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Esophageal squamous cell carcinoma (ESCC) is the major type of EC in China.
Chemoradiotherapy is a standard definitive treatment for early-stage EC and
significantly improves local control and overall survival for late-stage patients. However,
chemoradiotherapy resistance, which limits therapeutic efficacy and treatment-induced
toxicity, is still a leading problem for treatment break. To optimize the selection of ESCC
patients for chemoradiotherapy, we retrospectively analyzed the clinical features and
genome landscape of a Chinese ESCC cohort of 58 patients. TP53was the most frequent
mutation gene, followed by NOTCH1. Frequently, copy number variants were found in
MCL1 (24/58, 41.4%), FGF19 (23/58, 39.7%), CCND1 (22/58, 37.9%), and MYC (20/58,
34.5%). YAP1 and SOX2 amplifications were mutually exclusive in this cohort. Using
univariate and multivariate analyses, the YAP1 variant and BRIP1mutant were identified as
adverse factors for OS. Patients with PI3K-Akt pathway alterations displayed longer PFS
and OS than patients with an intact PI3K-Akt pathway. On the contrary, two patients with
Keap1-Nrf2 pathway alterations displayed significantly shortened PFS and OS, which may
be associated with dCRT resistance. Our data highlighted the prognostic value of aberrant
cancer pathways in ESCC patients, which may provide guidance for better
chemoradiotherapy management.

Keywords: ESCC (Esophageal squamous cell carcinoma), Keap1-Nrf2 pathway, PI3K-Akt pathway,
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INTRODUCTION

Esophageal carcinoma (EC) is the ninth most common cancer and remains the sixth leading cause of
cancer death worldwide (Bray et al., 2018). Esophageal squamous cell carcinoma (ESCC) and Esophageal
adenocarcinoma (EAC) are two major subtypes of EC and account for 90% of EC cases worldwide. On
the other hand, different histological types of EC distributed varied around theworld. ESCC contributes to
90% of all esophagus carcinomas each year in China, whereas EAC is mainly reported in North America
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and Europe (Abnet et al., 2018). Frequent consumption of hot
beverages, a common lifestyle in China, results in a higher potential
of ESCC, whereas people with gastroesophageal reflux, following a
Western pattern diet, andwith smoking behavior often have a higher
risk of ADC (Dent et al., 2005). The 5-year survival rate of EC
patients with only esophagus cancer is 47%, while the rate decreases
to 25% if the tumor has spread to the surrounding organs or lymph
nodes (Viale, 2020). Due to the poor prognosis and survival in EC,
there is a strong demand for studying prognosis-related factors and
seeking better treatment for patients with EC (Tustumi et al., 2016).
The pathological pattern of Chinese EC provided us a unique
opportunity to study the molecular mechanism underlying ESCC
pathogenesis and disease outcomes.

Definitive chemoradiation therapy has been employed as the
standard first-line therapy for ESCC patients. However, intolerance
to radiotherapy and/or resistance to chemoradiotherapy was
frequently observed with a high possibility of recurrence. The
target therapy drug trastuzumab is the only HER2 monoclonal
antibody approved by the FDA as a first-line drug along with
chemotherapy for ESCC patients. Ramucirumab, an angiogenesis
inhibitor that targets the VEGF/VEGFR2 pathway, has also been
approved for EAC therapy (Yang et al., 2020). In addition,
immunotherapy has been extensively evaluated in esophageal
cancer. Nivolumab and pembrolizumab are two immune
checkpoint inhibitors that target the PD-1/PD-L1 pathway
approved by the FDA. Nivolumab (mOS � 10.9) has been
confirmed to reduce the risk of death by 23% compared to
chemotherapy alone (mOS � 8.4) in the phase
3 ATTRACTION-3 trial (mOS � 10.9) (Takahashi et al., 2021).
These novel treatments have brought tremendous benefits to
patients with a much longer survival time and better prognosis.
Hence, the field of research on finding more targets for immune
pharmaceuticals and targeted therapy is well worth exploring, and
thus increasing the beneficial population.

It is well known that some signaling pathways altered across
various tumor types, while others were highly associated with certain
types of cancer, such as the oxidative stress response pathway in
squamous cell carcinoma (Choe et al., 2021). For ESCC patients,
definitive chemoradiotherapy is a standard therapy for non-
resectable tumors. Pathways related to oxidative/electrophilic
stress, like the cell cycle and Keap1-Nrf2 pathways, are therefore
highly important for these patients to regulate exogenous stress from
reactive oxygen species (ROS)/electrophiles induced by
chemotherapy and radiotherapy. Here, we analyzed the
alterations of ten canonical cancer-related pathways in this
Chinese ESCC cohort (Sanchez-Vega et al., 2018). The ten
pathways are cell cycle, PI3 kinase/Akt, Keap1-Nrf2, Notch, p53,
Myc, Hippo, b-catenin/Wnt, RTK-RAS, and TGFβ signaling. Some
pathways significantly correlated with the prognosis, which might
aid in stratifying patients for better treatment management.

