
Abstract The protection and management of water resources continues to be challenged by multiple 
and ongoing factors such as shifts in demographic, social, economic, and public health requirements. 
Physical limitations placed on access to potable supplies include natural and human-caused factors such 
as aquifer depletion, aging infrastructure, saltwater intrusion, floods, and drought. These factors, although 
varying in magnitude, spatial extent, and timing, can exacerbate the potential for contaminants of concern 
(CECs) to be present in sources of drinking water, infrastructure, premise plumbing and associated tap 
water. This monograph examines how current and emerging scientific efforts and technologies increase our 
understanding of the range of CECs and drinking water issues facing current and future populations. It is not 
intended to be read in one sitting, but is instead a starting point for scientists wanting to learn more about the 
issues surrounding CECs. This text discusses the topical evolution CECs over time (Section 1), improvements 
in measuring chemical and microbial CECs, through both analysis of concentration and toxicity (Section 
2) and modeling CEC exposure and fate (Section 3), forms of treatment effective at removing chemical and 
microbial CECs (Section 4), and potential for human health impacts from exposure to CECs (Section 5). The 
paper concludes with how changes to water quantity, both scarcity and surpluses, could affect water quality 
(Section 6). Taken together, these sections document the past 25 years of CEC research and the regulatory 
response to these contaminants, the current work to identify and monitor CECs and mitigate exposure, and 
the challenges facing the future.

Plain Language Summary Contaminants of emerging concern (CECs) are included in an 
ever-evolving list of chemicals and microorganisms that are not currently regulated in drinking, recreational, or 
environmental waters but may be detrimental to human or ecological health. Advances in analytical technology 
have allowed the detection of these contaminants at ever decreasing concentrations. Additional techniques, such 
as nontargeted analyses and bioanalytical tools, have expanded our understanding on the occurrence of CECs 
both individually and in mixtures. Even with new analytical tools, little is known about the potentially tens of 
thousands of CECs that may be present in water. Models could be used to predict the fate and occurrence of 
these contaminants. Information on the toxicity to human and aquatic life, both for individual contaminants and 
mixtures, can follow environmental detection. Advancements in wastewater and drinking water treatment have 
increased the capacity for the reduction of contaminants in water. More research would be useful to determine 
human exposures that are occurring through all exposure routes to determine if, and where, additional treatment 
would be beneficial. If water resources become more limited due to population increases, climatic change, poor 
treatment performance, or other factors, CECs may become a larger concern for human and ecological health.
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Key Points:
•  Contaminants of emerging concern 

(CECs) are an ever-evolving list of 
chemicals and microorganisms that 
are not currently regulated in water

•  Advances in analytical technology 
have allowed the detection of 
individual and mixtures of CECs at 
ever decreasing concentrations

•  Transdisciplinary research can be 
used to address science gaps in water 
monitoring, treatment optimization, 
and source water protection
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1. Known and Suspected Drinking Water Contaminants
Research on water contaminants of unknown health consequences has been unfolding for centuries. In London, 
when John Snow recommended removing the Broad Street water pump handle in 1855 during a cholera epidemic, it 
was an intervention on a drinking water exposure of then-uncertain health significance (Cameron & Jones, 1983). 
When Rachel Carson (1962) wrote Silent Spring concerning the environmental risks of pesticides, she was writ-
ing about chemicals whose effects were then considered speculative (Griswold, 2012). The term contaminant 
of emerging concern (CEC) is currently used to describe chemicals and microorganisms that are not federally 
regulated in the United States, but that the scientific community suspects may have deleterious effects on humans 
or wildlife (Diamond et al., 2011). The CEC Interagency Workgroup describes CECs in drinking water as “newly 
identified or reemerging manufactured or naturally occurring physical, chemical, biological, radiological, or 
nuclear materials that may cause adverse effects to human health or the environment and do not currently have a 
national primary drinking water regulation” (National Science & Technology Council, 2018). While the concept 
is established, the term CEC has only been used for the past two decades. Other terms, such as organic wastewater 
contaminants, micropollutants, and trace organic chemicals have also been used to describe this wide-ranging 
class of contaminants. Today's CECs include pharmaceuticals, per-and polyfluoroalkyl substances (PFAS), exog-
enous and endogenous hormones, and microorganisms such as Legionella spp., mycobacteria, and cyanobacteria 
that produce cyanotoxins, and antibiotic-resistant bacteria and genes. Very recently, SARS-CoV-2, the causative 
agent of the COVID-19 pandemic, has emerged as a novel and pressing concern for water systems (Kitajima 
et al., 2020). The list of CECs will certainly continue to expand as improvements in detection technology, and 
with further experiments that reveal exposure related adverse health impacts. This is somewhat balanced by the 
implementation of regulations which truncates the list. For example, drinking water regulations on PFAS are 
forthcoming in the United States (USEPA, 2023), moving at least some contaminants in that class from a CEC to 
a regulated contaminant. But there is most likely a water sample being analyzed today that will find a previously 
undetected chemical or microorganism that will soon be included on the list of CECs.

1.1. U.S. Approach to Drinking Water Regulation

As understanding grew that some microorganisms and chemicals in drinking water had adverse health conse-
quences, treatment systems and regulations emerged to limit these risks. The first Federal drinking water regu-
lations in the United States arose in 1914, with Public Health Service standards set for bacteria with a goal of 
limiting contagious disease. These standards only applied to interstate carriers such as ships and trains (U.S. 
Environmental Protection Agency [USEPA],  1999). In 1925, they were recommended for all drinking water 
sources, even though federal standards were only mandatory for interstate systems at the time (Knotts, 1999). The 
recommendations were for population-based sampling rates and set limits for alkalinity, total solids, and select 
metal contaminants and phenolic compounds (Okun, 2003). The standards were revised in 1942, 1946, and 1962 
(Knotts, 1999; USEPA, 1999). All 50 states used the 1962 standards as a basis for drinking water regulations or 
guidelines prior to the creation of the SDWA in 1974 (USEPA, 1999), which authorized the USEPA to set nation-
ally enforceable standards for drinking water quality. The 1996 amendments to the SDWA (United States, 1996) 
created procedures to prioritize unregulated drinking water contaminants with potential health impacts (i.e., the 
contaminant candidate list; CCL), and to establish a list, once every 5 years, of unregulated contaminants to be 
monitored by public water systems (i.e., the unregulated contaminant monitoring rule; UCMR). These amend-
ments also direct the USEPA to select no fewer than five contaminants from the current CCL and determine 
whether each contaminant should be regulated or not. These mandated activities allowed for the ongoing study 
and assessment of CECs. To date, over 90 national primary drinking water standards have been established by 
the USEPA.

Microorganisms have historically been the primary driver for water treatment (Knotts, 1999). For some microbial 
agents, USEPA sets a non-enforceable, recommended level below which there is no known risk to public health, 
or the maximum contaminant level goal (MCLG). For example, the MCLG for Cryptosporidium spp., Giardia 
spp., and Legionella spp.  in drinking water is zero. As a zero concentration is not realistically possible under 
economic and technological constraints, treatment requirements need to balance ensuring public health with 
these considerations. Rather than setting an enforceable maximum contaminant level (MCL) for these contam-
inants, the SDWA requires treatment techniques that consider economic and technical feasibility in addition to 
adverse health effects. These requirements include maintenance of a disinfectant residual. The SDWA requires 
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Overview
The Safe Drinking Water Act (SDWA) defines “contaminant” as any physical, chemical, biological, 
or radiological substance or matter in water. Thus, by this definition, anything other than the water 
molecule itself (H2O), is considered a contaminant. “Contaminants of emerging concern” (CECs) is a 
term that covers a wide variety of chemicals and microorganisms that are, typically, currently unregu-
lated under the SDWA. Although the term “concern” is subjective, it is used here to refer to the scien-
tific possibility that exposure may be associated with a toxicological or pathogenic disease or environ-
mental harm. For example, inorganic contaminants generally are found more frequently than organic 
contaminants in untreated sources of private and public drinking water at concentrations with potential 
human-health concern (DeSimone et al., 2014; Focazio et al., 2006; Toccalino et al., 2012). However, 
these contaminants are regulated and would not fall under the operational definition of CEC used here. 
That is, they are of concern, but the science on their concentration and toxicity has “emerged” to the 
point that they have been regulated. Consequently, although some inorganic contaminants from natural 
as well as anthropogenic sources such as arsenic, lead, and radionuclides may pose the biggest concerns 
from a toxicity and exposure perspective, they are out of the scope of this paper. This approach acknowl-
edges the uncertainties in our understanding of the thousands of potential water contaminants and their 
mixtures, does not exclude any CEC from the potential necessity for further research, and provides a 
variety of chemical, microbial, toxicological, epidemiological, and other integrated science actions to 
address whether the risk that initiated concern is real or perceived. Figure 1 shows the common sources 
of CECs in watersheds and aquifers, such as wastewater discharges and agricultural runoff and leaching, 
as indicated by yellow circles.

