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Background: Immunotherapy is a promising strategy for ovarian cancer (OC), and this study
aims to identify biomarkers related to CD8+ T cell infiltration to further discover the potential
therapeutic target.

Methods: Three datasets with OC transcriptomic data were downloaded from The Cancer
GenomeAtlas (TCGA) andGene ExpressionOmnibus (GEO) databases. Two immunotherapy
treated cohorts were obtained from the Single Cell Portal and Mariathasan’s study. The
infiltration fraction of immune cells was quantified using three different algorithms, Cell-type
Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT), and
microenvironment cell populations counter (MCPcounter), and single-sample GSEA
(ssGSEA). Weighted gene co-expression network analysis (WGCNA) was applied to
identify the co-expression modules and related genes. The nonnegative matrix
factorization (NMF) method was proposed for sample classification. The mutation analysis
was conducted using the “maftools” R package. Key molecular markers with implications for
prognosis were screened by univariate COX regression analysis and K-M survival analysis,
which were further determined by the receiver operating characteristic (ROC) curve.

Results: A total of 313 candidate CD8+ T cell-related genes were identified by taking the
intersection from the TCGA-OV and GSE140082 cohorts. The NMF clustering analysis
suggested that patients in the TCGA-OV cohort were divided into two clusters and the
Cluster 1 group showed a worse prognosis. In contrast, Cluster 2 had higher amounts of
immune cell infiltration, elevated ssGSEA scores in immunotherapy, and a higher mutation
burden. CSMD3, MACF1, PDE4DIP, and OBSCNwere more frequently mutated in Cluster 1,
while SYNE2 wasmore frequently mutated in Cluster 2. CD38 and CXCL13were identified by
univariate COX regression analysis and K-M survival analysis in the TCGA-OV cohort, which
were further externally validated in GSE140082 and GSE32062. Of note, patients with lower
CXCL13 expression showed a worse prognosis and the CR/PR group had a higher
expression of CXCL13 in two immunotherapy treated cohorts.

Conclusion: OC patients with different CD8+ T cell infiltration had distinct clinical prognoses.
CXCL13 might be a potential therapeutic target for the treatment of OC.
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INTRODUCTION

Among the most commonly diagnosed gynecological
malignancies worldwide, ovarian cancer (OC) remains the
leading cause of cancer death with the highest mortality (Moss
et al., 2018; Yang et al., 2018; Li et al., 2019). The estimated new
cases of OC in 2021 are expected to be 21,410 with 13,770
estimated deaths in the United States, reported in SEER
Cancer Stat Facts (https://seer.cancer.gov/statfacts/html/ovary.
html) (Institute, 2021). Over 70% of OC patients are
diagnosed at advanced stages with a staggering low five-year
survival rate of approximately 49.1% despite maximal treatment
improvements (Institute, 2021). Primary cytoreductive surgery
combined with platinum-based chemotherapy is now
recommended as the optimal and standard treatment available
to patients with advanced OC, however, the treatment landscape
has revolutionized to lengthen survival and improve quality of life
within the scope of poly ADP-ribose polymerase (PARP)
inhibitors (Moore et al., 2018; Coleman et al., 2019; González-
Martín et al., 2019), folate receptor antibody-drug conjugates
(O’Malley et al., 2020), chimeric antigen receptor therapy (Coon
et al., 2020), and immunotherapy (Hamanishi et al., 2015; Liu
et al., 2019; Zamarin et al., 2020). Of note, immunotherapy has
emerged as a standard pillar of modern cancer treatment,
nevertheless, a proportion of patients with OC respond poorly,
highlighting the need of exploring the immune-related molecular
markers.

Multiple immunotherapeutic strategies have been exploited to
treat OC, including acting directly on the OC cells, targeting the
tumor microenvironment (TME), and enhancing the host
immune system (Lheureux et al., 2019a). Numerous studies
have revealed the role of TME in promoting tumor
development, metastasis, and altering the response to
immunotherapy. In addition, the major obstacle to clinical
efficacy for successful immunotherapy is primarily limited by
an immunosuppressive TME (Gordon-Alonso et al., 2017). The
intricate interplay between tumor-infiltrating lymphocytes (TILs)
and cancer’s genomic changes is strongly associated with clinical
outcomes in OC patients, among which CD8+ cytotoxic T
lymphocytes (CTLs) are the main players in mediating
cytotoxic killing of cancer cells in most immunotherapy
settings (Lheureux et al., 2019b; Desbois et al., 2020).

Previous studies have demonstrated the prognostic
significance of tumor-infiltrating CD8+ T cells in OC and the
presence of CD8+ T cells is associated with a good clinical
outcome (Zhang et al., 2003; Hwang et al., 2012; Tiper et al.,
2016; Goode et al., 2017). The combination of checkpoint
inhibitors with PARP inhibitors has been involved in a few
studies, where PARP inhibitors were proved to activate and
synergize PD-1 and CTLA-4 blockades in a mouse model
(Wang et al., 2019). Meanwhile, in phase II clinical trial, the
combination of the PARP inhibitor niraparib with an anti-PD-1
antibody pembrolizumab confirmed a promising antitumor
activity for OC patients with limited treatment options

(Konstantinopoulos et al., 2019). Despite CTLA-4 and PD-1
targeting checkpoint inhibitors, PVRL2 is highly expressed in
OC and the antagonism of its receptor significantly increased
CD8+ T cell cytokine production and cytotoxic activity (Whelan
et al., 2019). Therefore, the induction of CD8+ T cell infiltration
and the identification of related biomarkers are in established
need for immunotherapies to improve survival outcomes for the
broader population of OC patients.

