction, clustering, cell type assignment, and niche 947 
analysis 948 

Standard MERSCOPE output data were imported into Seurat v5106. We retained high-quality 949 
cells with the following criteria: (1) Cell volume is greater than 10 µm3; (2) Gene expression 950 
count (nCount_Vizgen) is in the range of 25 to 2,000; (3) The number of detected genes 951 
(nFeature_ Vizgen) is greater than 10. Normalization, data scaling, and variable feature detection 952 
were performed using SCTransform v299. The transformed gene-by-cell data matrices for all 953 
cells passing quality control were integrated by reciprocal PCA projections between samples 954 
using 1–30 PCA components. After integration, nearest neighbor analysis was done with 1–30 955 
PCA components. The resulting nearest neighbor graph was used to perform UMAP embedding 956 
and clustering using the Louvain algorithm107. Clusters with markers known to be mutually 957 
exclusive were deemed doublets and discarded. These filtering steps resulted in 404,030 cells in 958 
the final dataset (Supplementary Table 6). The identity of specific cell types was determined 959 
based on the expression of known marker genes, as is shown in Extended Data Fig. 4b. Niches 960 
were identified by k-means clustering cells based on the identities of their 50 nearest spatial 961 
neighbors. 962 

 963 

Frozen section staining to quantify the distribution of inhibitory neurons 964 

GW23–24 human cortical samples were fixed in 4% paraformaldehyde in PBS at 4 °C overnight. 965 
The samples were cryoprotected in 15% and 30% sucrose in PBS and frozen in OCT. Samples 966 
were sectioned at a thickness of 16 µm, air-dried, and rehydrated in PBS. Antigen retrieval was 967 
carried out using citrate-based Antigen Unmasking Solution (Vector Laboratory) at 95 °C for 968 
15 min. The slides were then washed in PBS and blocked in PBS-based blocking buffer 969 
containing 10% donkey serum, 0.2% gelatin, and 0.1% Triton X-100 at room temperature for 970 
1 h. After blocking, slides were incubated with primary antibodies in the blocking buffer at 4°C 971 
overnight. The slides were washed in PBS and 0.1% Triton X-100 (PBST) three times and 972 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2024.01.16.575956doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.16.575956
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

incubated with secondary antibodies in the blocking buffer at room temperature for 2 h. The 973 
slides were then washed in PBST three times as described above, counterstained with DAPI, and 974 
washed in PBS once more. Slides were mounted with coverslips using ProLong Gold 975 
(Invitrogen). Confocal tiled images were acquired with a Zeiss LSM900 microscope using a 20× 976 
air objective. Acquired images were processed using Imaris v9.7 (Oxford Instruments) and 977 
Fiji/ImageJ v1.54108. The following antibodies were used: NR2F2 (Abcam, ab211777, 1:250) 978 
and LHX6 (Santa Crux, sc-271433, 1:250). 979 

 980 

Neighborhood enrichment and intercellular communication modeling 981 

To evaluate the spatial proximity of cell types in each sample, we obtained a neighborhood 982 
enrichment z-score using the nhood_enrichment function from Squidpy (v1.2.3)109. The graph 983 
neural network-based node-centric expression modeling (NCEM v0.1.4) method31 was used for 984 
intercellular communication modeling (Supplementary Table 7). A node-centric linear expression 985 
analysis was implemented to predict gene expression states from both cell type annotations and 986 
the surrounding neighborhood of each cell, where dependencies between sender and receiver cell 987 
types were constrained by the connectivity graph with a mean number of neighbors around 10 988 
for each cell within each sample. One exception is that sample ARKFrozen-65-V1 was randomly 989 
downsampled to 60,000 cells to ensure it has a similar neighborhood size to other samples. 990 
Significant interactions were called if the magnitude of interactions (the Euclidean norm of 991 
coefficients in the node-centric linear expression interaction model) was above 0.5 and at least 25 992 
differentially expressed genes (q value < 0.05 for specific sender-receiver interaction terms) were 993 
detected. For visualization purposes, only significant interactions were plotted in circular plots. 994 

 995 

Quantification of ligand-receptor (LR) communication using CellChat 996 

We implemented CellChat (v1.6.1)32 to quantify the strength of interactions among cell types 997 
using default parameter settings (Supplementary Table 8). After normalization, the batch-998 
corrected gene expression data from all 232,328 nuclei were taken as the CellChat input. We 999 
considered all curated ligand-receptor pairs from CellChatDB, where higher expression of 1000 
ligands or receptors in each cell type was identified to compute the probability of cell-type-1001 
specific communication at the LR pair level (refer to the original publication for details). We 1002 
filtered out the cell-cell communication if less than ten cells in the outgoing or incoming cell 1003 
types expressing the ligand or receptor, respectively. The computed communication network was 1004 
then summarized at a signaling pathway level and was aggregated into a weighted-directed graph 1005 
by summarizing the communication probability. The calculated weights represent the total 1006 
interaction strength between any two cell types. The statistically significant LR communications 1007 
between the two groups were determined by one-sided permutation tests, where P value < 0.05 is 1008 
considered significant. 1009 

 1010 

Organotypic slice culture and treatment with somatostatin receptor agonists 1011 

Primary cortical tissue from GW 16–24 was maintained in artificial cerebrospinal fluid (ACSF) 1012 
containing 110 mM Choline chloride, 2.5 mM KCl, 7 mM MgCl2, 0.5 mM CaCl2, 1.3 mM 1013 
NaH2PO4, 25 mM NaHCO3, 10 mM D-(+)-glucose, and 1 × Penicillin-Streptomycin. Before use, 1014 
ACSF was bubbled with 95% O2/5% CO2. Cortical tissue was embedded in a 3.5% or 4% low-1015 
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melting agarose gel. Embedded tissue was acutely sectioned at 300 μm thickness using a Leica 1016 
VT1200 vibratome before being plated on Millicell inserts (Millipore, PICM03050) in 6-well 1017 
tissue culture plates. Tissue slices were cultured at the air-liquid interface in media containing 1018 
32% HBSS, 60% Basal Medium Eagle, 5% FBS, 1% glucose, 1% N2 and 1 × Penicillin-1019 
Streptomycin-Glutamine. Slices were maintained for 12 h in culture at 37°C for recovery. After 1020 
recovery, slices were grown in the presence of 1 μM Octreotide (SelleckChem, P1017), 4 μM 1021 
(1R,1'S,3'R/1R,1'R,3'S)-L-054,264 (TOCRIS, 2444), or without any compound as a control. 1022 
Slices were maintained for 72 hours in culture at 37°C, and the medium was changed every 24 1023 
hours. 1024 

 1025 

10x fixed single-cell RNA Profiling of cultured slices treated with somatostatin receptor agonists 1026 