Population increases and relocation, storms, droughts, and other natural and human-caused events 
can negatively affect water supplies and degrade water quality. Some of these effects are illustrated 
in Figure 1, inside of the green circles. Drought can lead to an increase in wildfires where sequestered 
CECs may be mobilized, and chemical fire suppressants, a source of CECs, may contaminate source 
waters. Droughts can also lead to a decrease in aquifer recharge rates while groundwater pumping 
rates are increased. The resulting changes in groundwater flow patterns can lead to changes in aquifer 
geochemistry and degraded water quality as previously sequestered CECs are mobilized. Breaks in 
distribution-system pipes due to aging infrastructure and contracting soils during drought can also lead 
to degraded water quality and introduction of CECs into water supplies. In times of water surplus due 
to flooding, storms surges, or sea level rise, water quality may be affected as systems are inundated and 
contaminants are mobilized. The list of measured CECs in the environment continues to grow due to 
increased analytical capabilities, but thousands of CECs that could be present in drinking water sources 
remain unmonitored. Large-scale monitoring of watersheds and aquifers as well as at the point of expo-
sures continue to be rare across the world for the full range of CECs. The health effects from CECs, as 
well as the effectiveness of treatments to reduce exposure, constitute substantial knowledge gaps.
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Figure 1. Common sources of contaminants of emerging concern (CECs) in watersheds and aquifers. Common sources of 
CECs to the environment are designated with orange circles. Changes in water quantity, from either scarcity or surpluses, can 
affect CEC concentrations in water. Some of these potential conditions are highlighted in the green circles.
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routine monitoring of drinking water for total coliforms, which is a broad group of bacteria naturally present in 
waters, including Escherichia coli (E. coli; USEPA, 2012b) as a surrogate for pathogenic microbial exposures. 
If a routine sample tests positive for total coliforms, then repeat samples are required. If repeat samples are total 
coliform-positive, then samples must be tested for E. coli. If samples are E. coli-positive, then the public water 

Rodriguez-Narvaez, O. M., Peralta-Hernandez, J. M., Goonetilleke, A., & Bandala, E. R. (2017). Treat-
ment technologies for emerging contaminants in water: A review. Chemical Engineering Journal, 323, 
361–380. 10.1016/j.cej.2017.04.106

Liu, Z. H., Kanjo, Y., & Mizutani, S. (2009). Removal mechanisms for endocrine disrupting compounds 
(EDCs) in wastewater treatment—Physical means, biodegradation, and chemical advanced oxidation: A 
review. Science of the Total Environment, 407(2), 731–748. 10.1016/j.scitotenv.2008.08.039

Future Issues

Khan, S. J., Deere, D., Leusch, F. D., Humpage, A., Jenkins, M., & Cunliffe, D. (2015). Extreme 
weather events: Should drinking water quality management systems adapt to changing risk profiles? 
Water Research, 85, 124–136. 10.1016/j.watres.2015.08.018

Research Challenges
The scientific community continues to provide information on the presence, fate, and effects of contam-
inants of emerging concern within both the built and natural environments. Many questions arise as this 
information is used to balance public health protection with economic and other pragmatic constraints.

•  What is the full list of contaminants that matter for the safety of water resources?
•  What is the value of knowing the concentrations of contaminants at exceedingly low levels?
•  What treatment options and mitigation strategies are effective for reducing contaminant concentra-

tions in wastewater and drinking water to safe levels?
•  What is the cost to society to implement those options and strategies?
•  Do we have the right type and the appropriate amount of monitoring data that water-resource manag-

ers and public-health experts require?
•  Are there biological effects on humans or on ecosystems induced by contaminants at environmen-

tally relevant concentrations, singly or in mixtures?
•  How and where can contaminants be monitored in the water supply to properly characterize expo-

sures to the most important contaminants from a health perspective, or those exposures that are 
major drivers in degrading water quality?

•  Can modeling be used to guide efforts to protect water quality along the lifecycle of a contaminant 
as it enters, is transported through watersheds or aquifers, and is changed by treatment and processes 
within conveyance, plumbing and other infrastructure to the point of exposure?

•  Can those models identify the critical control points in the lifecycle of a water contaminant hazard 
where the most cost-effective mitigation or prevention can be focused to protect health?

•  Where are the cross-cutting opportunities and force multipliers to monitoring, modeling, and 
process-based research for the full breadth of public, self-supplied, and bottled drinking water?

•  How can science that is focused on ambient/ecological water resources be used to inform under-
standings of drinking water resources?

Answers to these and other questions would need the combined efforts of scientists from a range of 
disciplines working with engineers, managers, and other decision makers and stakeholders. However, 
the list of questions is presented here to help frame the scope of the science challenge that is addressed 
in more detail below.
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system is in exceedance of the MCL and must report those results to SDWA primacy entities, typically the state. 
The public water system must then assess the sanitary defects and take corrective action.

1.2. Water Contamination as a Public Health Concern

Although it is widely recognized that water-associated exposures are important for many human health 
outcomes, and that drinking water can be a major route of exposure from many contaminants, less epidemio-
logical research has focused on drinking water exposures than might be expected (Bradley et al., 2018). One 
reason for this research gap is the limited availability of occurrence, exposures, and associated health and 
outbreak data for drinking water systems and their customers in the United States. National primary drinking 
water regulations establish requirements for public water systems to monitor occurrence for the majority of 
regulated contaminants or indicators of contamination in public water supplies for regulatory compliance 
purposes (contaminants with treatment technique standards are not monitored). In contrast, every 5 years 
the USEPA determines a new list of up to 30 unregulated contaminants that are required to be monitored by 
some public water systems as part of the UCMR. However, for most contaminants, such data are collected at 
the point of compliance (e.g., entry to the distribution system) and might not accurately represent the water 
delivered to residential or other taps where exposures take place (Bradley et al., 2018, 2020). Notable excep-
tions are the monitoring of contaminants such as disinfection byproducts (DBPs) or metals that may increase 
in the distribution system and therefore monitored there, and lead which is monitored at the tap. There is also 
no specific federal monitoring of private well water used by ∼44.1 million people (Ayotte et al., 2017; Lee 
& Murphy, 2020; Rogan et al., 2009), and states differ in their water quality testing requirements for private 
wells (Bowen et al., 2019).

Waterborne disease surveillance efforts emphasize the tracking of acute disease outbreaks (Beer et al., 2015). For 
an event to be described as an outbreak, two or more people must be linked epidemiologically by time, location 
of exposure to water, and type of illness. The latest report describing outbreaks caused by exposure to treated 
drinking water in the United States covers years 2013–2014 (Benedict et al., 2017) and describes 42 outbreaks 
in 19 states consisting of 1,006 illnesses, 124 hospitalizations, and 13 deaths. Legionella spp. was responsible 
for 57% (24/42) of outbreaks, 130 cases, 109 hospitalizations, and all 13 deaths. Eight outbreaks were caused 
by Cryptosporidium spp., accounting for 279 cases, and Giardia spp. accounted for 10 cases. While Legionella 
spp. caused most of the outbreaks, most of the cases were caused by Cryptosporidium spp. or Giardia spp. (130 
vs. 289). Community water systems were responsible for 75% of known drinking water outbreaks (Benedict 
et al., 2017). In the United States, community water systems are those systems having ≥15 service connections 
or serving ≥25 residents for more than 60 days/year (United States, 1996).

