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Abstract

Background: Cancer arises from the consecutive acquisition of genetic alterations. Increasing
evidence suggests that as a consequence of these alterations, molecular interactions are
reprogrammed in the context of highly connected and regulated cellular networks. Coordinated
reprogramming would allow the cell to acquire the capabilities for malignant growth.

Results: Here, we determine the coordinated function of cancer gene products (i.e., proteins
encoded by differentially expressed genes in tumors relative to healthy tissue counterparts,
hereafter referred to as "CGPs") defined as their topological properties and organization in the
interactome network. We show that CGPs are central to information exchange and propagation
and that they are specifically organized to promote tumorigenesis. Centrality is identified by both
local (degree) and global (betweenness and closeness) measures, and systematically appears in
down-regulated CGPs. Up-regulated CGPs do not consistently exhibit centrality, but both types of
cancer products determine the overall integrity of the network structure. In addition to centrality,
down-regulated CGPs show topological association that correlates with common biological
processes and pathways involved in tumorigenesis.

Conclusion: Given the current limited coverage of the human interactome, this study proposes
that tumorigenesis takes place in a specific and organized way at the molecular systems-level and
suggests a model that comprises the precise down-regulation of groups of topologically-associated
proteins involved in particular functions, orchestrated with the up-regulation of specific proteins.

Background provided genome-wide expression data for almost every
In recent years, functional genomic and proteomic  type of human cancer [1]. As a consequence of genetic and
approaches have generated a vast quantity of data through ~ molecular analyses, the sequence of events that contrib-
which cellular processes, pathways and pathologies canbe  utes to certain types of human cancer, for example color-
deciphered. In particular, microarray-based studies have  ectal cancer [2], is relatively well characterized.
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Although our understanding of the genetic determinants
of tumorigenesis has been greatly enhanced by these
approaches [3], other levels of molecular complexity have
emerged [4-6]. Cancer arises from the consecutive acqui-
sition of genetic alterations that, in general, can be recog-
nized as the combination of the loss of function or
transcriptional down-regulation of particular genes
(tumor suppressor genes) and the activation or transcrip-
tional up-regulation of other genes (oncogenes) [3].
Downstream of the genetic alterations are expression
changes in many genes in cancer cells, mediated in part by
the activation or inactivation of transcription factors [7,8].
It is thought, then, that genetic and molecular alterations
promote tumorigenesis in the context of highly connected
and regulated gene and protein networks [4-6,9]. Cellular
transformation therefore requires dynamic interconnect-
edness, where specific changes in the information cir-
cuitry primarily dictated by up- or down-regulated genes
activate or deactivate pathways and, finally, change the
cell phenotype. In order to develop a systems-level under-
standing of cellular transformation it would therefore be
necessary to determine the properties and organization of
CGPs (proteins encoded by differentially expressed genes
in tumors relative to healthy tissue counterparts) in cellu-
lar networks.

This study examines the topological properties of CGPs in
the human interactome network. Wachi et al. [10] previ-
ously reported increased connectivity of differentially
expressed proteins in lung cancer tissues, and Jonsson and
Bates (2006) [11] reported differences in the global topo-
logical features of mutated cancer proteins relative to non-
mutated proteins. However, there is no comprehensive
study of different cancer types that examines both the
local and global topological properties of CGPs and their
organization relative to the structural integrity of the net-
work and to molecular mechanisms of tumorigenesis. The
results of these analyses suggest that CGPs are central to
information exchange and propagation, and that their
topological organization supports fundamental biologi-
cal processes of neoplasia.

Results

Integration of interactome and cancer transcriptomes

To investigate the systems-level organization of CGPs, we
integrated interactome and cancer transcriptome data sets
(Figure 1). The interactome data set contains compiled
and filtered binary human protein-protein interactions
from all currently available databases (HPRD, BIND, DIP,
MINT, INTACT and MIPS; detailed in Gandhi et al. [12]).
This data set is mainly derived from one-at-a-time experi-
mentally demonstrated interactions compiled through a
literature curation process [13], which suggests a high
degree of reliability. The corresponding scale-free interac-
tome network contains 7,388 proteins and 24,109 inter-
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actions, which follow a power-law distribution with an
average degree of 6.52 (Additional file 1). The longest dis-
tance between any two proteins is 15 and the average dis-
tance is 4.50. This interactome network constitutes a
scaffold in which different types of functional genomics
data can be integrated to ascertain the coordinated func-
tion of proteins under particular conditions.