The cultured slices treated with somatostatin receptor agonists were fixed using the Chromium 1027 
Next GEM Single Cell Fixed RNA Sample Preparation Kit (10x Genomics, 1000414) according 1028 
to the manufacturer’s instructions. In brief, slices were finely minced on the pre-chilled glass 1029 
petri dish, transferred into 1 mL fixation buffer, incubated at 4°C for 18 hours, and stored at -1030 
80°C with 10% enhancer and 10% glycerol. After collecting all samples from six experimental 1031 
batches, the stored samples were manually dissociated using Liberase TL (Sigma, 5401020001). 1032 
Dissociated cells were counted using a hemocytometer and then proceeded to fixed single-cell 1033 
RNA sequencing following the 10X Chromium Fixed RNA Profiling Reagent Kits (for 1034 
Multiplexed Samples) user guide. Briefly, fixed single-cell suspensions were mixed with Human 1035 
WTA Probes BC001–BC016, hybridized overnight (18 hours) at 42°C, washed individually, and 1036 
pooled after the washing. Gene expression libraries were pooled and sequenced on the NovaSeq 1037 
X sequencing platform, targeting 20,000 read pairs per cell. 1038 

The Cell Ranger multi pipeline was implemented for cell barcode calling, read alignment, and 1039 
quality assessment using the human probe set reference 1040 
(Chromium_Human_Transcriptome_Probe_Set_v1.0.1_GRCh38-2020-A) following the 1041 
protocols described by 10x Genomics. The overall summary of data quality for each sample is 1042 
listed in Supplementary Table 9. Next, we further assessed the data at the individual cell level 1043 
and retained high-quality cells with the number of detected genes (nFeature_RNA) greater than 1044 
500. Doublets were removed using the R package scDblFinder (v1.18.0)110 with default settings. 1045 
Normalization and data scaling were performed using SCTransform v299. The transformed gene-1046 
by-cell data matrices for all cells passing quality control were integrated by reciprocal PCA 1047 
projections between samples using 1–30 PCA components. After integration, nearest neighbor 1048 
analysis was done with 1–30 PCA components. The resulting nearest neighbor graph was used to 1049 
perform UMAP embedding and clustering using the Louvain algorithm107. Clusters with fewer 1050 
UMI counts and markers known to be mutually exclusive were deemed low quality and 1051 
discarded. These filtering steps resulted in 132,856 cells in the final dataset (Supplementary 1052 
Table 10). The identity of specific cell types was determined based on the expression of known 1053 
marker genes, as is shown in Extended Data Fig. 8b. 1054 

 1055 

Differential gene expression analysis to determine the effects of somatostatin receptor agonists 1056 

Pseudobulk differential gene expression analysis was done using the pseudoBulkDGE function 1057 
from the R package scran (1.32.0). UMI counts were aggregated across cell types, individual 1058 
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patients, and treatment conditions. Pseudobulk samples with less than 10 cells were discarded. 1059 
Next, we fitted the pseudobulked count data to a fixed-effect limma-voom model (~ Patient_ID + 1060 
Treatment). Once the model was fit, moderated t-tests were used to determine statistical 1061 
significance through limma’s standard pipeline (Supplementary Table 11). The resulting 1062 
moderated t-statistics of each gene were ranked and used as input for gene set enrichment 1063 
analysis (GSEA) using the R package clusterProfiler111. GSEA was carried out against gene sets 1064 
defined by the terms of biological processes in gene ontology (Supplementary Table 12). Only 1065 
pathway sets with gene numbers between 10 and 500 were used for the analysis. 1066 

 1067 

Gene regulatory network analysis 1068 

We implemented the SCENIC+ (v0.1.dev448+g2c0bafd) workflow33 to build gene regulatory 1069 
networks of the developing human neocortex based on the snMultiome data. As running the 1070 
workflow on all nuclei is memory intensive, we subsampled 10,000 representative nuclei by 1071 
geometric sketching112 to accelerate the analyses while preserving rare cell states and the overall 1072 
data structure. First, MACS2 was used for consensus peak calling in each cell type96. Each peak 1073 
was extended for 250bp in both directions from the summit. Next, weak peaks were removed, 1074 
and the remaining peaks were summarized into a peak-by-nuclei matrix. Topic modeling was 1075 
performed on the matrix by pycisTopic113 using default parameters, and the optimal number of 1076 
topics (48) was determined based on log-likelihood metrics. Three different methods were used 1077 
in parallel to identify candidate enhancer regions: (1) Regions of interest were selected by 1078 
binarizing the topics using the Otsu method; (2) Regions of interest were selected by taking the 1079 
top 3,000 regions per topic; (3) Regions of interest were selected by calling differentially 1080 
accessible peaks on the imputed matrix using a Wilcoxon rank sum test (logFC  >  0.5 and 1081 
Benjamini–Hochberg adjusted P values  <  0.05). Pycistarget and discrete element method 1082 
(DEM) based motif enrichment analysis were then implemented to determine if the candidate 1083 
enhancers were linked to a given TF114. Next, eRegulons, defined as TF-region-gene triplets 1084 
consisting of a specific TF, all regions that are enriched for the TF-annotated motif, and all genes 1085 
linked to these regions, were determined by a wrapper function provided by SCENIC+ using the 1086 
default settings. We applied a standard eRegulon filtering procedure: (1) Only eRegulons with 1087 
more than ten target genes and positive region-gene relationships were retained; (2) Only genes 1088 
with top TF-to-gene importance scores were selected as the target genes for each eRegulon; 3) 1089 
eRegulons with an extended annotation was only kept if no direct annotation is available. After 1090 
filtering, 582 eRegulons were retained (Supplementary Table 13). For each retained eRegulon, 1091 
specificity scores were calculated using the RSS algorithm based on region- or gene-based 1092 
eRegulon enrichment scores (AUC scores)115 (Supplementary Table 14). eRegulons with top 1093 
specificity scores in each cell type were selected for visualization. Finally, we extended our 1094 
eRegulon enrichment analysis from the 10,000 sketched nuclei to all 232,328 nuclei by 1095 
computing the gene-based AUC scores for all 582 eRegulons using the R package AUCell 1096 
(v1.20.2)36 with default settings. 1097 

 1098 

Validation of the predicted eRegulons by SCENIC+ 1099 

The predicted open chromatin regions (OCRs) regulated by the selected TFs in SCENIC+ were 1100 
validated using ChIP-seq data described in Loupe et al.34. The data were downloaded from 1101 
https://www.synapse.org/Synapse:syn51942384.1/datasets. We focused on available data for core 1102 
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TFs of eRegulons with > 10,000 ChIP-seq peaks, resulting in 24 datasets for further analysis. For 1103 
each TF, the enrichment of eRegulon-targeted OCRs in the identified ChIP-seq peaks against the 1104 
genomic background was computed as the odds ratio. The p-values were derived from the two-1105 
sided Fisher’s exact test, with corrections for multiple comparisons. The association of OCRs 1106 
with their target genes was validated using long-range H3K4me3-mediated chromatin 1107 
interactions captured by PLAC-seq35, where pairs with overlaps of both interaction bins were 1108 
considered. The overrepresentation of OCR-to-gene interactions was tested using the two-sided 1109 
Fisher's exact test. 1110 