Weighted gene co-expression network analysis (WGCNA) is a
widely used method in screening candidate biomarkers and
exploring the relationships between gene sets and external
biological clinical traits (Langfelder and Horvath, 2008).
Multivarious research has utilized this algorithm to identify
hub genes involved in the pathogenesis of OC (Zeleznik et al.,
2020; Chang et al., 2021; Quan et al., 2021). Another notable
bioinformatics tool based on support vector regression modeling,
Cell-type Identification by Estimating Relative Subsets of RNA
Transcripts (CIBERSORT), was developed to deconvolute cell
types and dissect the cellular components at the transcription
level (Newman et al., 2015). This algorithm has been extensively
used to investigate the immune infiltration fraction and the
heterogeneity of the immune microenvironment in OC tissues
(An and Yang, 2020; Cong et al., 2020; Gao et al., 2020).

In our study, the CIBERSORT algorithm was first used to
calculate the immune cell compositions, followed by the
WGCNA analysis to evaluate the function of CD8+ T cells in
the TME and identify related potential biomarkers. Consensus
clustering analysis was then performed for OC patients based on
CD8+ T cell-related genes and two distinct subtypes with different
survival outcomes were identified. CD38 and CXCL13 were
further verified to carry prognostic significance. Noteworthy,
CXCL13 showed a good performance in two immunotherapy
treated cohorts, illustrating the potential value of CXCL13 as a
therapeutic target in OC. Our seminal discovery first employed
WGCNA to identify CD8+ T cell-related biomarkers in OC and
provided new clinical treatment guidelines for clinicians.

METHODS

Data Acquisition and Processing
Transcriptome and clinical data for OC patients were retrieved
from the TCGA data portal using the “TCGAbiolinks” R package
(Colaprico et al., 2016). A total of 353 OC samples were involved
in the study after the initial quality control. The FPKM expression
units were converted into TPM units for further analyses. The
survival data of the TCGA-OV dataset was downloaded from the
UCSC Xena platform (https://xena.ucsc.edu/). The raw gene
expression profiles of GSE140082 and GSE32062 were
acquired from the Gene Expression Omnibus (GEO) database
by using the R package “GEOquery” (Davis and Meltzer, 2007).
380 samples were involved in the GSE140082 profile and 260
samples were involved in the GSE32062 after matching clinical
data, respectively. GSE115978 and IMvigor210 were
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immunotherapy treated cohorts. The single-cell data set
GSE115978 was available through the Single Cell Portal
(https://singlecell.broadinstitute.org/single_cell). The complete
annotated expression and clinical data of the IMvigor210
cohort were obtained from the study of Sanjeev Mariathasan
under Creative Commons 3.0 License (Mariathasan et al., 2018).
A total of 348 patients after immunotherapy treatment was
involved after matching clinical data. More information on
these datasets we utilized could be found in the supplementary
materials.

Construction of Weighted Gene
Co-Expression Network
The expression profiles of the TCGA-OV and GSE140082
cohorts were integrated with the relative proportions of CD8+

T cell populations to construct a weighted gene co-expression
network by using the R package “WGCNA” (Langfelder and
Horvath, 2008). The similarity matrix was first characterized
given Pearson’s correlation value and then converted into an
adjacency matrix, as selected by the weighting coefficient, ß.
Subsequently, the adjacency matrix was transformed into a
topological overlap matrix, followed by utilizing the dynamic
tree cut method to recognize various modules with a module least
size cutoff of 50.

Construction of Module Trait Relationships
The correlations between modules and clinical information (the
infiltration level of CD8+ T cells, OS time, and OS statue) were
investigated to determine the significance of modules by Pearson
correlation’s analysis. A module was considered to have a
significant correlation with CD8+ T cells while p-value was
<0.05. The module with the highest correlation coefficient was
then defined as the hub module.

Non-Negative Matrix Factorization
Classification and Prognostic Analysis of
Ovarian Cancer Patients
The TCGA-OV patients were separated into different subtypes by
performing non-negative matrix factorization (NMF) with the
“brunet” standard and 50 iterations (Brunet et al., 2004; Gao and
Church, 2005). The number of clusters, k, was set as 2 to 10, and
the average contour width of the common member matrix was
determined by the “NMF” package in R software. The minimum
member of each subtype was set to 10. The optimal number of
clusters was determined according to cophenetic, dispersion, and
silhouette coefficients. The overall survival and progress-free
survival of OC patients in the different clusters were
determined by Kaplan-Meier (K-M) survival analysis. P values
were calculated by the Log-rank test.

Analysis of Immune Infiltrating Cells in
Tumor Tissues
Quantification of immune infiltration was performed using three
different methods. The CIBERSORT algorithm was used to

calculate the proportion of infiltrating immune cell subsets
(Newman et al., 2015). The ratio of the immune-stromal
component in the TME under different clusters of OC
patients was estimated by the Estimation of STromal and
Immune cells in MAlignant Tumor tissues using the
Expression data (ESTIMATE) algorithm (Computing, 2018),
while the populations of eight immune cells and two stromal
cells were calculated using the microenvironment cell
populations counter (MCPcounter) method (Becht et al.,
2016). Single-sample GSEA (ssGSEA) method was used to
evaluate the functions of 12 immunotherapy-related gene sets
in each sample of the TCGA-OV cohort (Hänzelmann et al.,
2013). Wilcox test was used to analyze the statistical significance
of differences between two groups, and the Kruskal test was used
to compare differences among multiple groups. Spearman’s
correlation test was used to perform the correlation analysis.