To analyze cancer transcriptomes, we chose data sets of
high-incidence cancer types containing a large number of
tumors and healthy tissue samples in order to obtain
more consistent gene lists (data sets with at least 10 sam-
ples of each type). Four expression data sets were ana-
lyzed, corresponding to prostate, lung and colorectal
samples [14-17] (Additional file 2). We first focused our
analysis on the prostate data sets because they were inde-
pendently generated and contain publicly available raw
data, which meant an identical statistical methodology
could be applied for differential gene expression detection
and to replicate findings [14,15]. These data sets contain
data for 50 healthy tissue samples each and for 52 and 38
tumor samples, respectively. Differentially expressed
genes between healthy and tumor samples were then
identified using an empirical Bayes moderated t-test and
adjusting P values with a false discovery rate of 5%. Thus,
1,429 and 981 CGPs encoded by up- and down-regulated
genes in prostate tumors were mapped in the interactome
network, respectively. Up- and down-regulated gene sets
overlapped between studies by 50.33% and 41.05%,
respectively. Accordingly, both studies also showed a sim-
ilar distribution of Gene Ontology (GO) [18] terms anno-
tation in the complete gene ranking (Additional file 3),
which essentially supports a good agreement between the
expression data sets. The numbers of differentially
expressed genes obtained in this analysis are consistent
with the numbers given in the original publications. A
comparison of healthy and tumor tissues is likely to reveal
more dramatic expression differences than a comparison
of tumor subtypes, thus identifying differentially
expressed genes that are involved in all stages of the neo-
plastic process.

In order to extend the analysis to different types of CGPs,
we used expression data sets derived from the study of
lung samples (230 tumors and 17 healthy), which
included different cellular types, and colorectal samples
(18 tumors and 36 healthy) [16,17]. The lung expression
data set was analyzed using the same statistical methodol-
ogy as described for the prostate, while genes differentially
expressed in colorectal tumors identified on a different
microarray platform were taken from a public repository
[19]. Sets of differentially expressed probes for each cancer
type are detailed in (Additional file 2). Integration of the
human interactome and cancer transcriptomes was then
completed by matching GenelDs.
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Study strategy. Integration of binary protein-protein interactions and gene expression data sets for the investigation of the top-
ological properties and organization of cancer gene products (CGPs) in the human interactome network.

Centrality of CGPs

Analysis of the topological properties of CGPs in the inter-
actome network was focused on centrality by measuring;
i/ degree, which accounts for the total number of first
interactions; ii/ betweenness, which accounts for the fre-
quency with which a node in a network is found in the
shortest path between any two other nodes; and iii/ close-
ness, which accounts for the proximity of a node to all
other nodes in a network. To determine the significance of
each measure, we compared the median of CGPs to the
median of the total of nodes in the network using the
Mann-Whitney U test. We also compared the results to
equivalent randomly selected protein sets in the interac-
tome.

The analysis of prostate CGPs revealed higher values for
degree, betweenness and closeness than in the complete
interactome set (Mann-Whitney U test P values < 10-3) or
equivalent randomly selected sets (empirical P values <
0.01) (Figure 2 and Additional file 4). The results for the
two prostate expression data sets were concordant. Impor-
tantly, higher values of centrality for lung and colorectal
CGPs were also observed (Additional file 4). These results

indicate that centrality in the interactome network is a
common property of proteins encoded by differentially
expressed genes in tumors relative to healthy tissue coun-
terparts.