 1111 

Trajectory inference and trajectory-based differential expression analysis 1112 

Cells belonging to excitatory neuronal lineages, including radial glial cells, IPC-EN, and 1113 
glutamatergic neurons, were selected from the whole dataset for trajectory inference using 1114 
Slingshot (v2.6.0)39. A weighted nearest neighbor graph was re-calculated on the subset using 1–1115 
50 PCA components and 2–40 LSI components. Dimension reduction was performed based on 1116 
the calculated nearest neighbor graph, generating an 8-dimensional UMAP embedding. We 1117 
identified 23 clusters in this UMAP space after removing one outlier cluster using mclust116 . 1118 
Next, we identified the global lineage structure with a cluster-based minimum spanning tree 1119 
(MST). The cluster containing RG-vRG was set as the starting cluster, and those containing 1120 
terminally differentiated cells were set as ending clusters (Extended Data Fig. 11a). 1121 
Subsequently, we fitted nine simultaneous principal curves to describe each of the nine lineages, 1122 
obtaining each cell’s weight based on its projection distance to the curve representing that 1123 
lineage. Pseudotimes were inferred based on the principal curves, and shrinkage was performed 1124 
for each branch for better convergence (Supplementary Table 16). Finally, the principal curves in 1125 
the 8-dimensional UMAP space were projected to a 2-dimensional UMAP space for 1126 
visualization. 1127 

 1128 

Identification of eRegulon modules 1129 

To model the activity of eRegulons along inferred trajectories, we fitted gene-based eRegulon 1130 
AUC scores against pseudotimes by a generalized additive model (GAM) using tradeSeq 1131 
(v1.12.0)40. As AUC scores can be seen as proportions data on (0,1), instead of the default 1132 
negative binomial GAM, we fitted a beta GAM with six knots in tradeSeq. Fitted values from the 1133 
tradeSeq models were extracted using the predictSmooth function, with 100 data points along 1134 
each trajectory. The oRG&tRG trajectory was removed because we focused on excitatory 1135 
neuronal lineages for eRegulon analysis. Based on fitted AUC values, six eRegulon modules 1136 
were identified by k-means clustering (Supplementary Table 17a). 1137 

 1138 

Gene ontology enrichment analysis for eRegulon modules 1139 

The one-sided hypergeometric test implemented in clusterProfiler v4.0.5111 was used to identify 1140 
overrepresented gene ontology (biological pathway) in each eRegulon module (Supplementary 1141 
Table 17b). Genes present in at least 8% of all eRegulons in a module were regarded as the core 1142 
target genes of that module. Module-specific core target gene sets were used as input gene sets. 1143 
The union of target genes of any eRegulon was used as the background. 1144 
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 1145 

Differential gene expression analysis between common and V1-specific EN-L4-IT 1146 

To identify genes differentially expressed between common and V1-specific EN-L4-IT, we first 1147 
selected all EN-L4-IT nuclei and determined their subtype identity (common or V1-specific) 1148 
based on markers and tissue of origin (Extended Data Fig. 12a,b). We then aggregated counts 1149 
across samples and subtypes to generate pseudobulk samples. Differential gene expression 1150 
analysis was done by fitting the pseudobulked count data to a generalized linear mixed model (~ 1151 
subtype + log2_age + [1 | dataset]) using the R package glmmSeq (v0.5.5)117. Size factors and 1152 
dispersion were estimated using the R package edgeR (v3.42.4)118. Once the model was fit, 1153 
likelihood ratio tests were used to determine statistical significance using (~log2_age + [1 | 1154 
dataset]) as the reduced model. Genes with Benjamini–Hochberg adjusted P-values < 0.05 were 1155 
determined significant (Supplementary Table 18). 1156 

 1157 

Identification of key eRegulons that regulate neuronal lineage divergence 1158 

Based on the principal curves, five bifurcation points (BPs) were identified along neuronal 1159 
differentiation. To identify genes that are differentiating around a BP of the trajectory, we 1160 
performed an earlyDETest using tradeSeq. Specifically, we first separated the pseudotimes into 1161 
five consecutive segments (Extended Data Fig. 11g). We then compared the expression patterns 1162 
of gene-based eRegulon AUCs along pseudotime between lineages by contrasting 12 equally 1163 
spaced pseudotimes within segments that enclose the BP (Supplementary Table 19). We included 1164 
segments 2–3 for BP1, segments 3–4 for BP2, and segments 4–5 for BP3, BP4, and BP5. 1165 

 1166 

Isolation and in vitro culture of glial progenitors from late second-trimester human cortex 1167 

Glial progenitor cells were isolated from GW20–24 human dorsal cortical tissue samples. The 1168 
ventricular zone/inner subventricular zone (VZ/iSVZ) and outer subventricular zone (oSVZ) 1169 
were dissected and dissociated using the Papain Dissociation System (Worthington 1170 
Biochemical). Dissociated cells were layered onto undiluted papain inhibitor solution 1171 
(Worthington Biochemical) and spun down at 70 × g for 6 min to eliminate debris. The cell pellet 1172 
was resuspended in 10 mL complete culture medium (DMEM/F12, 2 mM GlutaMAX, 2% B27 1173 
without vitamin A, 1% N2, and 1 × Penicillin-Streptomycin) and incubated at 37°C for 3 h for 1174 
surface antigen recovery. From this point on, cells were handled on ice or at 4°C. Cells were 1175 
washed once with staining buffer (Hank’s Balanced Salt Solution [HBSS] without Ca2+ and 1176 
Mg2+, 10 mM HEPES pH 7.4, 1% BSA, 1 mM EDTA, 2% B27 without vitamin A, 1% N2, and 1 1177 
× Penicillin-Streptomycin), spun down at 300 × g for 5 min, and resuspended in staining buffer 1178 
to a density of 1 × 108 cells/mL. Cells were blocked by FcR Blocking Reagent (Miltenyi 1179 
Biotech, 1:20) for 10 min, followed by antibody incubation for 30 min. Antibodies used for 1180 
fluorescence-activated cell sorting (FACS) include FITC anti-EGFR (Abcam, ab11400), PE anti-1181 
F3 (Biolegend, 365204), PerCP-Cy5.5 anti-CD38 (BD Biosciences, 551400), Alexa Fluor 647 1182 
anti-PDGFRA (BD Biosciences, 562798), and PE-Cy7 anti-ITGA2 (Biolegend, 359314). All 1183 
antibodies were used at 1:20 dilution. After incubation, cells were washed twice in staining 1184 
buffer, resuspending in staining buffer containing Sytox Blue (Invitrogen), and sorted using BD 1185 
FACSAria II sorters. Cells were sorted into collection buffer (HBSS without Ca2+ and Mg2+, 10 1186 
mM HEPES pH 7.4, 5% BSA, 2% B27 without vitamin A, 1% N2, and 1 × Penicillin-1187 
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Streptomycin). After sorting, cells were spun down at 300 × g for 5 min, resuspended in 1188 
complete culture medium, and plated onto glass coverslips pre-coated with poly-D-lysine and 1189 
laminin at a density of 2.5 × 104 cells/cm2. Cells were cultured in a humidified incubator with 1190 
5% CO2 and 8% O2. Half of the medium was changed with fresh medium every 3–4 days until 1191 
harvest at the indicated time. 1192 
 1193 