While known outbreaks represent only a small number of waterborne disease cases, the true burden of water-
borne illness is likely greater, as there might be undetected or unconfirmed outbreaks and an unknown role 
in endemic transmission. Tracking and understanding the causes of waterborne disease outbreaks is essential 
to prevent future exposures, identify emerging pathogens, and inform the public and water system operators 
on proper treatment for intended use. The latest drinking water outbreak report (Benedict et al., 2017) was 
the first to include two outbreaks involving the CEC microcystin, a toxin produced and excreted into surface 
water during harmful algal blooms (HABs) by cyanobacteria. The two outbreaks involved 116 cases of acute 
gastrointestinal illness, one outbreak in September 2013 (6 cases) and one in August 2014 (110 cases), where 
levels in samples from a community water system exceeded state thresholds and resulted in “do not drink” 
advisories.

Long-term exposure to low levels of chemical contaminants also play an important role in shaping public health 
(Abdul et al., 2015; Vollet et al., 2016). Recent research has shown that environmental exposures may play an 
even greater role than genetic risk factors for some chronic diseases (Rappaport, 2012, 2016), but identifying the 
specific environmental exposures responsible for chronic disease is challenging. There are several reasons for 
these challenges, including (a) uncertainty regarding the “latency period” interval of time that elapses between 
the etiologically relevant exposure and the onset of the disease (Marshall et al., 2007), (b) lack of high-quality 
exposure data pertinent to the biologically relevant exposure-time, and (c) toxicity of low dose exposures to indi-
vidual and mixtures of CECs and legacy contaminants (Kortenkamp et al., 2007).
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1.3. 21st Century CECs

The sources and routes of CECs into the environment are as varied as the CECs themselves (Figure 1). For 
example, both industrial and household use and disposal of chemicals can result in the release of those materials 
into the atmosphere, surface water, and groundwater (Battaglin et al., 2018; Glassmeyer, 2007; Richardson & 
Kimura, 2017). Wastewater can be a source of both chemical and microbial CECs into the environment (Fairbairn 
et al., 2016). In some cases, such as agriculture and urban landscaping, contaminants (e.g., nitrate and phosphate) 
are released that exacerbate the production of HABs, a CEC. This section examines some of the current CECs 
in more depth.

1.3.1. Microorganisms and Microbial Products

Given that the healthy human body is heavily comprised of resident microorganisms (Sender et  al.,  2016; 
Stark, 2010), it is apparent that relatively few microorganisms regularly interacting with humans are pathogenic. 
However, the World Health Organization (WHO) estimates that 2.1 billion people around the world lack access 
to safe water at home (WHO, 2018a, 2018b); contaminated source water leads to approximately 750,000 children 
dying annually due to diarrhea (L. Liu et al., 2012).

Microbial CECs include microbes that may be newly apparent to public health practitioners, that appear to be 
associated with increasing disease incidence, or that appear to be expanding in geographic range. Although 
some microbial contaminants are known pathogens, many more are poorly characterized with additional 
evidence needed to establish a causal link to disease. Major known and potential emerging CEC pathogens in 
water are  described in Table 1 (Ashbolt, 2015a, 2015b). Waterborne pathogens contaminate natural bodies of 
water through fecal matter but are generally removed through drinking water treatment and are not commonly 
found in treated drinking water (Ashbolt, 2015a). In contrast, water-based pathogens are non-enteric environ-
mental microorganisms that may persist and grow in water, including in drinking water distribution systems. 
While waterborne pathogens cause substantial illness in the United States, direct healthcare costs due to illness 
caused by water-based pathogens, such as Legionella spp., are significantly higher (Collier et al., 2012; Strollo 
et al., 2015). Some microorganisms (e.g., cyanobacteria) produce toxins that cause more severe health impacts 
than do the microorganisms themselves (Díez-Quijada et al., 2019). Factors that may produce freshwater HABs 
include excess nutrient concentrations and availability of sunlight (Chaffin et al., 2019; Havens et al., 2019). 
Human contact with freshwater HABs and their toxins can cause a variety of symptoms (Otten & Paerl, 2015). 
In the most recent report on sources of drinking water-related disease outbreaks in the United States (Benedict 
et al., 2017), cyanotoxins were the only chemical agents listed as a known causative agent.

1.3.2. Antimicrobial Resistance and Antimicrobial Resistance Genes

Antimicrobial resistance (AMR) is the ability of microorganisms to defeat the effects of drugs used to combat them 
(Wellcome Trust et al., 2018). AMR is one of the greatest emerging public health challenges; AMR infections are asso-
ciated with 4.95 million annual worldwide deaths and could result in an estimated 10 million annually by 2050, becom-
ing the leading cause of global death (Antimicrobial Resistance Collaborators, 2022; O’Neill, 2016). In the United 
States, at least 2.8 million people acquire an AMR-derived infection each year, causing approximately 35,000 deaths 
(CDC, 2019). While these statistics emphasize AMR as a clinical healthcare concern, awareness is growing of the role 
the environment plays in the development and spread of AMR bacteria (ARB) and resistance genes (ARG; Table S1 
in Supporting Information S1). The discharge of human and animal wastes has contributed to the exposure of environ-
mental microbial communities to antibiotics, ARB, and ARG, providing new selective pressures and opportunities for 
genetic exchange (M. L. Chen et al., 2021; He et al., 2023; Hubbard et al., 2020). These waste discharges include both 
clinically-relevant AMR pathogens and genetic elements, with the environment then serving as a reservoir and conduit 
for further exposure and human health risks (Adegoke et al., 2017; Bengtsson-Palme et al., 2018; Cantas et al., 2013; 
Finley et al., 2013; Graham et al., 2019; Pruden et al., 2006; United Nations Environment Programme, 2023). Human 
feces and wastewater contain a high-strength mixture of antibiotics, ARB, and ARG, including those associated with 
clinical infections among the contributing population (Bouki et al., 2013; Rizzo et al., 2013). The wastewater from 
likely hotspots of AMR (e.g., hospitals and antibiotic manufacturing facilities) poses a particular concern (Gwenzi 
et al., 2020; Wellcome Trust et al., 2018). Likewise, domestic animal wastes are an important route for dissemination 
of antibiotics, ARB, and ARG to the environment. Large quantities of antibiotics are utilized in animal agriculture 
not only for disease treatment, but also for prophylaxis and (historically) growth promotion (Burkholder et al., 2007; 
Cromwell, 2002; Gaskins et al., 2002; Wegener, 2003). Such doses can be sublethal to microorganisms, providing ideal 
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conditions for the development, selection, and horizontal transfer of AMR (Aarestrup, 2015; ter Kuile et al., 2016). 
Because animal manures and process wastewaters are typically minimally treated or untreated prior to land application 
or these contaminant's disposal, the ARB and ARG that they contain can be discharged directly to receiving soils with 
subsequent transport to water resources. Affected waters can disseminate to subsequent receptors via irrigation, recrea-
tional use, or drinking water exposure. Although drinking water treatment processes (DWTP) are generally effective in 
reducing ARB and ARG, both are nevertheless detected in finished water (Sanganyado & Gwenzi, 2019).

Despite these concerns, the human health risk associated with environmental ARB and ARG is not fully understood. 
Important challenges include the lack of quantitative relationships between selective pressures and the development 
and spread of AMR; unknown rates of mutation and horizontal gene transfer, including between environmental bacteria 
and pathogens; and uncertain dose-response relationships of resistant strains (Ashbolt et al., 2013; Pires et al., 2018). 
Defining the risk associated with ARG detection in environmental samples is a considerable challenge, as it is generally 
unknown which bacteria harbor the genes; whether they are associated with mobile genetic elements; and whether they 
are capable of being expressed in viable cells (Martínez et al., 2015; Pires et al., 2018). It is also necessary to consider 
background levels of ARB and ARG in the natural environment and geospatial gradients of anthropogenic effects when 
assessing environmental AMR and associated risks (Pepper et al., 2018; Vikesland et al., 2017).