Enrichment Analyses of Ovarian Cancer
Subtypes
Gene ontology annotation, KEGG pathway, and GSEA analyses
were conducted using the Clusterprofiler R package (Yu et al.,
2012). For GO and KEGG, the enrichment analyses were
performed on DEGs and only terms with P-value < 0.05 were
considered significantly enriched. For GSEA,
c2.cp.kegg.v7.4.symbols.gmt file was downloaded from the
Molecular Signature Database as the target set to identify
enriched KEGG pathways in distinct OC clusters. Only |NES|
> 1 and FDR <0.05 were considered statistically significant.

Analysis of Somatic Mutations
Somatic mutations of the TCGA-OV patient cohort were
retrieved from the online website cBioPortal (http://www.
cbioportal.org/). For different mutational types, FRAME_
SHIFT_DEL, FRAME_SHIFT_INS, In_FRAME_DEL, In_
FRAME_INS, MUSSENSE, NOTHINE, NONSTOP, Splice_
SITE, and TRANSPOT_START_SITE was classified as non-
synonymous variants, while silent mutations and other
mutation types were classified as synonymous variants,
including Intron, 3′ UTR, 5′ UTR, 3′ Flank, 5’ Flank, IGR,
RNA, and Splice_Region. Subsequently, the somatic mutation
data were visualized by the “maftools” R package (Mayakonda
et al., 2018), which was also used to evaluate mutated genes and
calculate tumor mutational burden (TMB). The proportions of
mutations were compared using a one-sided z test and a two-
sided chi-squared test.

Clinical Significance Analysis of CD8+ T Cell
Related Genes in Ovarian Cancer
Univariate COX proportional hazards regression analysis was
executed using the R package “survival”. Survival analysis and
survival curves were conducted and plotted using R packages
“survival” and “survminer” (Therneau and Grambsch, 2000).
For certain gene expression, patients with values above and
below the median were classified as “high expression” and “low
expression” groups, respectively. Log-rank test was used to
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calculate the significance of differences in overall survival.
Receiver operating characteristic (ROC) curves were plotted
by combining normal tissue RNA sequencing data from the
Genotype-Tissue Expression (GTEx) database with the data
from the TCGA-OV cohort using R package pROC (Robin
et al., 2011).

Statistical Analyses
Detailed statistical analyses of bioinformatics were described
above. The Association of the mutation rate between two

clusters was evaluated by Fisher’s exact test. One-sided z test
and chi-square test were used to compare the continuous and
categorical variables between two clusters. For survival
analysis, the Kaplan-Meier method and Log-rank test were
employed. Spearman’s correlation test was implemented in
correlation analysis. P values <0.05 were considered
significant (*: p < 0.05; **: p < 0.01). Most analyses above
were done by packages of R software (version 3.6.3), aside
from a little piece of one that was performed joining with R
version 4.1.0.

FIGURE 1 | Identification of key modules correlated with OC via WGCNA. (A) Analysis of the scale-free fit index and the average connectivity of various soft
threshold power. Heatmap of the association between module eigengenes and status (CD8+ T cell infiltration, OS time, and OS statue) in the TCGA-OV (B) and
GSE140082 (C) cohort. The corresponding correlation coefficient and P value were presented in each cell. (D) The intersection of CD8+ T cell related genes from the two
cohorts.
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RESULTS

Construction of Gene Co-Expression
Network and Identification of Hub Modules
To quantify the relative proportions of CD8+ T cell
populations in human OC samples, the CIBERSORT
algorithm was applied to analyze the gene expression
profiles of TCGA-OV and GSE140082 cohorts to infer

immune infiltration. As shown in Supplementary Figure
S1, the relative abundance of 22 distinct immune cell types
was estimated in two cohorts. To address the complex
regulatory processes involved in CD8+ T cell responses, we
leveraged the WGCNA approach to reveal correlated
modules in two cohorts and uncover associated clinical
traits. To guarantee a scale-free network, the power of ß =
6 and 3 were selected as the soft-threshold value in TCGA-OV

FIGURE 2 | Identification of the molecular subtypes of OC patients using NMF. (A) The cophenetic, dispersion, evar, residuals, rss, silhouette, and sparseness
distributions when rank k was set as 2 to 10. (B) Consensus map of NMF clustering for k = 2, which was the optimal cluster number in the TCGA-OV cohort. Kaplan-
Meier (K-M) survival analyses were used to determine the OS (C) and PFS (D) prognosis of OC patients in two sub-consensuses classifications.
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and GSE140082 cohorts, respectively (Figure 1A,
Supplementary Figures S2, S3). In the TCGA-OV cohort,
23 regulatory gene modules were identified and the blue
module showed the highest positive correlation coefficient
with CD8+ T cell (Figure 1B). Highly correlated genes within
the same module may represent similar expression patterns,
biological processes, or mechanisms of regulation, therefore,
2663 genes in the blue module were selected for further
screening and analysis in the TCGA-OV cohort. Similarly,
in the GSE140082 cohort, 13 co-expression modules were
obtained and 376 genes in the green module showed the
highest correlation with CD8+ T cells (Figure 1C). After the
intersection of CD8+ T cell-related genes from the two
cohorts, a total of 313 candidate genes were obtained,
which were further considered to be highly correlated with
CD8+ T cell function (Figure 1D).