Immunostaining of cultured cells and confocal imaging 1194 

On DIV0 and DIV14, glial progenitors or their progenies were fixed with 4% formaldehyde/4% 1195 
sucrose in PBS and permeabilized/blocked with PBS-based blocking buffer containing 10% 1196 
donkey serum, 0.2% gelatin, and 0.1% Triton X-100 at room temperature for 1 h. Samples were 1197 
then incubated with primary antibodies diluted in the blocking buffer at 4 °C overnight. The next 1198 
day, samples were washed in PBS three times and incubated with secondary antibodies in the 1199 
blocking buffer at room temperature for 1 h. Samples were then washed twice in PBS, 1200 
counterstained with DAPI, and washed in PBS again. Z-stack images were acquired with a Leica 1201 
TCS SP8 using a 25× water immersion objective. Acquired images were processed using Imaris 1202 
v9.7 (Oxford Instruments) and Fiji/ImageJ v1.54 108. The following antibodies were used: 1203 
TFAP2C (R&D systems, AF5059, 1:50), CRYAB (Abcam, ab13496, 1:200), OLIG2 (Abcam, 1204 
ab109186, 1:150), EGFR (Abcam, ab231, 1:200), SPARCL1 (R&D systems, AF2728, 1:50), 1205 
DLX5 (Sigma, HPA005670, 1:100), and NeuN (EMD Millipore, ABN90, 1:250). 1206 

 1207 

Single-cell RNA-seq analysis of glial progenitor differentiation 1208 

Glial progenitors were either immediately subjected to single-cell RNA-seq or cultured in vitro 1209 
for 7 and 14 days before single-cell RNA-seq. In the latter cases, cells were released using the 1210 
Papain Dissociation System (Worthington Biochemical) without DNase for 20 min. Released 1211 
cells were washed twice in HBSS without Ca2+ and Mg2+ supplemented with 0.04% BSA, spun 1212 
down at 250 × g for 5 min, and resuspended in HBSS without Ca2+ and Mg2+ supplemented with 1213 
0.04% BSA. Cells were counted using a hemocytometer, diluted to ~1000 nuclei/μL, and further 1214 
processed following the 10x Genomics Chromium Single Cell 3’ Reagent Kits User Guide (v3.1 1215 
Chemistry). We targeted 10,000 cells per sample per reaction. Libraries from individual samples 1216 
were pooled and sequenced on the NovaSeq 6000 sequencing system, targeting 22,500 read pairs 1217 
per cell. 1218 

The raw sequencing signals in the BCL format were demultiplexed into fastq format using the 1219 
“mkfastq” function in the Cell Ranger suite (v.7.1.0, 10x Genomics). Cell Ranger count pipeline 1220 
was implemented for cell barcode calling, read alignment, and quality assessment using the 1221 
human reference genome (GRCh38, GENCODE v32/Ensembl98) following the protocols 1222 
described by 10x Genomics. The pipeline assessed the overall quality to retain all intact cells 1223 
from the background and filtered out non-cell associated reads. All gene expression libraries in 1224 
this study showed a high fraction of reads in cells, indicating high RNA content in called cells 1225 
and minimal levels of ambient RNA detected. The overall summary of data quality for each 1226 
sample is listed in Supplementary Table 15. Next, we further assessed the data at the individual 1227 
cell level and retained high-quality cells with the following criteria: (1) The number of detected 1228 
genes (nFeature_RNA) is greater than 1000 and less than 10,000; (2) less than 10% of all reads 1229 
mapped to mitochondrial genes. Raw counts were log-normalized with a size factor of 10,000. 1230 
The first 30 principal components were used to construct the nearest neighbor graph, and 1231 
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Louvain clustering was used to identify clusters. Clusters with significantly fewer UMI counts, 1232 
likely consisting of low-quality, dying cells, were also excluded for further analysis. The identity 1233 
of specific cell types was determined based on the expression of known marker genes (Extended 1234 
Data Fig. 15e, Supplementary Table 21). The 10 identified cell types were dividing cell 1235 
(Dividing), radial glia (RG), ependymal cell (Ependymal cell), intermediate progenitor cell for 1236 
excitatory neurons (IPC-EN), tripotential intermediate progenitor cell (Tri-IPC), astrocyte 1237 
(Astrocyte), oligodendrocyte precursor cell (OPC), intermediate progenitor cell for inhibitory 1238 
neurons (IPC-IN), and inhibitory neurons (IN). 1239 

 1240 

Classification of glial progenitor-derived cells by SingleCellNet 1241 

To determine the similarity between glial progenitor-derived cells and our atlas data, we applied 1242 
SingleCellNet (v0.1.0), a random-forest-based cell type classification method53. Specifically, we 1243 
randomly selected 700 cells from each cell type as the training set. We found the top 60 most 1244 
differentially expressed genes per cell type, and then ranked the top 150 gene pairs per cell type 1245 
from those genes. The preprocessed training data were then transformed according to the 1246 
selected gene pairs and were used to build a multi-class classifier of 1000 trees. Additionally, we 1247 
created 400 randomized cell expression profiles to train up an “unknown” category in the 1248 
classifier. After the classifier was built, we selected 165 cells from each cell type from the held-1249 
out data, along with another 165 randomized cells, and assessed the performance of the classifier 1250 
on the held-out data using Precision-Recall curves, obtaining an average AUPRC of 0.827. To 1251 
classify Tri-IPC-derived inhibitory neurons, we transformed the query data with top pairs 1252 
selected from the optimized training data and classified it with the trained classifier. Here, we 1253 
chose a classification score threshold of 0.2, and cells with scores below this threshold were 1254 
assigned as unmapped. 1255 

 1256 

Clonal analysis of glial progenitors 1257 

For clonal analysis, samples for FACS were processed as above with the following changes: 1258 
individual tRG, oRG, or Tri-IPC was sorted using a BigFoot Spectral Cell Sorter (Thermo 1259 
Fisher) via single-cell precision mode into a single well of 96-well glass-bottom plates pre-1260 
coated with polyethylenimine and laminin containing 100 μL complete culture medium. For tRG 1261 
and oRG, the complete culture medium was supplemented with 10 ng/mL FGF2 to promote 1262 
initial cell survival and proliferation. The culture medium was changed weekly for a total of two 1263 
weeks. After two weeks, cells were fixed and stained in the same way as mentioned above. The 1264 
following antibodies were used: EOMES (Abcam, ab23345, 1:200), OLIG2 (EMD Millipore, 1265 
MABN50, 1:200), EGFR (Abcam, ab231, 1:200), SPARCL1 (R&D systems, AF2728, 1:50), 1266 
SOX10 (Santa Cruz, sc-365692, 1:50) and DLX5 (Sigma, HPA005670, 1:100). 1267 