To further examine the topological properties of CGPs, we
analyzed the manner in which they are related to their
neighbors by examining their constraint, which accounts
for the dependency of a node on its neighborhood. CGPs
showed significantly lower average values of this measure
(Mann-Whitney U test P values < 10-7; empirical P values
< 0.01) (Additional file 4). CGPs therefore appear to act
independently of their neighborhood, which supports the
importance of these products in terms of information
exchange and propagation within the interactome net-
work studied.

Following this, we analyzed whether the topological
properties of CGPs were mainly determined by one spe-
cific type of differentially expressed gene (i.e. up-regulated
or down-regulated). This analysis highlighted that central-
ity is a property consistently found in down-regulated
CGPs, while results for up-regulated CGPs were not con-
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Figure 2

Centrality of CGPs. Results of the Mann-Whitney U test (MW) are shown at the top right in each box. Results of comparing
each centrality measure between prostate CGPs (vertical arrow; mean value) and 1,000 equivalent randomly selected protein
sets (curves; mean values) (data sets | [14] and 2 [15]) are also shown. CGPs mean values and 95% confidence intervals (Cl), as

well consequent empirical P values are shown.

clusive (Additional file 5). The fact that up-regulated
CGPs do not show consistent centrality measures could be
the result of technical or biological differences between
studies, for example that prostate tumor samples were col-
lected at different stages [14,15]. On the other hand, this
observation might also suggest that down-regulation
plays a major role in tumorigenesis at the interactome net-
work level.

Possible centrality differences between cancer subtypes
were investigated by analyzing the lung data set according
to the pathological description of tumors (adenoid, carci-
noid, and squamous) [17]. Overlaps of 50.55%, 74.94%
and 50.48%, respectively, were observed for adenoid-car-
cinoid, adenoid-squamous, and carcinoid-squamous
down-regulated CGPs sets. In this case, all three subtypes
showed centrality measures consistent with the analysis of
prostate and colorectal down-regulated CGPs (Additional

file 4). Once again, up-regulated CGPs showed heteroge-
neity of average values and value distributions.

Centrality analysis using different sets of experimentally-
or computationally-generated interactions

Comparison of publicly available protein-protein interac-
tion repositories has revealed small, although significant,
overlaps and considerable selection and detection bias
[20,21]. To evaluate the consistency of the above results,
we performed similar centrality analyses using three dif-
ferent sets of experimentally- or computationally-gener-
ated interactions: i/ in vivo experimental interactions only;
ii/ interactions with two or more experimental evidences
as compiled by Gandhi et al. [12] (interactions found in
vivo and/or in vitro, including yeast two-hybrid interac-
tions); and iii/ computationally-generated interactions
using a homology-based method [22]. This final data set
was carefully validated using true positive interactions
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sourced from the HPRD database and false positive inter-
actions for proteins localized in incompatible cellular
compartments based on Gene Ontology (GO) annota-
tions [11]. Using these three interactions sets, the number
of nodes and edges in each network were 6,022 and
15,990; 5,009 and 9,950; and 10,691 and 57,846, respec-
tively.

Centrality was then examined in each network for CGPs
of the two prostate cancer data sets, the lung cancer data
set including three pathological sub-classes, and the color-
ectal cancer data set referred to above, distinguishing
between down- and up-regulated CGPs. Importantly, the
results of these analyses are fully consistent with increased
local and global centrality and with lower constraint of
CGPs, particularly for down-regulated CGPs (Additional
file 6). In addition, the results using the homology-based
network also showed increased centrality and lower con-
straint for up-regulated CGPs. This observation may be
due to the higher number of nodes and edges in the net-
work, which could diminish sampling errors relative to
the anticipated complete interactome or, in contrast, to an
unknown intrinsic bias of the homology-based method.
Overall, analysis of the three interactome data sets further
supports the hypothesis that high centrality is a funda-
mental property of CGPs.

CGPs attack and interactome structure integrity
To better understand the relative importance of each cen-
trality measure for CGPs, a strategy was used that con-
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sisted of determining the structural integrity of the
interactome network after removing nodes with different
topological characteristics [23-25]. We calculated the
number of proteins remaining in the main component of
the network (i.e., the part containing the largest number
of connected proteins) after removing CGPs, selected
nodes with the same degree distribution as CGPs but with
lower values of betweenness and closeness centrality, and,
in extreme cases, the hubs (proteins with the highest
degrees).