1.3.3. Pharmaceuticals

Pharmaceuticals were one of the first classes of CECs reported in the environment (Stan & Heberer,  1997; 
Ternes, 1998). Their ubiquity and environmental persistence (Kolpin et al., 2002) raised the interest and concern of the 
public, partially because these chemicals are explicitly designed to have biological effects on both humans and other 
forms of life, and because of their common use and visibility in daily life. Nearly 12,000 different chemicals have been 
identified as pharmaceutical drugs (Wishart et al., 2017) and the list of pharmaceuticals will continue to increase as 
the understanding of disease mechanisms and development of treatments continues to unfold. Changes in climate, 
disease vectors, and increases in contamination levels may alter the future use of pharmaceuticals in a region (Redshaw 
et al., 2013). A recent global-scale study investigated pharmaceuticals in 258 of the world's rivers, representing the 
environmental influence of 471.4 million people across 137 geographic regions (Wilkinson et al., 2022). Table S2 in 
Supporting Information S1 summarizes the concentrations of 326 prescription and over the counter pharmaceuticals 
that have been identified and measured in surface water, groundwater, and drinking water. This table also includes 
other commonly consumed chemicals such as caffeine, nicotine, and artificial sweeteners that are not technically 
pharmaceuticals. While this synopsis is not an exhaustive summary of the literature, it illustrates the range of envi-
ronmental detections. The health hazards posed by pharmaceuticals may be direct or may be mediated by the effects 
of pharmaceuticals on the toxicity of other chemicals (Lepist & Ray, 2017) and on health risks posed by microbial 
pathogens (e.g., AMR (Section 1.3.2); Singer et al., 2019). Similarly, microbial processing of pharmaceuticals in the 
human gut may be affecting the dose of the original pharmaceuticals and of transformation products (TPs) with their 
own biological activities (Spanogiannopoulos et al., 2016). Thus, hazard characterization for pharmaceuticals, like 
many other CECs, is complicated by the influences of co-exposures.

1.3.4. Endocrine-Disrupting Chemicals

Endocrine-disrupting chemicals (EDCs) are another broad class of CECs occurring in drinking water. The publi-
cation of Our Stolen Future (Colborn et al., 1996) increased public awareness of the effects EDCs may have on 
wildlife and humans (Kwiatkowski et al., 2016). EDCs mimic the functions of hormones, which regulate many 
bodily functions such as metabolism and reproduction (Diamanti-Kandarakis et al., 2009). Disruption of natural 
hormone signaling may occur by blocking cellular receptors from receiving the endogenous hormone (suppres-
sion) or binding cellular receptors in the absence of hormones (enhancement). Approximately 1,000 chemi-
cals are now believed to be EDCs (Bergman et al., 2013). Examples of EDCs include synthesized endogenous 
hormones, pharmaceutical hormone analogs, and industrial chemicals such as alkylphenol ethoxylate surfactants 
and plastics. Table S3 in Supporting Information S1 summarizes the concentrations of 151 EDCs found in the 
surface water, groundwater, and drinking water.

1.3.5. Per- and Polyfluoralkyl Substances

PFAS are unique chemical structures that contain both hydrophobic and hydrophilic properties. There are an esti-
mated 12,000 PFAS chemicals (USEPA, 2021). While their physical and chemical properties make them ideal for 
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a variety of non-stick, water repellent, and stain resistant applications such as in cookware, clothing, and carpet-
ing (Lang et al., 2017), their these properties also make PFAS resistant to some treatment approaches both for 
wastewater (Deng et al., 2010; Houtz et al., 2016) and drinking water (Crone et al., 2019), as well as making them 
extremely environmentally persistent (Boone et al., 2019). Some PFAS are a component of aqueous film-forming 
foams, commonly used to fight fires at airports, which is one way that PFAS may contaminate groundwater 
(Houtz et  al., 2013). The presence of low levels of PFAS in some finished drinking water (Hu et  al.,  2016), 
combined with their persistence in the human body and potential adverse health impacts (Bruton & Blum, 2017), 
has raised public awareness of PFAS (SSEHRI, 2019). Table S4 in Supporting Information S1 summarizes some 
of the literature for 38 PFAS chemicals in surface water, groundwater, and drinking water.

1.3.6. Brominated and Organophosphate Flame Retardants

PFAS are not the only CECs with fire-fighting properties. Brominated and organophosphate chemicals are used to 
reduce the flammability of many household products such as clothing and furniture (Green, 1992). Approximately 
200 chemicals are classified as flame retardants (Flame Retardants Europe, 2018). Concerns over the health risks 
of the brominated compounds, particularly to children (S. J. Chen et al., 2009; Small et al., 2009), has led to their 
phase out with a subsequent increase in organophosphate usage (Wei et al., 2015). Organophosphate flame retard-
ants have been found to migrate through atmospheric transport pathways away from their areas of use (Salamova 
et al., 2014), and have been found in rainwater, surface water, and drinking water (U. J. Kim & Kannan, 2018). 
Table S5 in Supporting Information S1 summarizes the aquatic concentrations for 46 flame retardants.

1.3.7. Nanomaterials and Microplastics

Nanomaterials and microplastics differ from the other classes of chemical CECs in that they are classified due to 
their size rather than their chemical structure or commercial use (Boverhof et al., 2015; Cole et al., 2011). In fact, 
the determination of a consensus definition for nanomaterials is difficult, but most definitions include particles 
with at least one dimension measuring 1–100 nm (Boverhof et al., 2015). Environmental research on nanoma-
terials initially was focused on determining if they could have negative health effects on humans or aquatic life 
(Colvin,  2003; Daughton,  2004; Hoet et  al.,  2004). While this toxicological research has continued (Voelker 
et al., 2015), nanomaterials were found to have potential applications in water and wastewater treatment (Bishoge 
et al., 2018; Teow & Mohammad, 2019; Zhao et al., 2018). Some papers evaluated both the positive and nega-
tive aspects of nanomaterials (Zhu et al., 2019), contrasting the remediation potential against the environmental 
effects for individual nanomaterials.

Environmental concern regarding microplastics has dramatically increased in recent years (Burns & Boxall, 2018). 
Microplastics include a wide variety of materials such as polyethylene (PE), polypropylene (PP), polyamide (PA), 
polyvinyl chloride (PVC), polystyrene (PS), polyurethane (PUR), and polyethylene terephthalate (PET) (Rezania 
et al., 2018). Microplastics can take many forms including fibers discarded from cloth during laundering; parti-
cles generated from tire wear, particles originally designed to be microparticles; and breakdown products from 
larger materials, plastic films or sheets, and foams (Rezania et al., 2018). Microplastics can range in size from 1 to 
<5 mm, with mesoplastics ranging from 5 to <25 mm, and macroplastics exceeding 25 mm (Rezania et al., 2018). 
These materials get into surface water through a variety of pathways including wastewater effluent discharges 
and non-point source runoff. The methods for the collection and quantification of microplastics and associated 
quality control are still evolving (Koelmans et al., 2019; Li et al., 2018; Picó & Barceló, 2019; Silva et al., 2018; 
Whiting et al., 2022; S. Zhang et al., 2019). Microplastics are found in aquatic life throughout the food chain 
(Rezania et al., 2018), both ingested by and entangled with the organisms (Li et al., 2018). Microplastics may 
be introduced to agriculture through irrigation with treated wastewater or fertilization with biosolids (Nizzetto 
et al., 2016). Data are incomplete regarding the removal of microplastics during wastewater and drinking water 
treatment (Novotna et al., 2019).

1.4. Trends in Publications Regarding Environmental Concentrations of CECs

Research into these novel chemicals and microbes that are currently considered to be CECs have been rapidly 
and continually expanding. While it was once feasible to thoroughly summarize the literature on pharmaceuticals 
(Glassmeyer et al., 2008), the expanding number of analytes and the increasing number of publications investigating  
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these targets now makes this a Sisyphean task. Not only is the number of papers on CECs expanding, but  
so are the venues of publication and geographic locations where such research is conducted. Figure 2 charac-
terizes the expansion of CEC publications from 2002 to 2022. In 2002, there were two papers published using 
the terms emerging contaminant (EC) or CEC (search term “contaminant* of emerging concern” or “emerging 

Figure 2. Evolution of contaminants of emerging concern (CECs) in the scientific literature 2002–2022. The numbers in 
each pie wedge are the number of journals and the number of CEC or emerging contaminant papers represented by each 
wedge as given by the color-coded legend (i.e., in 2012, 36 journals published one paper shown in the dark blue wedge, 24 
journals published two to nine papers for a total of 82 papers represented by the light green wedge, and 3 journals published 
10 to 19 papers, a total of 44 papers in the dark gray wedge). Size of the pie charts are proportional to the number of papers 
each chart represents.
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contaminant*” in Current Contents Connect search of topics), one in Analytical Chemistry and one in Elec-
trophoresis. The number of papers expanded to 30 in 2007, 162 in 2012, 513 in 2017, and topped out at 1407 
in 2022. There were 247 journals that published at least one paper on CECs or ECs in 2022, with one journal, 
Science of the Total Environment, publishing 169 papers on the topic. While there are a wide number of journals 
that have published on CECs, more than half of the CEC papers published in 2022 were published in 16 journals. 
The locations of the research have also spread, expanding from primarily being conducted in North America and 
Europe to being truly global (i.e., Asia, South America, Oceana, and Africa; Wilkinson et al., 2022).