 1268 

Glial progenitor slice transplantation assay 1269 

Glial progenitors were isolated from GW 20–24 primary cortical tissue by FACS, as mentioned 1270 
above. About 200,000 Cells were spun down at 300 × g for 5 min and resuspended in 0.5 mL 1271 
complete culture medium containing 1 × 107 PFU CMV-GFP adenoviruses (Vector Biolabs). 1272 
Next, cells were incubated in a low attachment plate for 1 hour under the normal culture 1273 
condition. After infection, cells were washed twice with complete culture medium containing 1274 
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0.3% BSA and resuspended in slice culture medium. About 25,000 cells were transplanted onto 1275 
the oSVZ of freshly prepared slices through a pipette. Slices were maintained for 8 days in 1276 
culture at 37°C, and the medium was changed every other day. 1277 

After 8 days in culture, slices were fixed with 4% formaldehyde in PBS at room temperature for 1278 
1 h, followed by permeabilization and blocking with PBS-based blocking buffer containing 10% 1279 
donkey serum, 0.2% gelatin, and 1% Triton X-100 at room temperature for 1 h. Samples were 1280 
then incubated with primary antibodies diluted in the blocking buffer at 4 °C for 48 h. Two days 1281 
later, samples were washed in PBS plus 0.1% Triton X-100 four times and incubated with 1282 
secondary antibodies in the blocking buffer at 4 °C for 24 h. After secondary antibody 1283 
incubation, samples were washed twice in PBS plus 0.1% Triton X-100, counterstained with 1284 
DAPI, and washed in PBS again. Z-stack images were acquired with a Leica TCS SP8 using a 1285 
25× water immersion objective. Acquired images were processed using Imaris v9.7 (Oxford 1286 
Instruments) and Fiji/ImageJ v1.54 108. The following antibodies were used: GFP (Aveslabs, 1287 
GFP-1020, 1:1,000), EOMES (Abcam, ab23345, 1:200), NeuN (EMD Millipore, ABN90, 1288 
1:250), OLIG2 (EMD Millipore, MABN50, 1:200), EGFR (Abcam, ab32077, 1:200), DLX5 1289 
(Sigma, HPA005670, 1:100), and SPARCL1 (R&D systems, AF2728, 1:50). 1290 

 1291 

Glial progenitor xenograft assay 1292 

FACS-sorted Tri-IPCs (60,000 cells) were spun down and resuspended in Leibovitz's L-15 1293 
medium with DNAse I (180 μg/ml). Immediately before transplantation, cells were further 1294 
concentrated by centrifugation (4 min, 800 × g) and resuspended in 2 μL Leibovitz's L-15 with 1295 
DNAse I. Cell suspension was loaded into beveled glass micropipettes (about 70–90 μm in 1296 
diameter, Wiretrol 5 μl, Drummond Scientific Company) prefilled with mineral oil and mounted 1297 
on a microinjector. Recipient mice (NSG, JAX 005557, postnatal day 5) were anesthetized by 1298 
hypothermia (about 4 minutes) and positioned in a clay head mold to stabilize the skull119. 1299 
Micropipettes were positioned vertically in a stereotactic injection apparatus. Injections were 1300 
performed in both the left and right hemispheres perpendicular to the skin surface. Eye 1301 
coordinates were x: 1.5, y: 3.6. Fifty nanoliters of cell suspension were released at z: 0.2, 0.4, 1302 
0.8, and 1 from the surface of the skin. Mice were returned to their litters after injection. 1303 

 1304 

Immunostaining of xenografted human cells 1305 

Twelve weeks after injection, the recipient mice were perfused with 4% paraformaldehyde 1306 
(PFA) and post-fixed in 4% PFA at 4 °C overnight. The samples were cryoprotected in 15% and 1307 
30% sucrose in PBS and frozen in OCT. Samples were sectioned at a thickness of 16 µm, air-1308 
dried, and rehydrated in PBS. Immunostaining was done in the same way as described above for 1309 
human brain sections. Confocal images were acquired with a Leica TCS SP8 using a 20× oil 1310 
immersion objective. Acquired images were processed using Fiji/ImageJ v1.54108. The following 1311 
antibodies were used: Human Nuclear Antigen (Abcam, ab191181, 1:200), GABA (Sigma, 1312 
A2052, 1:250), GFAP (Invitrogen, 13-0300, 1:300), and SOX10 (R&D Systems, AF2864, 1:50). 1313 

 1314 

Classification of Tri-IPC-derived inhibitory neurons 1315 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2024.01.16.575956doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.16.575956
http://creativecommons.org/licenses/by-nc-nd/4.0/


 37 

Human ganglionic eminence single-cell RNA-seq data from Shi et al.51 were downloaded from 1316 
GEO (GSE135827) and used as the reference. We integrated all samples using the RPCA 1317 
methods, subset the data to focus on cells from the ganglionic eminence, re-clustered the cells, 1318 
and annotated interneuron subtypes based on marker genes reported in the literature52 (Extended 1319 
Data Fig. 17a,b). 1320 

To determine the identity of Tri-IPC-derived inhibitory neurons based on the reference dataset, 1321 
we applied SingleCellNet in a similar way as mentioned above with the following parameter 1322 
modifications. We randomly selected 400 cells from each cell type as the training set. We found 1323 
the top 200 most differentially expressed genes per cell type, and then ranked the top 200 gene 1324 
pairs per cell type from those genes. The preprocessed training data were then transformed 1325 
according to the selected gene pairs and were used to build a multi-class classifier of 1000 trees. 1326 
Additionally, we created 400 randomized cell expression profiles to train up an “unknown” 1327 
category in the classifier. After the classifier was built, we selected 100 cells from each cell type 1328 
from the held-out data, along with another 100 randomized cells, and assessed the performance 1329 
of the classifier on the held-out data using Precision-Recall curves, obtaining an average AUPRC 1330 
of 0.901. To classify Tri-IPC-derived inhibitory neurons, we transformed the query data with top 1331 
pairs selected from the optimized training data and classified it with the trained classifier. Here, 1332 
we chose a classification score threshold of 0.35, and cells with scores below this threshold were 1333 
assigned as unmapped. 1334 

As an alternative classification method to determine the identity of Tri-IPC-derived inhibitory 1335 
neurons, we performed mutual nearest neighbors-based label transfer using the MapQuery() 1336 
function in Seurat v4. The first 30 principal components were used to identify transfer anchors. 1337 
Cell type labels from Shi et al. were transferred to Tri-IPC-derived inhibitory neurons when 1338 
confidence was high (prediction score > 0.5). Cells with prediction scores equal to or lower than 1339 
0.5 were labeled as unmapped. 1340 