Identification of CD8+ T Cell-Based
Molecular Subtypes of Ovarian Cancer With
Prognostic Significance
The mRNA levels of above 313 CD8+ T cell-related genes from
the expression matrix of 353 OC patients in the TCGA-OV
cohort were extracted to perform NMF, which was used to
investigate a novel CD8+ T cell-based molecular classification

of OC. The optimal number of clusters was set to k = 2
according to the cophenetic, dispersion, rss, and silhouette
analyses (Figure 2A). Thereafter, two distinctive OC clusters
were determined, including 283 patients in Cluster 1 and 70
patients in Cluster 2. The consensus map showed a clear and
sharp boundary when k = 2, indicating a high correlation of
OC patients in each sub-consensus (Figure 2B). Consensus
maps were presented at K values of 3-10 (Supplementary
Figure S4). We further used PCA and t-SNE to perform
dimensionality reduction and the result revealed two main
clusters, demonstrating the robustness of these clusters
(Supplementary Figure S5). In addition, the K-M survival
curve showed that overall survival (OS) and progress free
survival (PFS) rates of Cluster 1 and Cluster 2 were
significantly different (p < 0.05), and the Cluster 1 group
showed a worse prognosis than the Cluster 2 group
(Figures 2C,D).

Analysis of the Immune Microenvironment
of Subtypes of Ovarian Cancer
The intercellular interactions in the TME could induce the
changes in phenotype and biological features of many types of
immune cells, especially antitumor T cell responses. To clarify
the difference in microenvironment composition in the two

FIGURE 3 | The immune cell distribution in OC patients of two clusters. (A)B cells; (B)CD8+ T cell; (C)Cytotoxic lymphocytes; (D) Endothelial cells; (E) Fibroblasts;
(F) Monocytic cells; (G) Myeloid dendritic cells; (H) Neutrophils; (I) Natural killer cells; (J) T cells.
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clusters, we next applied the ESTIMATE algorithm to
calculate the immune score, stromal score, ESTIMATE
score, and tumor purity in the TCGA-OV cohort
(Supplementary Figure S6). Cluster 2 showed elevated
immune score (p < 0.001), stromal score (p = 0.012), and
ESTIMATE score (p < 0.001), but lower tumor purity (p <
0.001), indicating a larger amount of immune and stromal
components with more infiltrating normal cells. We next used
the MCPcounter tool to quantify different immune cell
populations and compare the immune scores of the two
clusters in the TCGA-OV cohort. As was shown in
Figure 3, several types of immune cells, including B
lineage (p < 0.001), CD8+ T cell (p < 0.001), cytotoxic
lymphocytes (p < 0.001), monocytic lineage (p < 0.001),
myeloid dendritic cells (p < 0.001), natural killer (NK)
cells (p < 0.001), and T cells (p = 0.019), showed higher
abundance in Cluster 2. Of note, elevated tumor-infiltrating
NK and CD8+ T killer lymphocytes indicated increasing anti-
tumor functions of Cluster 2, which was consistent with a
better prognosis (Figures 2C,D).

The chemokine system and other immunomodulators are
required in recruiting T cell infiltration into the TME. We
compiled information on 148 immunomodulators from
Charoentong’s study, including chemokine, MHC,
receptor, immune-stimulator, and immune-inhibitor
(Charoentong et al., 2017). The comprehensive analysis of
immune landscapes between clusters revealed more immune-
activated Cluster 2 with significantly elevated chemokines
with receptors, and immune activators (Supplementary
Figure S7). We thus wondered if Cluster 2 would be more
sensitive to certain immunotherapeutic strategies. We further
collected 12 immunotherapy-related gene sets from
previously published literature and the Molecular
Signatures Database (MSigDB), including APC co-
inhibition, APC co-stimulation, Checkpoint, Cytolytic
activity, HLA, Inflammation-promoting, MHC class I,
Para-inflammation, T cell co-inhibition, T cell co-
stimulation, Type I IFN Response, and Type II IFN
Response. ssGSEA was then employed to score each
sample to evaluate the activity of these functions

FIGURE 4 |Comparisons of ssGSEA scores of 12 immunotherapy-related gene sets in two clusters of OC patients. (A) APC co-inhibition; (B) APC co-stimulation;
(C) Checkpoint; (D) Cytolytic activity; (E) HLA; (F) Inflammation promoting; (G) MHC class I; (H) Para-inflammation; (I) T cell co-inhibition; (J) T cell co-stimulation; (K)
Type I IFN response; (L) Type II IFN response.
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(Figure 4). Not surprisingly, Cluster 2 showed significantly
elevated ssGSEA scores of these 12 gene sets, further
indicating the potential effect of immunotherapies.