MATERIALS AND METHODS

Patients and Sample Collection
A total of 65 patients with ESCC were enrolled from the Tumour
Research and Therapy Center, Shandong Provincial Hospital

Affiliated to Shandong First Medical University, from 2016 to
2020 for retrospective analysis. Six patients were excluded from
this study owing to their low-quality tissue samples, and one
patient was excluded because no detectable mutation was found
in this patient’s sample (Supplementary Figure S1). Eventually,
58 patients were included in the study. All patients were
diagnosed with unresectable locally advanced ESCC or
advanced ESCC (stages II-IV, American Joint Committee on
Cancer, seventh edition) and underwent standard definitive
chemoradiotherapy (dCRT). For each patient, a somatic
formalin-fixed paraffin-embedded (FFPE) tissue biopsy was
performed before definitive chemoradiotherapy. All tumor
tissue samples with at least 10% tumor cell content were
subjected to targeted panel sequencing using a 422-gene panel.
This study was approved by the Ethical Review Board of the
Shandong Provincial Hospital Affiliated to Shandong First
Medical University.

DNA Extraction and Library Preparation
The process from DNA extraction to library construction to
target enrichment was performed in a CLIA-certified and CAP-
accredited laboratory as previously described (Fang et al., 2019;
Dai et al., 2020). In brief, genomic DNA from FFPE tissue was
extracted using a QIAamp DNA FFPE Tissue Kit (Qiagen). DNA
quantitation was then performed by using a QubitTM dsDNAHS
Assay Kit for each sample, with its quality been identified by a
NanoDropTM 2000 Spectrophotometer. Then we constructed
the library for Illumina sequencing from fragmented dsDNA,
using a KAPA HyperPrep kit (KAPA BIOSYSTEMS). The main
steps of library preparation include end-repair and A-tailing,
adapter ligation, and library amplification. The end-repair and
A-tailing steps prepare end-repaired DNA, and 3’ A-tailing
prepares double-stranded DNA. Adapter ligation attaches
synthesized oligonucleotides as adapters to one or both ends
of targeted DNA fragments. The final step of library preparation
performs a low-bias and high-fidelity polymerase chain reaction
(PCR) to amplify the targeted sequences carrying proper
adapters, accompanied with an AMPure XP agent (Beckman
Coulter) for purification. The customed xGen lockdown probes
panel, containing 422 refined cancer-related genes, was further
used to enrich the targeted genes. Subsequently, the prepared
library was quantified using a KAPA Library Quantification Kit
(KAPA BIOSYSTEMS), and the size distribution of each sample
was calculated by Bioanalyzer 2100 (Agilent Technologies).

DNA Sequencing With Quality Control
Targeted enriched libraries from the last step were sequenced
using the Illumina HiSeq4000 Sequencing System to a mean
coverage depth of at least 250×. The output BCL files (image data)
from sequencing system were then demultiplexed and converted
into readable FASTQ files by BCL2Fastq Conversion (version
1.8.4) from Illumina. Fastp (0.20.0; https://github.com/
OpenGene/fastp/) was responsible for removing low-quality
bases (base quality score Q30 < 30), trimming adapters, and
read pruning. Qualified data were then mapped to the reference
human genome (hg19 37d5) using a Burrows–Wheeler Aligner
(BWA-mem, v0.7.12; https://github.com/lh3/bwa/) to produce
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bam files. The bam files were further sorted and then filtered into
the final mapped file through the process of reads deduplication,
local realignment, and base quality recalibration using Sambamba
(v1.3; https://lomereiter.github.io/sambamba/) software. By
comparing the consistency of SNP-associated signatures
between tissue cell-free DNA and negative control in the
Genome Analysis Toolkit (GATK 4.0.0; "https://software.
broadinstitute.org/gatk/") contamination module, the samples
were matched to each patient, as well as the DNA
contamination score was estimate.