To further summarize the expansion of the literature, Figure 3 lists the number of publications for the 20 journals 
that each published at least 1% of the papers referring to CECs from 2010 to 2018 as indexed in Current Contents 
Connect. In total, these 20 journals published 61% of the CEC papers in this timeframe. In order of decreas-
ing contribution, these journals are: Science of the Total Environment (9.3% of all CEC papers), Chemosphere 
(7.0%), Water Research (6.0%), Environmental Science and Pollution Research (5.0%), Journal of Hazardous 
Materials (4.7%), Chemical Engineering Journal (4.2%), Environmental Science and Technology (3.5%), Jour-
nal of Chromatography A (3.3%), Environmental Pollution (2.7%), Analytical and Bioanalytical Chemistry 
(2.5%), Environmental Toxicology and Chemistry (2.4%), Water Environment Research (1.5%), Environment 
International (1.4%), Desalination and Water Treatment (1.2%), Analytical Chemistry (1.1%), Water, Air, and 
Soil Pollution (1.1%), Marine Pollution Bulletin (1.0%), Talanta (1.0%), TrAC Trends in Analytical Chemistry 
(1.0%), and Journal of Environmental Management (1.0%). For comparison, the total number of papers published 
in the journals as well as the publication counts for legacy chemicals (chemicals such as polychlorinated biphe-
nyls [PCBs], polycyclic aromatic hydrocarbons [PAHs], and dioxins and furans) were also tabulated in addition 
to the CEC classes discussed in Section 1.3. The search terms used were: CECs-“contaminant* of emerging 
concern” or “emerging contaminant*”; pharmaceuticals- pharmaceutical* or drug* or antibiotic*or PPCP; 
EDCs- EDC* or E2 or EE2 or E1 or E3 or “endocrine disrupting compound*” or hormone* or “endocrine 
disrupting chemical*”; PFAS- “Per- and polyfluoroalkyl substance*” or PFAS* or PFC* or “Perfluorinated 
Chemical*” or “Perfluorinated Compound*” or PFOS or PFOA; microorganisms- bacteria or protozoa or 
virus* or microorganism* or pathogen* or fungus or fungi or mold*; AMR- “antimicrobial resistance*” or 
“antibiotic resistance*”; cyanotoxins- “harmful algal bloom*” or cyanotoxin* or microcystin* or “algal toxin*” 
or cyanobacteria; legacy chemicals- PCB* or “polychlorinated byphenyl*” or dioxin* or PAH* or “polycy-
clic aromatic hydrocarbon*” or “persistent organic pollutant*”; microplastics- microplastic* or microfib* or 
microbead*or “plastic microparticle*”; nanomaterials- nanomaterial* or nanoparticle* or nanofib* or nano-
tube* or nanorod* or nanoribbon*; and brominated and organophosphate flame retardant- flame retardant*. 
Separate panels in Figure 3 depict the number of publications for the various classes between 1998 and 2022. 
Proportionate percentile models were used to summarize the change in the number of papers across years, using 
Stata 14.2 S/E software (StataCorp LLC, College Station, Texas). The overall number of publications in these 
20 journals increased 8% per year (shown in the upper right corner of each panel in Figure 3), presumably due 
to an increase in environmental research and improvements in electronic publishing. Legacy contaminants had 
a slightly slower increase of 5% per year. In stark contrast, the number of publications on CECs increased an 
average of 31% per year. Microorganisms and cyanotoxins increased at a slower average growth rate of 12% and 
16% per year, respectively, but AMR publications increased at an average of 29% per year. These patterns reflect 
the continuing importance of AMR as a global health concern, as microorganisms become more resistant to the 
effects of current antibiotics (Section 1.3.2).

As one of the first classes of CECs investigated in the environment (Stan & Heberer, 1997; Ternes, 1998), pharma-
ceuticals lead all classes of CECs except nanomaterials in terms of number of publications (Figure 3). However, 
as was discussed in Section 1.3.7, the nanomaterial publication expansion is unique among the CECs due to the 
use of the materials in water treatment, rather than occurrence of the materials themselves. The number of phar-
maceutical publications has continued to rise, with an average growth of 11% per year. The publication trends 
in Figure 3 illustrate the evolving nature of interest in various CEC classes. EDCs are the next most commonly 
reported class of CECs, followed by accelerating interest in PFAS and the organophosphate and brominated 
flame retardants. Nanomaterials and microplastics are more recent additions to the research lists, starting in 
the early 2000s. The average rates of increase of all classes of CECs (EDCs 13% per year, PFAS 25% per year, 
brominated and phosphorus flame retardants 19% per year, nanomaterials 32% per year, and microplastics 43% 
per year) far exceed the rate of growth for the journals. Halden (2015) noted that for 14 different CECs, research 
interest maximized an average of 14.5 years after the initial published reports of the contaminant, and interest 
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Figure 3. Publication rates for various classes of contaminants of emerging concern (CECs). Bar charts list the number of papers in 20 of the leading CEC journals. 
Number in top right-hand corner of each panel is the annual percent increase.
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in the chemicals waned over the next 14.1 years until a baseline number of annual publications was achieved, a 
28.6-year period of increased research interest. These analyses demonstrate the relative importance of CECs in 
the field of environmental science, which is not only expanding but continually evolving to include new analytical 
targets of environmental interest.

The concentrations of CECs vary based on the hydrologic compartment type of water. For a given chemical, 
surface water generally tends to be more susceptible to contamination than groundwater. Figure 4 plots the 
literature concentrations (see Tables S2–S5 in Supporting Information S1) for representative pharmaceuticals 
(carbamazepine, caffeine, and sulfamethoxazole), hormones (estradiol and estrone), chlorinated organophos-
phate flame retardants (tris (1-chloro-2-propyl) phosphate [TCPP] and tris (2-chloroethyl) phosphate [TCEP]), 
and PFAS (perfluorooctanoic acid [PFOA], perfluoroctane sulfonate [PFOS], and perfluorobutane sulfonate 
[PFBS]). Some outliers are notable in the trend of surface water having the highest concentration, for exam-
ple, the high measured concentration of caffeine in drinking water. Additionally, the fewer measurements in 
groundwater and drinking water relative to surface water make the trends more difficult to visualize. Never-
theless, the general concentration trend of relatively higher surface water concentrations holds true for many 
of the CEC classes. The notable exceptions are the PFAS chemicals. The groundwater concentrations are 
generally higher than the other CECs. The environmental stability of these chemicals may be a cause of this 
trend (Crone et al., 2019).

1.5. Limitations of Current Environmental Monitoring Data

We observed a bimodal distribution of frequency of research on the individual chemicals within a CEC class: that 
is, within a chemical class, an individual chemical tended to be either present in a plurality of the studies or to be 
only measured in a single study (Figure 5). The compounds listed on each panel are the ones that were frequently 
measured (i.e., analytes in at least of a third of the papers surveyed for a given CEC class). Chemicals that only 
appeared in a single report (the far-left bar of each graph) had the highest frequency for each CEC class, ranging 
from 22% to 57% of the surveyed analytes. PFAS analytical methods all tend to include the same core list of 
chemicals (mostly 4–12 carbon chain perfluorinated carboxylic acids), which is why those analytes have a high 
frequency in the literature. Conversely, the papers on flame retardants tended to focus either on the brominated or 
on the organophosphate flame retardants, thus no one chemical was in more than half of the surveyed papers. The 
EDC papers tended to be focused either on the endogenous hormones or on industrial chemicals, thus lowering 

Figure 4. Comparison of maximum measured concentrations in surface water, groundwater, and drinking water for select pharmaceuticals, hormones, flame retardants 
and per- and polyfluoroalkyl substances (PFAS). For all compounds and all matrices, measured concentrations varied by several orders of magnitude, but surface water 
(green symbols) tended to be higher than groundwater (gray) and drinking water (blue).
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the possibility for an analyte to appear in all EDC papers surveyed. For the pharmaceuticals, most papers are 
focused on both over-the-counter and prescription human pharmaceuticals, but a minority of the papers focused 
on veterinary or illicit drugs. In total, this literature review captured data on 326 pharmaceuticals, 151 EDCs, 46 
flame retardants, and 38 PFAS chemicals (Tables S2–S5 in Supporting Information S1). As shown in Figure 5 
for each of the CEC classes, the number of chemicals reported in the environmental literature is a fraction of the 

Figure 5. Frequency of individual contaminants of emerging concern (CECs) in literature review, by CEC class. A plurality of the CECs in this limited review 
appeared in a single paper (22%–57% of the analytes, depending on class). Chemicals in at least one-third of the papers included in the review are identified on each bar 
chart. The number of CECs that appeared in reviewed publications (light green wedge) is dwarfed by the estimated number of CECs in each class (dark blue wedge), 
indicating how few of the CECs have been investigated in environmental studies.
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total estimated number of chemicals in each class. A growing array of tools is available to assist in closing this 
data gap.