As expected from the association between centrality and
vulnerability [23,24], removing CGPs had a lesser effect
on structure integrity than did hubs removal. However,
removing CGPs always produced a more dramatic effect
than removing selected nodes with the same degree distri-
bution but with lower values of betweenness and close-
ness. The number of proteins remaining in the main
component was consistently smaller when CGPs were
removed than when these selected nodes were removed
(Figure 3 and Table 1). After deleting n nodes, the size of
the main component is not only reduced by n but also by
other nodes that are attached to CGPs. For example,
removing 795 down-regulated prostate CGPs reduced the
total number of nodes in the main component by 1,026
(7,092 to 6,066), while removing 795 proteins with the
same degree distribution but with lower values of
betweenness and closeness reduced the total number of
nodes by 682 (7,092 to 6,410). Although the differences
affect a small percentage of nodes in the main component
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Figure 3

CGPs attack and interactome network structure integrity. Interactome network examples after removing an equivalent
number of hubs, prostate down-regulated CGPs (data set | [14]) or selected proteins with the same degree distribution as
CGPs, but with lower values of betweenness and closeness. Disconnected nodes from the main component are shown in inset
to emphasize the difference between CGPs and selected proteins.
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Table I: Interactome attack
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Number of nodes remaining in the main component after selective removal of:

N* Hubs CGPs Same degree nodes Difference®*
Prostate cancer
Data set | Down-regulated 795 4,092 6,066 6,410 344
Up-regulated 634 4,616 6,294 6,610 316
Data set 2 Down-regulated 574 4,826 6,312 6,591 279
Up-regulated 407 5,346 6,586 6,807 221
Lung cancer
Adenoid Down-regulated 476 5,112 6,460 6,719 259
Up-regulated 187 6,134 6,830 6,966 136
Carcinoid Down-regulated 786 4,119 5,965 6,368 403
Up-regulated 518 5,002 6,421 6,736 315
Squamous Down-regulated 458 5171 6,479 6,716 237
Up-regulated 525 4,974 6,380 6,640 260
Colorectal cancer
Down-regulated 164 6,220 6,849 6,960 11
Up-regulated 289 5,726 6,709 6,858 149

*Number of CGPs mapped on the complete human interactome (i.e. number of nodes removed in this analysis)
**Main component difference between removing nodes with the same degree distribution as CGPs but with lower values of betweenness and

closeness, and CGPs

(5.6% to 1.5%), the same tendency was observed for all
the up- and down-regulated CGP sets examined (12 in
total). These results suggest that the positions of both
types of CGPs in the interactome network are more
important than their degree distributions reflect.

Topological and functional association of CGPs

Using the experimentally-based data sets, analysis of the
level of inter-connection with neighboring proteins
through the average clustering coefficient (CC) and by
examining cliques (i.e. fully connected network sub-
graphs) did not reveal significant over-representation of
CGPs when corrected by multiple testing (not shown). In
agreement with the lower constraint values observed,
these observations suggest that CGPs perform their sys-
tems-level function principally by exploiting centrality
(degree, betweenness and closeness), although not by vir-
tue of being highly inter-connected in their neighbor-
hood. However, the same analysis using the homology-
based data set revealed significant differential CC values
for both down- and up-regulated CGPs in different tumor
types (Additional file 6). Larger, experimentally-based
data sets are therefore needed to clarify the reasons for this
discrepancy.

Next, we assessed whether the average network distances
between CGPs were lower than the average in the main
component. Thus, we determined the shortest distance
between CGPs and compared this to the shortest distance

between any two proteins in the main component. Lower
distances were observed between CGPs - up-regulated,
down-regulated, or both - when compared to the average
distance in the main component (4.09 - 4.34 against
4.50, respectively) (Table 2). Accordingly, the maximum
distances between CGPs were always found to be smaller
than the maximum distance between any two proteins in
the main component (10-12 against 15, respectively).
These results suggest the topological association of CGPs
regardless of CC or up/down-regulation.