 1341 

Classification of Tri-IPC-derived astrocytes 1342 

Mouse single-cell RNA-seq data from Di Bella et al.55 were downloaded from the Single Cell 1343 
Portal (SCP1290) and used as the reference. We subset the data and focused on astrocytes and 1344 
cycling glial cells (defined by the original authors). These cells were re-clustered and annotated 1345 
as Olig2 or S100a11 lineages based on marker genes reported in the literature54 (Extended Data 1346 
Fig. 17e,f). We used Tri-IPC-derived astrocytes as the query data and applied SingleCellNet in 1347 
the same way as for Tri-IPC-derived inhibitory neurons. We also applied Seurat label transfer in 1348 
the same way, except that 20 principal components were used to identify transfer anchors. 1349 

We also used astrocytes at the infancy stage from our snMultiome data, when we were able to 1350 
distinguish the two astrocyte lineages, as the reference. We selected the astrocytes at infancy 1351 
from the whole dataset and redid nearest neighbor analysis with 1–50 PCA components (already 1352 
computed after SCTransform and RPCA integration). These cells were re-clustered on the basis 1353 
of the resulting nearest neighbor graph and annotated on the basis of marker genes reported in 1354 
the literature54 (Extended Data Fig. 17i,j). We used Tri-IPC-derived astrocytes as the query data, 1355 
which was re-processed in the same way as snMultiome data, including SCTransform v2 1356 
modeling and cell cycle regression. SingleCellNet was applied in the same way as above. For 1357 
Seurat label transfer, the first 50 principal components were used to identify transfer anchors. 1358 
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 1359 

Classification of human glioblastoma multiforme cells 1360 

We obtained single-cell and single-nucleus RNA-seq data of human glioblastoma multiforme 1361 
cells from the extended GBmap58, downloaded from cellxgene 1362 
(https://datasets.cellxgene.cziscience.com/ead761be-309f-4b79-8208-41da14ca305f.h5ad). 1363 
Using the snMultiome atlas data as a reference, we applied SingleCellNet to identify the 1364 
corresponding cell types of malignant cells in the GBmap. SingleCellNet was executed using the 1365 
same parameters that were previously applied for the classification of glial progenitor-derived 1366 
cells. Our analysis yielded an average AUPRC of 0.832. For classification, we set a score 1367 
threshold of 0.15; cells with scores below this threshold were designated as unmapped. 1368 

 1369 

Building single-cell risk map for cognitive traits and brain disorders by SCAVENGE 1370 

We implemented SCAVENGE (v1.0.2)62 to integrate the snATAC-seq part of the snMultiome 1371 
data with GWAS data of four cognitive traits (fluid intelligence, processing speed, executive 1372 
function, and working memory) and five neuropsychiatric disorders (autism spectrum disorder 1373 
[ASD], major depressive disorder [MDD], bipolar disorder [BPD], attention-deficit/hyperactivity 1374 
disorder [ADHD], and schizophrenia [SCZ]). Analysis of Alzheimer’s disorder was included as a 1375 
positive control. For each trait or condition, we performed multi-SNP-based conditional and joint 1376 
association analysis on all GWAS SNPs with default settings. A stepwise model selection 1377 
procedure was implemented to select independently associated SNPs and compute the fine-1378 
mapped posterior probability (PP). The PP was imported for our subsequent gchromVAR 1379 
analysis120, where we built a cell-by-peak count matrix using peak called from integrated 1380 
snATAC-seq data. A gchromVAR score indicating potential GWAS signal enrichment over a set 1381 
of background peaks was calculated for each cell after correcting GC bias. To minimize the batch 1382 
effects, we used the batch-aligned LSI matrix for the nearest neighbor graph construction and 1383 
subsequent network propagation. A trait relevant score (TRS) representing the potential GWAS 1384 
risk association was assigned to each cell to construct the single-cell risk map for cognitive traits 1385 
or neurological disorders. To determine the significant trait-cell association, we considered cells 1386 
receiving the top 0.1% TRS score traits-relevant and permuted the network propagation 1000 1387 
times for statistical significance. Cells with a P value less than 0.05 were defined as trait-1388 
associated. To determine the trait relevance per cell type, we calculated the odds ratio of cells 1389 
associated with each trait in each cell type over the background and determined statistical 1390 
significance by two-sided hypergeometric test followed by Benjamini-Hochberg correction. Cell 1391 
types with FDR < 0.05 and odds ratio > 1.4 were deemed significantly enriched for trait-1392 
associated variants. A similar analysis was done for regions and age groups. Finally, the TRS 1393 
scores were standardized by z transformation for comparison and visualization (Supplementary 1394 
Table 23, Supplementary Table 24). The GWAS data used in this study can be downloaded from 1395 
the following links: fluid intelligence (phenocode 20016), processing speed (phenocode 20023), 1396 
executive function (phenocode 399), and working memory (phenocode 4282): 1397 
https://pan.ukbb.broadinstitute.org/downloads/; ASD: 1398 
https://figshare.com/articles/dataset/asd2019/14671989; MDD: 1399 
https://datashare.ed.ac.uk/handle/10283/3203; BPD: 1400 
https://figshare.com/articles/dataset/bip2021_noUKBB/; ADHD: 1401 
https://figshare.com/articles/dataset/adhd2022/22564390; SCZ: 1402 
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https://figshare.com/articles/dataset/cdg2018-bip-scz/14672019; ALZ: 1403 
https://ctg.cncr.nl/software/summary_statistics. 1404 
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Extended Data Fig. 1 | Filtering of the snMultiome data. a, UMAP plots showing the 
distribution of cell subclasses in the single-nucleus multiome data prior to data filtering. b, 
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UMAP plots showing the distribution of age groups in the single-nucleus multiome data prior to 
data filtering. c, UMAP plots showing the distribution of cells removed during data filtering. d, 
UMAP plots showing the expression levels of genes identified in the striatum (ISL1 and SIX3), 
diencephalon (OTX2 and GBX2), neuronal dendrites (NRGN), and oligodendrocyte processes 
(MBP). e, Classes, subclasses, and types identified from the snMultiome data. 
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Extended Data Fig. 2 | Quality control of the snMultiome data. a, Violin plots, box plots, 
barplots, and UMAP plots of several quality control metrics for evaluating the quality of individual 
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samples in the snMultiome data, including numbers of unique molecular identifiers (# UMIs), 
numbers of identified genes (# genes), number of fragments in ATAC peaks, transcription start site 
(TSS) enrichment scores, and proportion of individual cell types in each sample. The legend for 
cell types can be found in panel b. b UMAP plots of cells from individual snMultiome datasets 
separated by age groups. c, UMAP plots generated based on RNA or ATAC data only. The legend 
can be found in panel a. 
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Extended Data Fig. 3 | Expression patterns of marker genes in the single-nucleus multiome 
data. UMAP plots of all cells showing the expression levels of cell-type-specific marker genes. 
The colored circles and numbers pinpoint specific cell types where the gene is expressed. The 
legend for these numbers can be found in Fig. 1b. 
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Extended Data Fig. 4 | Quality control and annotation of MERFISH data. a, Violin plots, box 
plots, barplots, and UMAP plots of several metadata of MERFISH samples, including numbers of 
detected transcripts (# transcript), numbers of identified genes (# genes), age groups, regions, cell 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2024.01.16.575956doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.16.575956
http://creativecommons.org/licenses/by-nc-nd/4.0/