2. What Else Is Out There? Current and Next Generation Tools
Excluding specific spills or other discrete contamination events, the biggest challenge in linking observed toxic 
effects and the contaminant or contaminant mixtures initiating the toxic effect is the identification of the toxi-
cants within an environmental water sample. This is particularly problematic when the water sample contains 
a complex mixture of organic and inorganic components whose absolute, often low, concentrations and rela-
tive  compositions change with hydrologic and biologic conditions within the watershed or aquifer. As a result, 
considerable effort has been made in developing tools that more specifically tie toxicity to the initiating contam-
inant, and in light of anticipated sample complexity, to make the connections comprehensively for as many 
contaminants and toxicologic responses as possible.

In this section, we assess state-of-the-art techniques for two complementary aspects of toxicity to accurately 
and comprehensively identify: (a) the full range of contaminants present, and (b) the corresponding observed 
responses or effects. These two components are necessary and fundamental to fully characterizing the entirety 
of water (source-water systems and treated-water systems) toxicity and subsequently developing an objective 
assessment of the potential risk to human and ecosystem health. Following this assessment, we identify potential 
tandem combinations of the best of these approaches for future water quality and risk assessments in light of the 
future challenges of maintaining safe water supplies for potable water and ecosystem needs.

2.1. Nontarget Analysis: A New Tool for CEC Identification and Quantitation

Mass spectrometry has been an important means of identifying and quantifying organic contaminants in envi-
ronmental samples since the late 1960s (Budde, 2015). Over the ensuing decades many regulatory and research 
methods using coupled chromatography/mass spectrometry have been developed, primarily using gas or liquid 
chromatography (GC or LC), permitting unambiguous identification of organic contaminants in environmental 
samples at parts-per-billion and lower reporting levels (Abian, 1999; Lebedev, 2012). The availability of pure, 
verifiable authenticated standard materials of the contaminants of interest has been, and continues to be, key to 
the accuracy of these methods.

Over the last 20  years, however, advances in mass spectrometer design, computerized automation of instru-
ment operation, data collection, and data analysis have resulted in the mass spectrometers that routinely measure 
the mass of an ionized molecule or its fragments to a mass resolution of 0.001 Da or lower. With this accu-
racy, the likely elemental compositions of ions and, subsequently, identification of organic contaminants can 
be determined (Zedda & Zwiener, 2012). Identification quality from these high-resolution mass spectrometers 
(HRMSs) has been improved by incorporating additional information from chemical information databases and 
in silico computational predictive tools (Aalizadeh et al., 2016, 2019; McEachran et al., 2017, 2018; Samanipour 
et al., 2018). Thus, the researcher using HRMS can prioritize the synthesis and/or acquisition of new standards 
for presumably identified unknown contaminants and contaminant classes whose presence, concentration, and 
behavior indicate environmental significance.

The two most common HRMS techniques in current use, the quadrupole-time of flight mass spectrometer and 
the hybrid linear ion trap (Orbitrap) mass spectrometer (Orbitrap-MS) have been available since 1996 and 2005, 
respectively (Makarov et al., 2006; Morris et al., 1996). Both have revolutionized the identification of organic 
contaminants in environmental samples, especially the challenging polar, hydrophilic compounds that comprise 
many CECs. These HRMS systems typically collect all ions produced and, when coupled to high-performance 
LC or GC separations, high resolution full-scan spectra (each containing thousands of potentially pertinent ions) 
can be continuously collected in 50 millisecond intervals over a 20- to 30-min chromatographic separation; recent 
developments coupling ion mobility spectroscopy to chromatographic separation (Celma et al., 2020) adds an 
additional potential identifying feature, further increasing file size. The resulting gigabyte-sized data files would 
be difficult to productively evaluate without the concomitant development of high-speed data acquisition and 
analysis software, which permits deconvoluting and interrogating the highly complex, data-rich results from 
environmental samples. As all ions are captured and available for analysis, targeted contaminants (with associated 
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analysis of standards), contaminants that are suspected to be present, and truly unknown but present contaminants 
can be evaluated, at least qualitatively, from a single file processed iteratively.

Environmental analytical chemists have recognized the utility of such an all-encompassing analytical tool and 
have expanded its use in environmental analysis. Since the defining publication by Krauss et al. (2010), nontarget 
analysis (NTA), sometimes referred to as nontarget screening (NTS) has become a rapidly expanding research 
area. Sufficient numbers of authors, approaches, and publications have resulted in an ongoing dialogue regarding 
the rapid proliferation of this approach, potential pitfalls, and needs for clear, exact definitions and metrics of 
the qualitative and quantitative scientific content that results from NTA (Angeles, et al., 2021; Black et al., 2023; 
Hites & Jobst, 2018, 2019; Knolhoff et al., 2019; Samanipour et al., 2019).

To identify the full range of CECs and other contaminants present in a sample, the most relevant aspect of 
NTA is post-analysis data processing. Timewise, this step is the largest fraction of the work, accomplishing 
several functions including (a) normalization of multiple analysis results files into a single set to account for 
run-to-run analysis variations, (b) automatic identification of “molecular features” (chromatographic retention 
time-molecular/fragment ion-ion intensity combinations) that are presumed to be characteristic of individual 
compounds (known, suspected, or unknown), and (c) additional data filtering to remove redundancies that arise 
from the presence of salts and other ionic complexes of each compound or element isotope compositions (isobaric 
interferences).

Ideally, an NTA workflow first sequentially identifies compounds that are either (a) verified against authentic 
standards (known compounds) analyzed at the same time as the environmental samples, and thus quantifia-
ble, or (b) suspected to be present because they are related to knowns, or have common environmental sources 
and input histories, with comparison against external publicly available mass spectra databases of known and 
suspect contaminants (e.g., MassBank of North America,; https://mona.fiehnlab.ucdavis.edu/) and in-house 
and vendor-supplied databases. Public and vendor-supplied databases are particularly helpful because the data-
base entries are curated, containing low energy and high energy, controlled fragmentation full HRMS spectra 
of defined quality, and typically have standardized chromatographic separation conditions. These systematic 
comparisons, against documented consensus-acceptance standards (Hollender et al., 2019) provide support for 
identification in the absence of a standard. Finally, after the prior evaluation for known or suspect compounds, 
and in-depth searching of extant databases and literature, what remain are the set of molecular features containing 
HRMS spectra and chromatographic characteristics for identifying unknown compounds (i.e., previously unre-
ported, unsuspected environmentally relevant compounds).

The NTA strategy described above can be applied to samples regardless of source or relationship between 
samples. An experimental design where samples are collected so that a “before/after” condition or state can be 
distinguished may provide NTA results that can be used to determine if the distributions of features between 
samples reflect an environmental change of state. For example, comparing samples from contaminant-exposed 
and unexposed fish, or river water samples collected upstream and downstream from a wastewater discharge, may 
provide a more directed means of using NTA to identify known, suspected, and unknown compounds of environ-
mental relevance specific to those scenarios. In this approach, the filtered, optimized HRMS results from these 
samples are compared using nonparametric statistical techniques such as principal component and multivariate 
data analysis. These nonparametric statistical techniques are used to identify distributions of molecular features 
that are distinctly characteristic of either the “before/upstream” or “after/downstream” samples, as well as those 
common to both samples. Molecular features common to both samples may reflect common sample components 
or experimental artifacts.