Functional Enrichment Analysis
We conducted GO term and KEGG pathway enrichment
analyses to explore the biological functions and pathways
related to different OC clusters. As shown in Supplementary
Figures S8A,B, differentially expressed genes (DEGs)
between CD8+ T cell-based molecular subtypes were
mainly enriched in T cell activation, external side of the
plasma membrane, and chemokine receptor binding in the
biological process, cellular component, and molecular
function categories, respectively. KEGG pathway analysis
revealed enrichment in cytokine-cytokine receptor
interaction, chemokine signaling pathway, natural killer
cell-mediated cytotoxicity, and PD-L1 expression and PD-1
checkpoint pathway in cancer. Further subtype

characterization was performed with GSEA analysis
(Supplementary Table S1; Supplementary Figures
S8C,D). DEGs in Cluster 1 were mainly enriched in
metabolic pathways, pathways in cancer, and pathways of
neurodegeneration-multiple diseases, while DEGs in Cluster
2 were mainly enriched in natural killer cell-mediated
cytotoxicity, T cell receptor signaling pathway, and Th1
and Th2 cell differentiation. These results demonstrated
distinct tumor microenvironmental effects between CD8+ T
cell-based molecular subtypes, which was consistent with the
previous conclusion.

Mutation Analysis of Subtypes of Ovarian
Cancer
We next explored differences in terms of mutational
landscapes between two clusters and the mutation profiles
of OC patients were summarized and visualized using the

FIGURE 5 | The landscape of mutation profiling in different subtypes of OC. The waterfall plot showed the mutation information of each gene in each sample of (A)
Cluster 1 and (B) Cluster 2. The top panel exhibited the number of variants and the bottom panel showed various mutation types. (C) The forest plot described the
subgroup analysis of significantly mutated genes. *p < 0.05, and **p < 0.01 determined by one-sided z test and two-sided chi-squared test. (D)Mutually co-occurring
and exclusive associations across mutated genes in OC were displayed as a triangular matrix. Green and pink indicated a tendency toward co-occurrence and
exclusiveness, respectively. The waterfall plot showed the mutation information of BRCA1/2 in each sample of (E)Cluster 1 and (F)Cluster 2. (G) The violin plots showed
the TMB differences in different subtypes of OC.
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“maftools” R package. The detailed mutation information in
each sample was exhibited in a waterfall plot, where different
mutation types were presented with various color annotations
at the bottom (Figures 5A,B). A horizontal histogram revealed
the genes with higher mutation frequency in two OC clusters,
respectively. The top 10 mutated signature in Cluster 1 were
TP53 (94%), TTN (38%), AHNAK2 (15%), FLG2 (13%),

MUC16 (12%), CSMD3 (11%), FLG (11%), HMCN1 (10%),
XIST (10%), and DST (10%), while the top 10 mutated
signature in Cluster 2 were TP53 (96%), TTN (43%),
CSMD3 (27%), FLG2 (24%), MUC16 (18%), OBSCN (18%),
AHNAK (16%), MACF1 (16%), MUC17 (16%), and PDE4DIP
(16%). Considering the evidence of a correlation between
increased immune cell infiltrates and BRCA1/2 mutation

FIGURE 6 | Prognostic value and diagnostic capacity of CD38 and CXCL13 in three OC cohorts. Kaplan-Meier curves were employed to show the correlation
between CD38/CXCL13 expression and OS in (A,B) TCGA-OV, (C,D) GSE140082, and (E,F) GSE32062 cohorts. (G) The ROC curve was employed to evaluate the
diagnostic capacity of CD38 and CXCL13 in OC.
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was found (McAlpine et al., 2012), we also compared the
mutated signature of BRCA1/2 in cluster 1 (Figure 5E) and
cluster 2 (Figure 5F), respectively, which presented a slight
alteration of BRCA1/2 in cluster 1 (6.74%) and in cluster 2
(10.2%). To get more intuition on the mutational differences,
significantly mutated genes between two clusters were
presented in Figure 5C. Four genes had dramatically higher
mutation frequencies in Cluster 1, including CSMD3, MACF1,
PDE4DIP, and OBSCN, while SYNE2 had a higher mutation
frequency in Cluster 2. Meanwhile, the presence of
significantly co-occurring associations was shown in
Figure 5D and Supplementary Table S2, where CSMD3
had the highest correlation with MACF1 and PDE4DIP in
their mutation pattern. It has been reported that TMB is
closely related to immunotherapeutic response (Snyder
et al., 2014; Rizvi et al., 2015). TMB scores of different
mutation types were then calculated based on TCGA-OV
somatic mutation data and compared between clusters. The
results showed that all mutation burdens as well as non-
synonymous mutation burdens were significantly higher in

Cluster 2 (Figure 5G). In summary, we believe that patients in
Cluster 2 had a better effect of immune activation and were
more susceptible to immunotherapy.

The Assessment of Prognostic Value for
CD8+ T Cell Related Genes
To screen out core essential genes for CD8+ T cell-related genes,
univariate COX proportional hazards regression analysis and
K-M survival analysis were implemented to evaluate the
prognostic ability of 313 candidate genes from the WGCNA
analysis (Figure 1D). A total of 35 significant prognostic genes
were identified by the univariate COX regression analyses, which
were then subjected to the K-M survival analyses to get the last 11
genes with survival prognosis in the TCGA-OV cohort. Next,
GSE140082 and GSE32062 were used to perform external
validation. After conducting univariate COX regression and
K-M survival analyses on these 11 genes within two GEO
datasets, CD38 and CXCL13 were revealed to have statistical
differences among three cohorts (Figures 6A–F; Table 1). We

TABLE 1 | Univariate COX regression and K-M survival analyses of 11 CD8+ T cell related genes in TCGA-OV, GSE140082, and GSE32062 cohorts.