 47 

types, and niches. b, PCA plots based on cell type proportions for individual snMultiome and 
MERFISH samples in three different age groups. c, UMAP plots of all cells in the MERFISH 
dataset showing the expression levels of cell-type-specific marker genes. 
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Extended Data Fig. 5 | Spatial distribution of cell types in individual MERFISH samples. 
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Extended Data Fig. 6 | Difference in distribution of MGE- and CGE-derived interneurons in 
the second-trimester neocortex. a, Immunostaining of MGE-derived (LGX6+) and CGE-derived 
(NR2F2+) interneurons in the cortex of a gestational week (GW) 24 sample. MZ, marginal zone; 
CP, cortical plate; SP/IZ, subplate/intermediate zone; oSVZ, outer subventricular zone; iSVZ, 
inner subventricular zone; VZ, ventricular zone. b, Odds ratios of the number of CGE-derived 
interneurons in the MZ versus ventricular/subventricular zones relative to the number of MGE-
derived interneurons. Data are presented as mean values with 95% confidence intervals. P values 
were obtained from two-sided Fisher's exact test; ***P < 0.001, ****P < 0.0001. 
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Extended Data Fig. 7 | Intercellular communication between cell types in developing human 
cortex. a, Heatmaps showing neighborhood enrichment z scores of each MERFISH sample. The 
row and column annotations are color-coded by cell types, the legend of which can be found in 
Fig. 2a. When a particular cell type is not present in the dataset, the neighborhood enrichment z 
scores were arbitrarily set to −50. b, Circular maps showing significant intercellular 
communication determined by NCEM in each MERFISH sample. c, Heatmaps showing the 
relative strength of outgoing (left) and incoming (right) signaling pathways in individual cell types. 
The bar graphs on the top and right side of the heatmaps are the sum of communication probability 
(interaction strength) for each cell type and signaling pathway, respectively. 
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Extended Data Fig. 8 | Effects of somatostatin on the transcriptome of excitatory neurons in 
the second-trimester human cortex. a, Violin plots, box plots, barplots, and UMAP plots of 
several metadata of scRNA-seq datasets from organotypic human brain slice cultures treated with 
and without somatostatin receptor agonists, including numbers of unique molecular identifiers (# 
UMIs), numbers of identified genes (# genes), ages, treatments, and cell types. b, UMAP plots of 
cells in the scRNA-seq dataset showing the expression levels of cell-type-specific marker genes. 
c, Gene set enrichment analysis (GSEA) highlighting the effects of L-054,264 and Ostreotide on 
different types of excitatory neurons. Significant terms, defined by Benjamini–Hochberg adjusted 
P values < 0.05, were outlined by a red circle. Abs(NES), absolute values of normalized enrichment 
scores. 
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Extended Data Fig. 9 | SCENIC+ identifies cell-type-specific eRegulons. a, Enrichment of 
eRegulon-predicted TF binding sites in ChIP-seq peaks from the human dorsolateral prefrontal 
cortex. P values were obtained from the two-sided Fisher's exact test and adjusted using the 
Benjamini and Hochberg method. b, Overlap between eRegulon-predicted enhancer-promoter 
interactions and PLAC-seq loops from the developing human cortex. The P value was obtained 
from the two-sided Fisher's exact test. c, Heatmaps showing the min-max normalized TF 
expression levels, region-based AUC scores, and gene-based AUC scores of activator eRegulons 
across cell types. d, Heatmap-dotplots showing the min-max normalized TF expression levels, 
region-based AUC scores, and gene-based AUC scores of selective eRegulons across age groups 
in all cells, Glutamatergic neurons, and GABAergic neurons. 
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Extended Data Fig. 10 | Cell-type-specific gene regulatory networks in the developing cortex. 
a, A heatmap showing Jaccard similarity matrix of target regions of cell-type-specific eRegulons 
listed in Fig. 3a. b, Gene regulatory networks of selective eRegulons in Astrocyte-Protoplasmics 
and OPCs. TF nodes and their links to enhancers are individually colored. The size and the 
transparency of the TF nodes represent their gene expression levels in each cell type. c, Coverage 
plots showing aggregated ATAC profiles across cell types on four genomic loci—SOX6, PDGFRA, 
HOPX, and GAD2. Identified candidate cis-regulatory elements (cCREs) are colored by their 
corresponding eRegulons. Region-to-gene links are shown as arcs and color-scaled based on 
region–gene importance scores obtained from SCENIC+ analysis. 
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Extended Data Fig. 11 | Differentiation trajectories of excitatory neuron lineages. a–e, UMAP 
plots of cells belonging to excitatory neuron lineages with clusters connected by a minimum 
spanning tree showing. The green node indicates the root node, and the red nodes indicate the 
ending nodes. Cells are color-coded by clusters (a), types (b), age groups (c), regions (d), or 
pseudotime (e). f, UMAP plots of each of the nine excitatory neuron lineages colored by 
pseudotime. g, UMAP plots of excitatory neuron lineages colored by the five pseudotime segments 
used for eRegulon activity analysis at bifurcation points. h, UMAP plots highlighting 
representative eRegulons involved in trajectory determination at bifurcation points. 
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Extended Data Fig. 12 | Markers of V1-specific EN-L4-IT subtype. a, UMAP plots of all EN-
L4-IT color-coded by regions (left) and subtypes (right). b, UMAP plots showing the expression 
levels of representative differentially expressed genes between V1-specific and common EN-L4-
IT neurons. c, In situ hybridization (ISH) of V1-biased (CUX1 and KCNIP1), and common-biased 
genes in EN-L4-IT neurons in adult human V1 and V2 areas. d, UMAP plots of EN-L4-IT subtype 
marker genes found in adult human V1. 
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Extended Data Fig. 13 | Markers of human glial cells and their isolation strategies. a, UMAP 
plots of cells belonging to glial lineages color-coded by age groups (left), regions (middle), and 
types (right). b, UMAP plots of cells belonging to glial lineages showing the expression levels of 
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typical marker genes of individual cell types. c, UMAP plots of GW20 to GW23 cells belonging 
to glial lineages color-coded by age groups (left), regions (middle), and types (right). d, UMAP 