Mutation Calling and Annotations
The fully qualified sequencing data were then processed to a series
of software for single-nucleotide variations (SNVs), insertion/
deletion mutations, fusion, and copy number variation (CNV)
detection. VarScan2 (Koboldt et al., 2012) was performed for
detecting somatic mutations. Calls with a threshold of ≥1%
mutant allele frequency (MAF) and ≥3 reads from both
directions were retained. From these variant calls, SNPs in
normal samples were filtered based on a list of sources,
including dbSNP (Sherry et al., 2001), ClinVAR (Landrum
et al., 2016), 1,000 Genome database (Genomes Project et al.,
2015), 65,000 exomes project (ExAC) (Karczewski et al., 2017),
COSMIC (v70) (Forbes et al., 2015), SIFT (Ng and Henikoff,
2003), and the laboratory’s SNP database of pre-existing
population. ANNOVAR (Wang et al., 2010) was used to
annotate all these SNVs. For somatic mutations, calls were
removed if they were present in >1% populations in 1,000
Genome database or in ExAC. The resulting list was further
filtered through an in-house mutation list of common sequencing
errors. Additionally, a variant with >20% abundance in the
normal sample, likely an artifact, was also removed from the
mutation list. Structural variants were detected using FACTERA
with default parameters (Newman et al., 2014). And the CNVs
were detected by ADTEx (GPLv3; http://adtex.sourceforge.net/),
both with default parameters. The threshold for CNV loss was 0.
65 and 2.0 for the CNV gain.

Mutation Description and Statistical
Analysis
Oncoplots, constructed by R (4.0.3), were used to view the overall
mutation landscape of ESCC patients in this study. Progression-
free survival (PFS) was defined from the date of pathological
diagnosis of esophageal carcinoma (EC) to the time of disease
progression, worsening, or the last follow-up before progression.
Overall survival (OS) started from EC diagnosis to the date of
death or the last follow-up. The Kaplan–Meier method was used
to estimate these two outcome measures among different genetic
groups, different physiological populations, and selected
pathways, followed by a stratified log-rank test for evaluating
any differences. Subsequently, univariate Cox hazard models
were further performed to define any prognostic factors
affecting PFS and OS in this cohort. Statistically significant
factors (p-value ≤0.1) defined in the single factor analysis were
reviewed in detail. The beta coefficient in the pathway-related
univariate analysis was the degree of change in the outcome (PFS

or OS) for every 1-unit change in the number of pathway gene
expression.

RESULTS

Clinical Characteristics and Mutation
Landscape of ESCC Patients
The basic characteristic of 58 enrolled ESCC patients is shown in
Supplementary Table S1. More than half of patients in the
cohort were older than 60 years (55.17%), with a median age
of 63 (range: 41–83) years. Forty-six patients (79.31%) were male,
and only 12 (20.69%) were female. Around sixty-eight percent
(39/58) of the patients were smokers, and fifty percentage had a
history of alcohol consumption (29/58). More than half of the
patients were diagnosed with stage III (36/58, 62.07%) ESCC, and
16 patients (16/58, 27.59%) were in stage II, with additional six
patients (6/58, 10.34%) in stage IV.

In these Asian ESCC patients, TP53 (54/58, 93.1%) was the
most frequent mutation gene, followed by NOTCH1 (30/58,
51.7%) (Figure 1). Amplification of MCL1 (24/58, 41.4%),
FGF19 (23/58, 39.7%), CCND1 (22/58, 37.9%), and MYC (20/
58, 34.5%) was the four dominant types of CNV identified in this
ESCC cohort. As previously mentioned, FGF19 and CCND1 were
often co-amplified since they were both at adjacent locations on
chromosome 11q13. Interestingly, YAP1 and SOX2
amplifications were mutually exclusive to each other in these
ESCC patients (Figure 1). A similar negative correlation of the
protein expression level in YAP1 and SOX2was also found in vivo
and in vitro of pancreatic neoplastic cells (Seo et al., 2013;
Murakami et al., 2019).

Gene Alterations Associated With Disease
Outcomes in ESCC Patients
In this cohort, the YAP1 variant and BRIP1 mutant were
identified as adverse factors for PFS and OS in univariate
analysis. In multivariate analysis, the YAP1 variant and BRIP1
mutant were significantly associated with OS but not with PFS
(Supplementary Table S2). The Kaplan–Meier plot revealed
that median PFS (mPFS) and median OS (mOS) of patients
with the YAP1 variant was 8.61 and 12.55 months,
respectively, which were significantly shorter than that of
YAP1 wild-type patients (Figures 2A,B). ESCC patients
with the BRIP1 mutant also displayed worse outcomes than
ones with the BRIP1 wild type, achieving an mPFS of
5.87 months and an mOS of 11.38 months (Figures 2C,D).
SOX2 amplification, which was mutually exclusive to YAP1 in
this cohort, did not reach statistical significance in univariate
analysis (Figures 2E,F).