Cohort COX regression Kaplan-Meier

Gene HR P-value Lower Upper P-value

TCGA-OV Cohort BATF2 0.985 0.032 0.972 0.999 0.003
CCR7 0.960 0.043 0.922 0.999 0.006
CD38 0.962 0.038 0.927 0.998 0.001
CD3G 0.929 0.014 0.877 0.985 0.017
CD40LG 0.817 0.003 0.715 0.933 0.045
CLEC5A 1.020 0.025 1.002 1.037 0.003
CXCL13 0.994 0.024 0.989 0.999 0.002
CXCL9 0.997 0.007 0.995 0.999 0.039
ETV7 0.988 0.047 0.975 1.000 0.037
HLA-DOB 0.965 0.001 0.945 0.986 0.001
HLA-F 0.994 0.023 0.989 0.999 0.048

GSE140082 Cohort BATF2 0.977 0.733 0.856 1.116 0.875
CCR7 0.929 0.149 0.841 1.027 0.156
CD38 0.848 0.007 0.752 0.956 0.011
CD3G 0.836 0.016 0.724 0.967 0.096
CD40LG 0.849 0.368 0.595 1.212 0.645
CLEC5A 0.995 0.955 0.839 1.181 0.891
CXCL13 0.777 0.002 0.662 0.912 0.003
CXCL9 0.873 0.063 0.756 1.008 0.346
ETV7 0.858 0.136 0.701 1.050 0.037
HLA-DOB 0.887 0.043 0.790 0.996 0.027
HLA-F 0.880 0.175 0.731 1.059 0.318

GSE32062 BATF2 0.894 0.090 0.786 1.018 0.105
CCR7 0.871 0.015 0.778 0.974 0.077
CD38 0.861 0.002 0.784 0.945 0.003
CD3G 0.883 0.023 0.793 0.983 0.071
CD40LG 0.789 0.103 0.593 1.049 0.365
CLEC5A 0.826 0.014 0.709 0.961 0.056
CXCL13 0.905 0.008 0.840 0.975 0.003
CXCL9 0.895 0.003 0.832 0.962 0.007
ETV7 0.867 0.009 0.779 0.965 0.053
HLA-DOB 0.896 0.165 0.767 1.046 0.283
HLA-F 0.778 0.001 0.668 0.906 0.014

Bold for highlights of the results of CD38 and CXCL13.
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went on to assay the clinical significance of CD38 and CXCL13
and plotted ROC curves. The AUC values for both genes were
more than 0.8 (CD38: 0.852, CXCL13: 0.828), indicating a
promising predictive performance (Figure 6G). The survival
curves of the remaining 9 genes in TCGA-OV, GSE140082,
and GSE32062 cohorts were shown in Supplementary Figures
S9–S11. We also applied ssGSEA to assess immune infiltrates in
the TCGA-OV cohort and analyze their correlation with CD38
and CXCL13 expression (Supplementary Figure S12). Not
surprisingly, CD38 and CXCL13 were both highly correlated

with T cells and other effector cells with tumor-killing abilities,
which was consistent with their better prognosis.

Analysis of the Immunotherapeutic Value of
CD38 and CXCL13
We next involved two immunotherapy treated cohorts
(GSE115978 single-cell cohort and IMvigor 210 cohort) to
determine whether CD38 and CXCL13 could be served as
emerging predictive biomarkers for immune therapy. tSNE

FIGURE 7 | The potential prognostic value of CD38 and CXCL13 in OC patients with immunotherapy. (A) tSNE plot of various cell types in the GSE115978 cohort;
(B,C) The expression of CD38 in multiple cells; (D,E) The expression of CXCL13 in multiple cells; Kaplan-Meier curves showed the prognosis of (F) CD38 and (G)
CXCL13 in the IMvigor210 cohort; The violin plots showed the difference of (H) CD38 and (I) CXCL13 expression in the CR/PR and SD/PD groups. CR, complete
response; PR, partial response; SD, stable disease; PD, progressive disease.
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plot of various cell types in the GSE115978 cohort were provided
in Figure 7A. As shown in Figures 7B,C, CD38 was significantly
elevated not only in CD8+ T cells, but also in macrophages, NK
cells, and CD4+ T cells. As such, the expression of CXCL13 in
various immune cell types was provided in Figures 7D,E,
revealing a higher expression not only in CD8+ T cells but
also in B cells, and cancer-associated fibroblasts (CAF). We
also performed survival analysis in the IMvigor210 cohort
when mRNA expression data and clinical data were combined.
The results showed that there was no significant relationship
between CD38 expression and the prognosis, while low CXCL13
expression had a significant correlation with poor prognosis
(Figures 7F,G). In addition, no statistically significant
difference in CD38 expression was observed between patients
with CR/PR and SD/PD (CR, complete response; PR, partial
response; SD, stable disease; PD, progressive disease), while the
CR/PR group had a significantly higher expression of CXCL13
than the SD/PD group (Figures 7H,I). The results above
illustrated that CXCL13 was a prognostic biomarker in OC
patients with immunotherapy, showing its potential ability as
an immunotherapeutic target.