Distances between CGPs can be represented in a matrix
format where clusters are identified (Figure 4a and Addi-
tional file 7). We then investigated whether these topolog-
ical associations or clusters of CGPs have functional
implications for mechanisms of tumorigenesis. In this
analysis, proportions of GO terms [18] and pathway
(KEGG) [26] annotations were compared between clus-
ters showing small network distances (< 3 shortest dis-
tance) and the remaining CGPs (> 4) in each matrix.
Results showed that down-regulated CGPs in clusters par-
ticipate in common biological processes or pathways
involved in tumorigenesis (Table 3). Thus, the GO analy-
sis revealed the coordinated down-regulation of CGPs
involved in cell adhesion and cell communication proc-
esses, which would facilitate the metastatic behavior of
cancer cells, and the coordinated down-regulation of
CGPs involved in programmed cell death, which would in
turn prolong cancer cell life and allow tumorigenesis to
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Table 2: Topological association of prostate CGPs

Network distance

N* Shortest ~ Maximum
(average)
Data set | Down-regulated 773 4.27 12
Up-regulated 608 4.09 10
All 1,381 4.22 12
Data set 2 Down-regulated 565 4.14 I
Up-regulated 392 4.34 Il
All 957 4.23 12
Main component 7,092 4.50 15

*Number of CGPs in the main component

progress by accumulating genetic and molecular altera-
tions. KEGG analysis revealed the coordinated down-reg-
ulation of pathways commonly associated with
tumorigenesis, such as the extracellular matrix-receptor
interaction pathway. It also revealed the coordinated
down-regulation of pathways known to play a critical role
in prostate carcinogenesis, for example the insulin signal-
ing pathway [27].

Most up-regulated CGP topological associations did not
show significant enrichment in GO or KEGG annotations,
however, when all CGPs were considered together, both
up- and down-regulated CGPs participating in common
biological processes and pathways were found closely
located in the network. For example, up- and down-regu-
lated CGPs within and connecting cell communication
and cell adhesion functions are protein kinase C isozymes
(Figure 4b), which are well known regulators of cell pro-
liferation and transformation of prostate epithelial cells
[28]. This CGP organization might reflect a change in the
flow of information between different processes so as to
promote tumorigenesis.

Discussion

A criterion of centrality for a particular node in a network
can be given by local (degree) or by global (betweenness
and closeness) measures. A higher degree does not neces-
sarily mean that a node is more important for information
exchange and propagation, so more global measures are
needed than degree measures. The three measures of cen-
trality therefore reflect the possibilities of a particular pro-
tein choosing alternative paths, acting as a broker between
different proteins, for example connecting distinct com-
plexes or signaling pathways, or being closer to any other
proteins for information propagation. By virtue of central-
ity, the hundreds of differentially expressed proteins in
tumors are likely to promote tumorigenesis at the interac-
tome network level in a coordinated manner. Viewed
alternatively, proteins with a less central position within
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Table 3: Topological and functional association of prostate
CGPs