plots of GW20 to GW23 cells belonging to glial lineages showing the expression levels of typical 
marker genes of individual cell types. e, UMAP plots of GW20 to GW23 cells belonging to glial 
lineages showing the expression levels of surface markers used for glial progenitor isolation. f, 
Schematic of the sorting strategy for glial progenitors. VZ & iSVZ, ventricular zone and inner 
subventricular zone; oSVZ, outer subventricular zone. 
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Extended Data Fig. 14 | Immunostaining characterization of human glial progenitor 
differentiation. a–d, Immunostaining of isolated glial progenitors on days in vitro 1. e, 
Quantification of six cell types after sorting on days in vitro 1 (n = 5, 5, 5 samples), including RG 
or IPC-EN (TFAP2C+), IPC-Glia (OLIG2+EGFR+), OPC or oligodendrocyte (OLIG2+EGFR−), 
astrocyte (SPARCL1+), EN (NeuN+), and IPC-IN or IN (DLX5+). f–i, Immunostaining of 
progenies of glial progenitors on days in vitro 14. j, Quantification of six cell types after sorting 
on days in vitro 14 (n = 5, 5, 5 samples), including RG or IPC-EN (TFAP2C+), IPC-Glia 
(OLIG2+EGFR+), OPC or oligodendrocyte (OLIG2+EGFR−), astrocyte (SPARCL1+), EN (NeuN+), 
and IPC-IN or IN (DLX5+). 
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Extended Data Fig. 15 | ScRNA-seq characterization of human glial progenitor 
differentiation. a–d, UMAP plots of isolated glial progenitors and their progenies during in vitro 
differentiation based on single-cell RNA sequencing data color-coded by datasets (a), stages (b), 
seeding cell types (c), and types (d). e, UMAP plots of isolated glial progenitors and their progenies 
showing the expression levels of typical marker genes of individual cell types. f, A Sankey plot 
showing the mapping of glial progenitors and their progenies to the snMultiome atlas by 
SingleCellNet. g, UMAP plots of isolated glial progenitors and their progenies separated by 
seeding cell types and stages. 
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Extended Data Fig. 16 | Lineage potential of human glial progenitors. a, Schematic of the slice 
transplantation assay for glial progenitors. b–d, Immunostaining of progenies after progenitor 
transplantation to acute cortical slices on days in vitro 8. e, Quantification of progeny types after 
progenitor transplantation to acute cortical slices (n = 5, 5, 5, 5 samples), including IPC-EN 
(EOMES+), EN (NeuN+), Tri-IPC (OLIG2+EGFR+), astrocyte (SPARCL1+), OPC or 
oligodendrocyte (OLIG2+EGFR−), and IPC-IN or IN (DLX5+). f, Schematic of the in vivo 
transplantation assay for glial progenitors. g, Immunostaining of progenies after progenitor in vivo 
transplantation into mouse cortex (n = 2 injections). White arrows indicate HNA+GABA+ 
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inhibitory neurons. HNA, human nuclear antigen; L2-3, layer 2-3; L6, layer 6; WM, white matter; 
V-SVZ, ventricular-subventricular zone; OB, olfactory bulb. h, Immunostaining of progenies after 
progenitor in vivo transplantation into mouse cortex (n = 2 injections). White arrows indicate 
HNA+SOX10+ OPCs or oligodendrocytes. Yellow arrows indicate HNA+GFAP+ astrocytes. HNA, 
human nuclear antigen; L2-3, layer 2-3; L6, layer 6; WM, white matter; V-SVZ, ventricular-
subventricular zone; OB, olfactory bulb. 
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Extended Data Fig. 17 | Mapping Tri-IPC progenies to reference data. a, UMAP plot of a 
reference human ganglionic eminence dataset51. Cells are color-coded by types. b, UMAP plots of 
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human ganglionic eminence cells showing the expression levels of typical marker genes of 
individual cell types. c, UMAP plots of Tri-IPC-derived INs projected to the human ganglionic 
eminence dataset. Cells are color-coded by types and the legend can be found in panel d. d, 
Identities of Tri-IPC-derived INs mapped by Seurat label transfer. e, UMAP plot of mouse 
astrocytes from a reference developing mouse cortex dataset55. Cells are color-coded by lineages 
and the legend can be found in panel h. f, UMAP plots of the reference mouse astrocytes showing 
the expression levels of typical marker genes of individual astrocyte lineages. g, UMAP plots of 
Tri-IPC-derived astrocytes projected to the reference mouse astrocytes. Cells are color-coded by 
lineages and the legend can be found in panel h. h, Identities of Tri-IPC-derived astrocytes mapped 
by Seurat label transfer. i, UMAP plot of human astrocytes at the infancy stage. Cells are color-
coded by lineages and the legend can be found in panel l. j, UMAP plots of human astrocytes 
showing the expression levels of typical marker genes of individual astrocyte lineages. k, UMAP 
plots of Tri-IPC-derived astrocytes projected to the reference human astrocytes. Cells are color-
coded by lineages and the legend can be found in panel l. l, Identities of Tri-IPC-derived astrocytes 
predicted by SingleCellNet (top) or mapped by Seurat label transfer (bottom). m, Proportion of 
each SingleCellNet-predicted cell type across GBM samples. 
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Extended Data Fig. 18 | Neocortical cell association with human cognition and brain 
disorders. a, UMAP plot showing the standardized per-cell SCAVENGE trait relevance score 
(TRS) for Alzheimer’s disease. b, Top, boxplots showing the standardized SCAVENGE TRS for 
Alzheimer’s disease across cell types. Boxplot center: median; hinges: the 25th and 75th 
percentiles; whiskers: standard error. Bottom, bar plots showing the proportion of the cells with 
enriched trait relevance for Alzheimer’s disease across cell types. Two-sided hypergeometry test; 
*FDR < 0.01 & odds ratio > 1.4. c, Boxplots showing standardized SCAVENGE TRS for nine 
cognitive and disease traits across regions. Boxplot center: median; hinges: the 25th and 75th 
percentiles; whiskers: standard error. Two-sided hypergeometry test; *FDR < 0.01 & odds ratio > 
1.4. d, Heatmap showing the proportion of the cells with enriched trait relevance across regions. 
Tiles with significant TRS enrichment (two-sided hypergeometric test, *FDR < 0.01 & odds ratio > 
1.4) are annotated by their odd ratios. e, Boxplots showing standardized SCAVENGE TRS for nine 
cognitive and disease traits across developmental stages. Boxplot center: median; hinges: the 25th 
and 75th percentiles; whiskers: standard error. Two-sided hypergeometry test; *FDR < 0.01 & 
odds ratio > 1.4. f, Heatmap showing the proportion of the cells with enriched trait relevance across 
developmental stages. Tiles with significant TRS enrichment (two-sided hypergeometric test, 
*FDR < 0.01 & odds ratio > 1.4) are annotated by their odd ratios. 
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