DISCUSSION

OC remains the most lethal gynecologic malignancy worldwide
and more treatment options are on the horizon (Kuroki and
Guntupalli, 2020). The utilization of immunotherapy has
emerged as a potential new frontier in the treatment of OC;
however, the therapeutic effect is not always satisfactory.
Cytotoxic CD8+ T cell plays a pivotal role in antitumor
response and its infiltration is a precondition for tumor
immunity in the TME. In this presented study, we used the
CIBERSORT algorithm to generate computational estimates for
the relative proportion of CD8+ T cells in the TCGA-OV and
GSE140082 cohorts. WGCNA analysis was then performed to
identify 313 CD8+ T cell-related genes in OC, based on which two
prognostic clusters from the TCGA-OV cohort were uncovered.
Patients from the Cluster 1 group exhibited worse prognosis,
decreased immune score, lower abundance of CD8+ T cells, less
sensitivity to immunotherapy, and lower TMB. Functional
enrichment analyses suggested that DEGs between two clusters
were mainly enriched in T cell activation and chemokine receptor
binding. CSMD3, MACF1, PDE4DIP, and OBSCN were more
frequently mutated in Cluster 1, while SYNE2 was more
frequently mutated in Cluster 2. We further explored the key
genes involved in the CD8+ T cell-mediated immune response
and CD38 and CXCL13 were confirmed to contain the prognostic
and diagnostic values. More importantly, CXCL13 showed better
performance in two immunotherapy treated cohorts, highlighting
its potential therapeutic value in OC.

We observed a significant difference in TME between the two
clusters via the ESTIMATE and MCPcounter tools in the TCGA-
OV cohort. TME has been proved to participate in the initiation and
progression of tumorigenesis, thus attracting a colossal number of
studies. In OC, immune cell populations, including cytotoxic T and
B lymphocytes, NK cells, Tregs, etc., have a substantial importance in

the treatment (Santoiemma et al., 2016; Rodriguez et al., 2018a; Yang
et al., 2020).Meanwhile, other components including fibroblasts and
adipocytes might also influence the efficacy of standard treatments
or immunotherapies (Rodriguez et al., 2018b). In our study, tumor-
infiltrating lymphocytes (TILs) such as CD8+ T cells, B lymphocytes,
as well as innate immune cells such as NK cells, and myeloid
dendritic cells were more enriched in the Cluster 2 group. The
prognostic significance of TILs in OC has been confirmed in a meta-
analysis with 1815 patients from Hwang’s study in 2012 (Rodriguez
et al., 2018b). Intraepithelial TILs were presented as a robust
predictor of clinical outcome in OC regardless of the tumor
grade, stage, or histologic subtype and a lack of TILs was
significantly associated with worse survival among patients.
Stromal and intraepithelial B lymphocytes characterized by the
production of tumor-specific IgG Subclasses (IGGS) were also
reported to have a positive role in patients with high-grade
serous OC (Montfort et al., 2017). Meanwhile, the strong B-cell
memory response could be enhanced by chemotherapy. Similar
results could also be observed in NK cells and dendritic cells (Bamias
et al., 2007; Tsiatas et al., 2009; Okła et al., 2016), which was
consistent with our finding that the Cluster 2 group with more
TILs showed a better prognosis. Chemokine-associated responses to
antitumor immunity were found in various TMEs, further
illustrating the essentiality to establish predictive biomarkers of
TME to enhance the immunotherapy benefit in OC (Rainczuk
et al., 2012; Viola et al., 2012; Duan et al., 2018). Not
surprisingly, the better-performed Cluster 2 had significantly
elevated chemokines with receptors and immune activators. At
the same time, the assessment of immunotherapy by the ssGSEA
method also revealed that Cluster 2 had significantly elevated scores.
Enrichment analyses showed that DEGs in Cluster 2 were mainly
enriched in natural killer cell-mediated cytotoxicity, T cell receptor
signaling pathway, and Th cell differentiation. The above results
indicated that patients classified based on CD8+ T cells had distinct
prognoses, TME, and responses to immunotherapy.

Themutation frequencies were distinctly different between the
two subtypes. Lu et al. (2021)’s study pointed out that the overall
survival of OC patients with CSMD3 mutation was inferior to
those with wild-type CSMD3 and CSMD3 mutation was highly
correlated with increased TMB. Cheasley et al. (2021) performed
a comprehensive genomic analysis of low-grade serous ovarian
carcinoma patients and found that MACF1 had an 11%mutation
frequency as a putative novel driver gene, which could be
translated into an improved therapeutic path. Er et al. (2016)
identified PDE4DIP as a recurrently mutated gene in
endometriosis-associated OC and OBSCN was found to
mutate on at least two sites in OC from Zhang’s study (Zhang
et al., 2019). In our study, CSMD3, MACF1, PDE4DIP, and
OBSCN were more frequently mutated in Cluster 1 with a worse
prognosis, which was consistent with published literature. SYNE2
was more frequently mutated in Cluster 2 and has been observed
in Emery-Dreifuss muscular dystrophy (Lee et al., 2020) and
retinal defects (Maddox et al., 2015). However, the specific
biological significance of SYNE2 in OC remains to be
determined. The performance of TMB has been verified in
various cancers to predict responses to immunotherapy, such
as lung cancer (Rizvi et al., 2015) and melanoma (Snyder et al.,
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2014). The previous study has reported that a higher TMB was
significantly correlated with better prognosis and lower clinical
stages and tumor-free status (Fan et al., 2020). The infiltrating
level of immune cells was also significantly elevated in the high-
TMB group than in the low-TMB group. In our study, the Cluster
2 group showed a significantly higher level of not only all
mutation burden but also non-synonymous mutation burden,
with the remarkable consistency of the infiltrating TILs and better
response to immunotherapy.