Non-redundant significant terms* GO level P value
FDR-
adjusted
Data set |
Cluster A
BP: Protein amino acid phosphorylation 8 9.12E-03
CC: Plasma membrane 4 2.25E-02
MF: Protein-tyrosine kinase activity 7 9.12E-03
Cluster B
BP: Cell-matrix adhesion 5 4.29E-02
CC: Extracellular space 3 4.09E-04
MF: Metalloendopeptidase inhibitor activity 6 3.75E-03
Cluster C
BP: Intracellular signaling cascade 5 3.74E-02
CC: Cytoskeleton 4 4.11E-02
MF: Protein-tyrosine kinase activity 7 1.76E-03
KEGG: T cell receptor signaling pathway 1.18E-02
Adherens junction 2.21E-02
Focal adhesion 4.11E-02
Cluster D
BP: Macromolecule biosyntesis 5 3.17E-02
CC: Cytosolic ribosome 5 2.30E-02
MF: Structural constituent of ribosome 7 6.86E-03
KEGG: Ribosome 6.86E-03
Data set 2
Cluster E
MF: Purine nucleotide binding 4 1.51E-03
Cluster F
CC: Extracellular space 3 8.00E-03
MF: Extracellular matrix structural 3 8.00E-03
constituent
KEGG: Extracellular matrix receptor 8.00E-03
interaction
Cluster G
BP: Regulation of programmed cell death 5 4.32E-02
MF: Protein kinase activity 6 2.18E-02
KEGG: Insulin signaling pathway 4.62E-02
Cluster H
BP: Phosphate transport 8 1.27E-02
CC: Extracellular space 3 I.10E-12
MF: Metalloendopeptidase inhibitor activity 6 3.05E-02
KEGG: Extracellular matrix receptor 2.07E-03

interaction

*BP (Biological Process), CC (Cellular Component), MF (Molecular
Function), KEGG (Kyoto Encyclopedia of Genes and Genomes)

the interactome network might not be able to have a glo-
bal impact on the cellular behavior determined by the
protein-protein interactions involved in cellular transfor-
mation.
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Prostate CGPs
Down-regulated Up-regulated All

Cell communication

Data set 1

Cell death

Data set 2

Shortest distance <4 4-6 >6

Extracellular matrix interaction

Cell communication Cell death

BCL2

MAP3K10

Figure 4

Topological and functional association of CGPs. (a). Matrices of network distances between prostate CGPs (three categories:
< 4 shortest distance shown in red; 4-6 shown in green; and > 6 shown in blue). CGP matrix clusters with significant enrich-
ment in GO or KEGG annotations involved in tumorigenesis-related processes are indicated. (b). Functional association of
prostate CGPs. Cell communication (cluster C) and cell death (cluster G) biological processes are shown. Green, red and black
nodes correspond to down-regulated, up-regulated, and non-differentially expressed proteins, respectively. Dashed circles and
lines connect proteins common to both processes. Protein kinase C isozymes are denoted by the prefix PRKC.
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Protein-protein interactions repositories are incomplete
and not fully reliable, based on the observed selection and
detection biases [20,21]. Gandhi et al. [12] demonstrated
that there is minimal overlap across currently known
experimental species interactome data sets. In addition,
recent work by Mika and Rost [29] has shown that inter-
actions are more conserved within species than across spe-
cies and that homology transfers are only accurate at high
levels of identity. These observations raise the question of
the specificity and sensitivity of large-scale homology-
based generated interactomes with respect to other
approaches. The principle of conserved protein-protein
interactions or "interologs" was first used by Matthews et
al. [30] and subsequently extended by several authors [31-
33]. The Jonsson et al. [11,22] data set used in the present
study applied a new confidence score to predict interac-
tions, which was based on both the level of homology and
the amount of experimental data available that supported
a particular interaction. By benchmarking the score the
authors obtained relatively good percentages of sensitivity
and specificity (~80-85%) for a reasonable cut-off [11],
which indicates high reliability of the data set. This obser-
vation corroborates our results by replicating the findings
with respect to centrality.

In addition to selection and detection biases, the limited
coverage of current data sets relative to the anticipated
complete human interactome suggests that results derived
from any currently available set should be interpreted
with an element of caution, as has been demonstrated for
other well-established topology characteristics [34]. The
results using the Jonsson et al. [22] data set show
increased centrality for up-regulated CGPs and differential
CC values that were not consistently observed when using
other interaction sets. The larger size of this data set could
reduce the effect of sampling and may facilitate the detec-
tion of weak effects. This apparent discrepancy will prob-
ably remain unexplained until larger coverage of the
anticipated human experimental interactome has been
obtained. Nevertheless, we analyzed hundreds of CGPs,
most of which belonged to different sets across different
cancer types, which makes this study less likely to present
a bias in gene selection.