The approaches and standards of practice used by NTA practitioners are still evolving, and often incorporate 
and build upon approaches pioneered by researchers identifying and quantifying the metabolome, that is, all 
metabolites generated in each biological process (Cajka & Fiehn, 2016; Kind & Fiehn, 2006, 2010). As of 2023, 
however, sufficient research has been published to assess NTA in an environmental context, particularly as a tool 
to address short- and long-term water-quality challenges for human exposure and ecosystem health.

2.1.1. NTA Applications to Water Quality and Chemical Exposure

To date (2023), many studies have been published describing the application of NTA to identify agricultural, 
urban, and industrial contaminants and their potential sources in freshwater systems, many of which may also be 
drinking-water sources. In the following sections, we address recent NTA applications by the water types most 
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commonly addressed in studies. A number of studies reviewed herein address multiple water types; however, 
characterization by water type can be useful when considering routes of exposure and potential effects of CECs 
on human and ecosystem health.

2.1.1.1. Wastewater

Wastewater discharge is an important environmental contributor to complex contaminant mixtures with demon-
strated potential for the presence of known, suspect, and unknown contaminants (Alygizakis et  al.,  2019; 
Baz-Lomba et al., 2016; Gago-Ferrero et al., 2015; Lara-Martín, et al., 2020), and has been the water type most 
studied using NTA approaches. Wastewater is a highly complex mixture in terms of the numbers and classes of 
CECs and other organic compounds derived from household, commercial, and industrial anthropogenic uses and 
those compounds normally excreted via human consumption and metabolism. This complexity, coupled with 
the inherently large contaminant concentrations relative to other typical environmental water types, imposes 
severe analytical challenges. The presence of ionizable “normal” biogenic organic compounds can interfere in 
the identification and quantitation of anthropogenic contaminants. Wastewater is recognized as an important 
source of CECs to water resources (Glassmeyer et al., 2005), and thus wastewater samples were generally the 
first water types tested to demonstrate the capability of any given NTA approach. Wastewater is an ideal medium 
to demonstrate capabilities in identifying target, suspect, and unknown compounds in the presence of a challeng-
ing, interference-rich sample matrix, while providing the widest array of potentially detectable, identifiable, and 
quantifiable contaminants. Although collecting samples from wastewater treatment plants can be challenging 
(Ort et  al.,  2010), it is relatively straightforward to collect representative samples from wastewater treatment 
compared to natural water systems. The likelihood of readily detectable compounds in the presence of potential 
interferences has made this water matrix an ideal choice for testing the robustness of NTA for rapidly identifying 
and quantifying the widest array of CECs and legacy contaminants (Alygizakis, et al., 2019; Blum et al., 2017; 
Choi et al., 2021; Gago-Ferrero et al., 2015; Helbling et al., 2010; Ouyang et al., 2015; Schollée et al., 2015; 
Schymanski et al., 2014b).

Typically, in these papers large numbers of contaminants are identified, and through iterative filtering and eval-
uation, substantially smaller sets of suspect or unknown compounds then become the focus of intensive assess-
ment. In many cases, these suspect/unknown compounds are TPs of parent compounds (e.g., pharmaceuticals, 
pesticides). These results illustrate the need for further development of openly available databases that integrate 
known information about the disposition of a potential chemical contaminant (i.e., drug or pesticide registration 
requirements) with in silico predictive tools that can be used to better assess how HRMS results for an NTA 
unknown compare to known active ingredients or their likely TPs.

Synthesizing results from multiple wastewater influents and effluents yields insights from NTA analysis regard-
ing the composition and concentrations of organic contaminants in wastewater, tying their presence to source 
inputs to the wastewater streams or degradative processes that occur during wastewater treatment. Although there 
can be considerable variation between wastewater treatment plants (WWTPs) from different locations, regionally 
and globally, a common group of compounds generally is present in many influents and effluents, likely reflect-
ing the global use and presence of many chemicals (e.g., pesticides, pharmaceuticals and personal-care products) 
that have common active ingredients. Variation is introduced by differences in use and regulation between coun-
tries. However, pharmaceuticals and their corresponding TPs are commonly observed as either suspect or known 
compounds. This reflects their presence in wastewater influent (as a consequence of human metabolism) or from 
subsequent wastewater treatment processing.

2.1.1.2. Surface Water

In our literature review, surface waters (e.g., rivers, streams, lakes, and reservoirs) have been the second most 
commonly studied water body types where an NTA approach has been applied. These water types have been 
focused upon because the anticipated CEC sources, namely wastewater discharge and agricultural runoff, are 
likely to have myriad contaminants that are relevant to environmental health. In many studies, wastewater efflu-
ent, receiving surface waters, and in some cases groundwater, are discussed together because of the inherent 
connections between discharged wastewater and receiving waters (Hernández et al., 2015). Several papers have 
shown how a suspect or unknown contaminant may be present for substantial distances along surface water flow 
paths (Köppe, et al., 2020; Quadra et al., 2021), in a manner similar to compounds detected using targeted meth-
ods (Ruff et al., 2015). In previous research, NTA was a valuable complement to a comprehensive monitoring 
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program that used targeted chemical analysis and in vivo and in vitro bioassays to prioritize contaminants based 
on a combined presence and effects risk assessment (Tousova et al., 2017). This research was successfully coor-
dinated over large spatial scales, using multiple laboratories, and applied to multiple European rivers, capturing 
crucial information at or near the points of introduction of wastewater to and then through the river systems, and 
assessing risk to aquatic life within and between river basins.

Surface-water derived drinking water sources likely contain a fractional discharged wastewater component, 
referred to as de facto reuse (Rice & Westerhoff, 2015; Rice et al., 2013), which likely include CECs (Nguyen 
et  al.,  2018). Some drinking water treatment systems situated on alluvial aquifers use riverbank filtration to 
reduce the load of natural organic matter and anthropogenic contaminants to produce drinking water. NTA has 
been used to assess CEC reduction by riverbank filtration at three drinking-water treatment plants in Switzerland 
(Albergamo, et al., 2020; Hollender et al., 2018) proceeding from source along the flow path of riverbank filtra-
tion through final reverse osmosis treatment. In these reports, the authors used a combined targeted/nontar-
geted screening approach to quantify removal of 526 targeted CECs, while the NTA characterization provided 
complementary qualitative information about persistence, reduction, or production of the 7,500 nontarget profile 
components that were identified.

The development of a comprehensive target and suspect contaminant database, and its application to seasonal 
samples collected in an urban surface-water system in the northeast United States, demonstrated how NTA can 
be used to characterize changes in presence/absence of suspect contaminants in: (a) a surface drinking water 
source, (b) the treatment of such a drinking water source, (c) the municipal wastewater influent and effluent 
using this drinking water source, and (d) the lake receiving treated effluent (Pochodylo & Helbling, 2017). The 
results demonstrate that confirmed suspect compounds (confirmation based on a detailed set of HRMS criteria) 
were as numerous as target compounds, and patterns of persistence and removal occur in the detection of suspect 
contaminants in consistently collected samples from each water type.

A different design used LC-HRMS to focus on a specific contaminant class, iodinated X-ray contrast compounds, 
using a target/suspect approach to estimate distributions of these contaminants within river systems while identi-
fying new potential TPs and formation pathways (Zonja et al., 2015). Other research has addressed the substantial 
concentration differences, and thus compound detectability, between wastewater influent/effluent and surface 
water samples by using alternative means of sample pre-concentration than the typical solid-phase extraction of 
an ∼1-L water sample. For example, Guibal et al. (2015) combined target compound identification and quanti-
tation embedded within the NTA workflow, with subsequent nontarget identification using polar organic chem-
ical integrative sampler (POCIS), a passive sampler that integrates the collection of contaminants at variable 
concentrations and compositions from a large (hundreds of liters) water sample, detecting target and nontarget 
compounds that might otherwise have been undetectable. Other researchers collected ∼300-L samples, which 
were processed streamside to achieve similar levels of sample pre-concentration (Deyerling & Schramm, 2015). 
These studies demonstrate that large-volume sampling technologies, in combination with NTA workflows, can 
provide exceptionally high sensitivity for detecting known, suspect, or unknown CECs. This sensitivity is achieved 
by substantially increasing effective sample size, integrating sample collection over an extended period, which 
permits capture of episodically present contaminants, doing so in a cost- and time-effective sampling design.