We next explored the key CD8+ T cell-related genes, which may
participate in the anti-tumor immune response in OC. After the
conduction of COX regression analyses combinedwithK-M survival
analyses in three cohorts, CD38 and CXCL13 were screened out.
Meanwhile, they both showed the diagnostic and predictive value
and were highly correlated with immune infiltrates. CD38 is a non-
lineage restricted, type II transmembrane glycoprotein with
ectoenzymatic functions, which participates in the mediation of
NAD+ homeostasis (Hogan et al., 2019). Recent studies have
described CD38 as a surface marker for lymphocytes and its
involvement in CD8+ T cell suppression in TME led to the
resistance to PD-1/PD-L1 blockade therapy (Chen et al., 2018;
Hogan et al., 2019). In Zhu’s research, CD38 was found to be
positively correlated with prognosis and immune cell infiltration in
the microenvironment of OC and contributed to the antitumor
immunity, which was consistent with our finding (Zhu et al., 2020).
Although CD38 and CXCL13 both had prognostic values in three
OC cohorts, only CXCL13 was shown to perform well after
including two immunotherapy cohorts. CXC-chemokine ligand
13 (CXCL13) uniquely binds to the chemokine receptor CXCR5,
which is strongly expressed on B cells, follicular helper T (Tfh) cells,
and follicular cytotoxic T (Tfc) cells (He et al., 2016; Im et al., 2016).
Thus, CXCL13 preferentially promotes the migration of B
lymphocytes to the site of chronic inflammation to orchestrate
humoral and adaptive immune responses (Gu-Trantien et al.,
2013; Tirosh et al., 2016). Yang et al. (2021) found that CXCL13
was colocalized with tertiary lymphoid structures and played a
pivotal role in shaping the antitumor microenvironment by
facilitating the maintenance of CXCR5+CD8+ T cells. More
importantly, their research further supported a clinical
investigation for a combination of CXCL13 and anti-PD-1
therapy in human high-grade serous OC tumors and murine
models. CXCL13 was able to increase the infiltration of cytotoxic
CD8+ T cells, thus retarding tumor growth in a CD8+ T cell-
dependent manner. Consistently, our work also shed light on the
therapeutic value of CXCL13 as the CD8+ T cell-related marker.

In summary, this study was the first attempt to use the WGCNA
and CIBERSORT algorithms to identify CD8+ T cell-related genes of
OC. Two prognostically and clinically relevant clusters were then
identified to exhibit distinct TME and TMB. Through multiple
verifications, CXCL13 was identified as a potential biomarker and
therapeutic target for OC immunotherapy. However, our study has
several limitations. Considering the limited sample data, a
multicenter prospective cohort study should be taken to verify
the results and the specific mechanism of CXCL13 in OC
requires further investigation.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found in the article/
Supplementary Material.

AUTHOR CONTRIBUTIONS

WG and WZ designed the research, supervised, edited, and
reviewed the article. LL, DC, and XL performed data
processing, displayed the results by software, and wrote the
initial manuscript. ZW and HY performed the integration of
images.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2022.860161/
full#supplementary-material

Supplementary Figure S1 | The relative abundance of 22 distinct immune cell
types in the (A) TCGA-OV cohort and GSE140082 cohort.

Supplementary Figure S2 |Weighted gene co-expression network analysis in the
TCGA-OV cohort. (A) Sample dendrogram with trait heatmap. (B) Dendrogram of
differentially expressed genes clustered based on different metrics.
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Supplementary Figure S4 | Consensus maps showed the correlation profiling of
OC patients derived from 2 to 10 sub-consensuses.

Supplementary Figure S5 | Verification of the subclass distribution. (A) PCA and
(B) t-SNE analyses supported the classification of OC into two subtypes.

Supplementary Figure S6 | The violin plots showed (A) the immune score, (B) the
stromal score, (C) the ESTIMATE score, and (D) the tumor purity in different OC
subtypes.

Supplementary Figure S7 | The boxplots showed the gene expression (log) of 148
immunomodulators in different OC subtypes: (A) chemokine; (B) receptor; (C)
MHC; (D) immunostimulatory; (E) immunoinhibitory.

Supplementary Figure S8 | Functional enrichment analyses of OC clusters. (A)GO
and (B) KEGG pathway analyses of DEGs between CD8+ T cell-based molecular
subtypes. Oncological signatures were significantly enriched in (C) Cluster 1 and (D)
Cluster 2 identified by gene set enrichment analysis (GSEA).

Supplementary Figure S9 | The survival curves of the remaining 9 genes in the
TCGA-OV (A) cohort. BATF2; (B) CCR7; (C) CD3G; (D) CD40LG; (E) CLEC5A; (F)
CXCL9; (G) ETV7; (H) HLA_DOB; (I) HLA_F.

Supplementary Figure S10 | The survival curves of the remaining 9 genes in the
GSE140082 cohort. (A) BATF2; (B) CCR7; (C) CD3G; (D) CD40LG; (E) CLEC5A;
(F) CXCL9; (G) ETV7; (H) HLA_DOB; (I) HLA_F.

Supplementary Figure S11 | The survival curves of the remaining 9 genes in the
GSE32062 (A)cohort. BATF2; (B) CCR7; (C) CD3G; (D) CD40LG; (E) CLEC5A; (F)
CXCL9; (G) ETV7; (H) HLA_DOB; (I) HLA_F.

Supplementary Figure S12 | The lollipop charts showed the correlation between
the immune infiltrates and (A)CD38 and (B) CXCL13 expression in the TCGA-OV
cohort.
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