In a previous study focused on lung cancer, it was sug-
gested that up-regulated CGPs in squamous lung tumors
have higher connectivity [10], yet the same observation
was not supported for down-regulated CGPs. This discrep-
ancy could be due to the small number of samples pro-
filed (five tumors and matched healthy tissues) but also to
the examination of another interactome network gener-
ated mainly from computationally-generated interac-
tions. On the other hand, the lung data set we used [17]
has been extensively examined and validated, which sug-
gest that the apparent centrality inconsistency of down-
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regulated CGPs is not due to the existence of different sub-
sets of lung CGPs.

This study proposes a model for systems-level molecular
mechanisms of tumorigenesis that includes the down-reg-
ulation of specific biological processes represented by top-
ological associations of CGPs in the interactome network,
combined with the up-regulation of particular proteins
that could depend on the cell type, tumor type or tumor
stage. Since we analyzed tumor panels, our results reflect
average, possibly secondary molecular events in cancer.
These changes are initiated by combinations of genetic
alterations in tumor suppressor genes and oncogenes,
which lead to extensive downstream variation of expres-
sion modules carrying specific functions in cancer cells
[7,8]. The analysis of tumors ordered in stages would pro-
vide additional information on the systems-level molecu-
lar mechanisms of cancer progression. The final outcome
of CGP organization could be a change in the flow of
information, specific to each cancer type that will deter-
mine the neoplastic process. Centrality could then be used
in combination with dynamic information (i.e., gene or
pathway up- or down-regulation) to specifically disrupt
cancer cell networks by disturbing proteins that are critical
to both aspects.

Conclusion

Taking into account the current limited coverage of the
anticipated, complete human interactome, this study sug-
gests that the proteins encoded by differentially expressed
genes in tumors relative to healthy tissue counterparts
occupy central positions in the interactome network. Our
results suggest a systems-level tumorigenesis model that
comprises the precise down-regulation of groups of topo-
logically-associated proteins involved in particular func-
tions, orchestrated with the up-regulation of specific
proteins.

Methods

Human interactome network

In generating the human interactome network, a previ-
ously compiled data set was used, mainly containing
experimentally demonstrated interactions compiled
through a literature-curation process, combined with data
from different types of experimental and computational
evidence [12]. In our analyses, proteins with no assigned
Entrez GenelD were excluded, thus yielding a final inter-
actome network containing 7,388 proteins and 24,109
interactions. The network was analyzed using Cytoscape
[35] and UCINET [36]. In removing network hubs, pro-
teins were selected from the highest degree value (> 9
when analyzing prostate CGPs to > 19 when analyzing
colorectal CGPs). The number of proteins/nodes removed
from the network in each case was identical amongst
hubs, CGPs and selected proteins with the same degree
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distribution as CGPs but with lower values of between-
ness and closeness.

Gene expression analysis

The GEPAS package [37] was used for the analysis of
expression data. Background correction, normalization
and averaging of expression values were performed with
the Robust Multi-array Average (RMA) algorithm [38].
Differentially expressed genes between healthy and tumor
samples were declared after the calculation of an empiri-
cal Bayes moderated t-statistic, and P values adjusted by
false discovery rate of 5%. Previously analyzed colorectal
data [16] were down-loaded from a public repository
[19]. Data sets and probe lists are detailed in Table S1. The
FatiScan tool [39] was used to assess enrichment of GO
terms in the complete gene ranking according to the
empirical Bayes moderated t-statistic.

Topological analysis

The degree of a vertex or protein in the interactome net-
work was calculated by counting the number of edge-ends
at that node. Betweenness was calculated in accordance
with Freeman's formulation [40]. Thus, betweenness cen-
trality Cg(v) for vertex v is calculated as follows:

_ o4 (v)
Cp(v) = Zs;tvitev oy

where o, is the number of shortest geodesic paths from s
to tand o, (v) the number of shortest geodesic paths from
s to t that pass through the vertex v. This value was normal-
ized by dividing by (n -1) x (n - 2), where n is the number
of vertices. Closeness centrality was calculated according
to Sabidussi's formulation [41]. Thus, the closeness C(v)
for a vertex v is the reciprocal of the sum of geodesic dis-
tances to all other vertices in graph G, and is calculated as
follows:

Col) = a——

Ztevdc (1), t)
Hierarchy and constraint were calculated using Burt's for-
mulation [42]. Constraint is a summary measure that
indicates the level of independence of a node from its
neighbourhood, depending on the number of edges that
connect it to neighbour nodes. Thus, constraint is calcu-
lated as follows:

Gj = (Pij + 2 Piaby )2

for q # i, j, where p; is the proportion of node i connec-
tions to j. Hierarchy is the extent to which constraint is
concentrated in a single node and is calculated as follows:
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Cij Cij
. ofw Jo i)
H =

NInN
The cluster coefficient is the local density of a node's con-
nections and is defined as the ratio between the observed
number of connections Li and the total number of possi-
ble connections for a particular node i, ki (ki - 1). Thus, the
clustering coefficient is calculated as follows:

2L;
Cli)=—"—

ki(ki —1)
The Bron and Kerbosch algorithm [43] was used to find all
cliques greater than a specified size [44].

To assess significance, the non-parametric Mann-Whitney
U test was used to determine whether the median of the
centrality measures was different between protein sets. To
assess significance, the properties of CGPs were also com-
pared to equivalent, randomly selected protein sets in the
interactome. One thousand random iterations were per-
formed in each case. Subsequently, average values, confi-
dence intervals and empirical P values were obtained.

Functional association analysis

The Stats and Graphics packages in R [45] were used to
analyze and plot the matrix of network distances between
CGPs, respectively. Hierarchical clustering with an average
linkage method was applied to the matrix so as to arrange
CGPs according to their network distances. The FatiGO+
tool [46] was then used to assess GO and KEGG annota-
tions enrichment between the set of CGPs within a partic-
ular cluster and the remaining CGPs in the same matrix.
Calculated P values were adjusted by FDR, taking into
account the total number of genes interrogated in each
case.
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Additional material

Additional File 1

(Figure S1). Human interactome network characteristics. Scale-free and
degree distribution. The probability that a protein is connected to k other
proteins is described by P(k).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-185-S1.pdf]

Additional File 2

(Table S1). Gene expression data set descriptions and differentially
expressed probe sets.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-185-S2.xls]

Additional File 3

File 3 (Figure S2). FatiScan analysis of prostate gene expression data
sets. Annotations of Biological Process, Cellular Component and Molecu-
lar Function GO terms (level 3) in the complete gene ranking are shown.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-185-3.pdf]

Additional File 4

File 4 (Table S2). Statistical analysis results for centrality, constraint,
and cluster coefficient using the interactome data set described by Gandhi
etal [12].

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-185-S4 xls]

Additional File 5

File 5 (Figure S3). Centrality of down- (green arrows) and up-regulated
(red arrows) prostate CGPs. Results of the Mann-Whitney U test (MW)
are shown at the top right in each box. Results of comparing each central-
ity measure between prostate CGPs (vertical arrow; mean value) and
1,000 equivalent randomly selected protein sets (curves; mean values)
(data sets 1 [14] and 2 [15]) are also shown. CGPs mean values and
95% confidence intervals (CI), as well consequent empirical P values are
shown.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-185-85.pdf]

Additional File 6

File 6 (Table S3). Statistical analysis results for centrality, constraint,
and cluster coefficient using three interactome data sets: i/ in vivo exper-
imental interactions only; ii/ interactions with two or more in vivo or in
vitro experimental evidences as compiled by Gandhi et al. [12]; and iii/
computationally-generated interactions using a homology-based method
[22].

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-185-S6.xls]
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Additional File 7

File 7 (Figure S4). Topological and functional association of lung and
colorectal CGPs. Matrices of distances between CGPs (three categories: <
4 shown in red; 4-6 shown in green; and > 6 shown in blue) and GO and
KEGG annotations enriched in matrix clusters are shown.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-185-87.pdf]
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