Prognosis Value of Cancer-Associated
Pathways in ESCC
Pathway analysis was performed according to the genes in ten
cancer-associated pathways in the literature (Supplementary
Table S3) (Sanchez-Vega et al., 2018). The individual genes in
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each included pathway are listed in Supplementary Table S1.
Around 93% of this EC cohort harbored TP53 signaling pathway
alterations. Altered NOTCH (72.41%), RTK-RAS (68.97%), and
cell cycle (53.45%) pathway genes were identified in more than
50% of the total cases (Supplementary Figure S2 and
Supplementary Table S3). EC patients with mutations in the
Keap1-Nrf2 pathway had much shorter (n � 2, mPFS � 2.75, beta
� 3.48, p < 0.0001, HR (95% CI � 32.5 (4.48–235)) PFS than wild-
type patients (n � 56, mPFS � 16.2) (Figure 3A). Similarly,
mutations in this pathway also increased the risk of unfavorable
OS (n � 2, beta coefficient � 29, p < 0.0001) compared to the wild-
type counterpart (n � 56, mOS � 26.0) (Figure 3B). This
observation was also validated using an independent cohort of
88 ESCC patients with OS information (Song et al., 2014). As
shown in Supplementary Figure S3, seven patients had the
altered Keap1-Nrf2 pathway with a significantly shortened OS
compared to patients with the intact Keap1-Nrf2 pathway (p �
0.039).

In contrast to Keap1-Nrf2 pathway aberrations, patients with
mutations in the PI3K-Akt pathway displayed a longer PFS (n �
26, mPFS � 22, beta � 0.74, p � 0.0337, and HR (95% CI) � 0.48
(0.24–0.96) and longer OS (n � 26, mOS � 34.69, beta � 0.71, p �
0.0495, and HR (95% CI) � 32.5 (0.24–1.01). Comparatively,
wild-type patients achieved a shorter PFS (n � 32, mPFS � 9.8)
and OS (n � 32, mOS � 17.68) (Figures 3C,D). In patients with

PI3K-Akt pathway alterations, three were found with altered
PTEN and seven were found with altered PIK3CA. Patients
with PIK3CA mutation tend to have longer PFS and OS than
patients with wild-type PIK3CA. The altered PTEN did not show
association with PFS or OS in this cohort (Supplementary
Figure S4).

A representative case of an ESCC patient with NFE2L2
mutation is shown in Figure 3E. The patient was a 49-year-
old male diagnosed with stage IV ESCC. He was identified with
NFE2L2 D29G mutation at an allele frequency (AF) of 48.19%
before treatment. The RB1 frameshift mutation and TP53 G262V
were identified at an AF of 52.13 and 37.25%, respectively, at the
same time. The tumor quickly progressed after 2.89 months of
dCRT and metastasized to distant lymph nodes. Eventually, the
patient died after 5.91 months of chemoradiotherapy and
chemotherapy.

DISCUSSION

In this study, we retrospectively studied the clinical features
and cancer genomes of 58 patients with inoperable ESCC
tumors, intending to identify prognostic biomarkers for
Chinese ESCC patients. Among all the baseline clinical
characteristics, gender appeared to be an independent

FIGURE 1 |Mutational pattern in Chinese ESCC patients. The upper oncoplot shows themutational landscape of patients in this cohort. The lower oncoplot shows
that YAP1 gain and SOX2 gain are mutually exclusive to each other. No patient had both amplifications at the same time.
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prognostic factor, which was in accord with the previous study
(Pandeya et al., 2013). The high frequency of gene
amplification was another genetic feature observed in
esophageal squamous cell carcinoma. In our cohort, 75.9%
(44/58) patients had at least one gene amplified.MCL1 (24/58,
41.4%), FGF19 (22/58, 37.9%), CCND1 (22/58, 37.9%), and
MYC (20/58, 34.5%) were the four dominant amplified genes.
Besides, YAP1 and SOX2 were found to be exclusively
amplified in different patients in this cohort. By further
reviewing the prognosis of patients with/without YAP1 and
SOX2 amplification, patients without double amplification
were found to have the best PFS and OS. The group of

patients with SOX2 amplification and the group with YAP1
amplification both obtained shorter PFS and OS, which
consistent with the previous study (Dai et al., 2020).

Interestingly, the exclusion of YAP1 amplification and SOX2
amplification was only reported in one mouse model study that
Yap loss intended to induce acute metabolic stress, leading to
epigenetic reprogramming with SOX2 upregulation (Murakami
et al., 2019). Most other studies showed that YAP1 is co-amplified
with SOX2 by YAP1 binding to SOX2’s enhancer region, and
SOX2 may in turn restore YAP1 by antagonizing the Hippo
pathway in maintaining cell stemness and leading to poor
prognosis. The cooperation of YAP1 and SOX2 was detected

FIGURE 2 | Survival analysis of ESCC patients with YAP1 mutation, BRIP1 variation, and SOX2 mutation. (A) Kaplan–Meier plot showing PFS of the subgroup
patients with YAP1 mutation versus patients without YAP1 mutation. (B) Kaplan–Meier plot showing OS of the subgroup patients with YAP1 mutation versus patients
without YAP1 mutation. (C) Kaplan–Meier plot showing PFS of the subgroup patients with BRIP1 mutation versus patients without BRIP1 variation. (D) Kaplan–Meier
plot showing OS of the subgroup patients with BRIP1 mutation versus patients without BRIP1 variation. (E) Kaplan–Meier plot showing PFS of the subgroup
patients with SOX2 amplification versus patients without SOX2 mutation. (F) Kaplan–Meier plot showing OS of the subgroup patients with SOX2 amplification versus
patients without SOX2 mutation.
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FIGURE 3 | Survival analysis of ESCC patients with altered oncogenic pathways. (A) Kaplan–Meier plot for PFS of ESCC patients with an intact or altered Keap1-
Nrf2 pathway. (B) Kaplan–Meier plot for OS of ESCC patients with an intact or altered Keap1-Nrf2 pathway. (C) Kaplan–Meier plot for PFS of ESCC patients with an
intact or altered PI3K-Akt pathway. (D) Kaplan–Meier plot for OS of ESCC patients with an intact or altered PI3K-Akt pathway. (E) Representative case of a patient with
Keap1-Nrf2 pathway alterations.
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in various cancer types, including osteosarcoma, urothelial
cancer, and HNSCC (head and neck squamous cell
carcinoma) (Murakami et al., 2019; Omori et al., 2019). Thus,
behind the scenes of mutual exclusion for SOX2 amplification and
YAP1 amplification of these patients in this study, there lies a
unique unknown molecular mechanism of ESCC tumorigenesis,
distinguished from other cancer types, which needs further
investigation.

Of the two pathways identified as potential prognostic
biomarkers of ESCC, the Keap1-Nrf2 pathway is known for
inducing chemoradioresistance (Taguchi and Yamamoto,
2017; Zhang et al., 2018). One of the major roles of Nrf2 is
to initiate cytoprotective responses under oxidant stress by
binding to and activating the antioxidant response element
(ARE) in the modular regions of its downstream targets
(Kansanen et al., 2013). In addition, Nrf2 promotes cell
proliferation and metabolic reformation by triggering
metabolic genes. On the other hand, Keap1 can inhibit the
Keap1-Nrf2 pathway by suppressing the expression of Nrf2.
Under oxidative stress and electrophilic stress, the
confirmation of Keap1 is reconstructed due to alterations
in its cysteine residues. Newly synthesized Nrf2 can bypass
Keap1 and translocate into the nucleus by Keap1 protein
inactivation or Keap1-Nrf2 complex disruption (Kansanen
et al., 2013). Here, the two patients carrying mutations in
the Keap1-Nrf2 pathway exhibit poor disease outcomes with
shorter PFS and OS compared to Keap1-Nrf2 pathway wild-
type patients. The rapid progression of patients carrying
abnormalities in the Keap1-Nrf2 pathway in other cancer
types was reported in several studies (Zoja et al., 2014;
Goeman et al., 2019). Due to the limited number of
patients with altered Keap1-Nrf2 pathways in this study,
further research is needed to identify whether activating
mutations of the Keap1-Nrf2 pathway is a potential chemo-
radioresistance–related biomarker for patients receiving
dCRT therapy.

PIK3CA mutation was a commonly reported factor for
treatment and prognosis in ESCC patients, but conflicting
conclusions were drawn across studies (Wada et al., 2006;
Shigaki et al., 2013; Wang et al., 2014). Our studies showed a
favorable prognosis among the patients with muted PI3K
pathways. The PI3K-AKT pathway is considered one of the
master regulators for cancer and ideal targets for anticancer
drugs (Yang et al., 2019). It is known to play an important
role in the development and progression of many solid cancers
(Song et al., 2011; Jiao and Nan, 2012; Vredeveld et al., 2012).
Further in vivo study or expansion of cohort size was needed to
confirm our results.
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