2.1.1.3. Groundwater and Drinking Water

Analytically, groundwater and drinking water have similar characteristics. CEC contaminants measured using 
standard methods have shown that the anticipated numbers and concentrations of organic contaminants in these 
water types are typically an order of magnitude lower than in surface water and more than two orders of magnitude 
lower than in wastewater effluent (Glassmeyer et al., 2017). Thus, fewer studies have applied NTA approaches to 
these environmental compartments, particularly post-treatment drinking water. Soulier et al. (2016) used POCIS 
passive samplers and solid phase extraction of water samples, coupled with an iterative target/suspect/unknowns 
NTA workflow, to characterize groundwater contamination in two aquifers using multiple samples collected over 
a period of several months. They demonstrated improved detection of targeted compounds by POCIS versus 
discrete water samples, again likely due to the increase in contaminant concentration achieved by exposing the 
samplers for extended time periods versus instantaneously collecting discrete samples. The workflow design in 
this study allowed the identification of 342 target compounds and 279 suspect compounds. Using nonparametric 
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statistical tools applied to about 12,000 nontarget molecular markers (exact ion mass, retention time, and signal 
intensity), 41 markers unique to one aquifer and 36 to another were characterized (Soulier et al., 2016). Although 
these markers were not further identified by mass spectrometry, the authors point to the fact that these markers 
can be used forensically, even in the absence of full identification, to tie unique contamination sources to the 
observed contamination in these aquifers. Kolkman et  al.  (2021) used NTA to identify highly polar organic 
compounds in Dutch and Flemish drinking water and water sources and identified concentrations exceeding at 
least one provisional guideline; the lack of toxicity data for most of thes highly polar compounds indicated further 
research needs. Other authors have used NTA in laboratory scale experiments to identify TPs formed during the 
sand filtration and ozonation steps of drinking water treatment (Brunner et al., 2019b). The library of suspect TPs 
was then used as a tool for assessing the occurrence and distribution of likely TPs present in water supplies that 
are subjected to ozonation treatment.

2.1.2. Class-Specific NTA Applications

Most published research using NTA use inclusive, comprehensive approaches to the determination of organic 
contaminants, which is appropriate given the mixed urban, industrial, and agricultural sources of organic contam-
inants common to many water resources. In at least two cases, however, a chemical class-specific focus has 
yielded useful information and understanding for a global contamination problem that is receiving increasing 
attention.

Some of the most intensively studied drinking-water derived TPs are commonly referred to as DBPs and are 
commonly formed by reactions of chlorinating agents such as hypochlorite and chloramine with dissolved organic 
matter in drinking water during treatment. The occurrence and distribution of DBPs in treated drinking water 
has been actively studied using HRMS approaches as some DBPs are known carcinogens and produced during 
the chlorination processes used to treat source water, with complex and varying dissolved organic matter concen-
trations, can result in complex mixtures of DBPs (Richardson,  2003; Richardson & Kimura,  2017; Richard-
son et al., 2002; Weinberg, 2009) that can have deleterious effects through long term DBP exposures. Kimura 
et al.  (2019) published an NTA workflow to characterize the DBP exposome, that is, the full complement of 
potential DBPs that an organism could be exposed to. Because many DBPs are volatile, a gas chromatography 
time-of-flight mass spectrometer (GC/ToF-MS) approach was used to separate, identify, and quantify a set of 
39 priority unregulated DBPs, and subsequently identify 12 nontarget DBPs using the NTA identification confi-
dence criteria approach proposed by Schymanski et al. (2014a).

PFAS are ubiquitously present in many aquatic environments (Field & Seow, 2017; Wang et al., 2017), particu-
larly in groundwater aquifers subject to contamination from fire training activities (X. Xiao et al., 2017), and their 
presence in drinking water has been a high-profile research topic (Bradley et al., 2018; Hu et al., 2016; Kaboré 
et al., 2018). Several studies have used HRMS and NTA approaches to confirm or identify previously unreported 
or unidentified PFAS components and classes in many environmental media (Barzen-Hanson et al., 2017; Munoz 
et al., 2021; Strynar et al., 2015; Tousova et al., 2017). Because more than 3,000 PFAS have been introduced to 
the global market (Wang et al., 2017), additional applications of NTA would further characterize the presence of 
PFAS in the hydrosphere.

2.1.3. Challenges

The importance of contaminant identification to the understanding of human exposure and potential deleterious 
effects was highlighted in a recent National Science and Technology Council commissioned report on address-
ing critical research gaps related to CECs in drinking water (National Science & Technology Council, 2018). 
NTA is at a point in its development where the emphasis in published reports is quickly transitioning from 
method development and demonstration of applicability to field and laboratory applications such as drinking- 
and wastewater-treatment trains, stream reaches, watersheds, and organisms (Hollender et al., 2017). Yet major 
challenges remain as this transition occurs. Although important gains have been made in improving the efficiency 
of NTA workflows (Hollender et al., 2017; Moschet et al., 2013), the process of winnowing down thousands of 
molecular features of substantial signal to dozens of potential unknown candidates with structural information 
and metadata indicative of likely presence is both labor- and time-intensive. Often the proposed identities of these 
potential contaminant candidates could have been equally well inferred from a combination of a priori knowledge 
of the products and chemicals likely present in contaminant sources, of extant results of targeted analyses, and 
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of an understanding of abiotic and biotic mechanisms of chemical transformation in the environment (Brunner 
et al., 2019b). A potentially legitimate criticism would then be that it could be more cost effective to predict 
potential unknowns from targeted analysis and source data rather than to enter into the expense and effort of an 
NTA approach. One advantage of the NTA approach, however, is that any assumptions made about the impor-
tance or priority of a molecular feature are independent of prior knowledge and are initially based on the quality 
of the analysis results themselves (signal intensity, presence in blanks, quality of structural information, removal 
of adducts or other experimental artifacts). This unstructured approach allows the data to speak, in a sense, such 
that the presence of tentative unknowns of importance, a presence that might have been predicted by other means, 
acts to confirm the utility of the approach. At the same time, this unstructured approach keeps the analytical 
window open for unknown contaminants that would be missed by a prioritization scheme based on previous 
knowledge of sources and targeted analysis results.

In addition, discussion has been ongoing regarding the importance of authentic standards to confirm the putative 
unknowns from an NTA analysis (Hites & Jobst, 2018, 2019; Samanipour et al., 2019). In the midst of such 
debates, it is important to note that as the number of chemicals being introduced to the environment continues 
to expand, disparity—between (a) the number of available authentic standards available, and (b) the potential 
number of unknowns that can be identified to a high level of confidence using HRMS but that lack authentic 
standards—will only continue to grow. Nevertheless, having authentic standards for subsequent determination of 
concentration, and therefore toxicity due to a putative unknown, is of critical importance.

The primary value NTA offers is the ability to assay the widest possible range of putative unknowns, prioritize 
them based on relative abundance within and between samples, and relate those prioritized features to biological 
effects data where available. These features then drive development of authentic standards toward those uncon-
firmed compounds that have demonstrated correlative relationships to toxic responses of human or environmental 
health relevance. This is especially pertinent for TP identification, a common theme for many NTA workflows. 
This emphasis on identifying TPs is expected given that data and authentic standards are more likely available for 
targeted precursor compounds than for their TPs. It has been repeatedly documented that TPs may have similar 
or greater equivalent potency and effect relative to their parent compounds (Zindler et al., 2020). Nevertheless, 
because toxicity tests are typically conducted on only parent compounds during the chemical registration process, 
TPs are still not generally as well recognized as potentially affecting environmental health (Mahler et al., 2021).

2.2. Bio-Analytical Tools for Human and Ecological Health

In the field of non-targeted water quality monitoring, biological assays (bioassays) are emerging as an effec-
tive tool. Similar to NTA, bioassays can be used to assess environmental samples for potential contamination; 
however, bioassays do not detect distinct compounds. Rather, they provide insight into potential adverse physio-
logical effects (relevant to human and/or ecological health) from the environmental sample through quantitative 
measurements of cumulative biological activity (B. Escher et  al.,  2021; Snyder & Leusch,  2018). Bioassays 
typically involve short-term in vitro, or low complexity in vivo, laboratory methods that exploit defined biochem-
ical molecular initiating events (MIEs) (described below). The past decade has seen pronounced growth in the 
number and type of novel bioassays used in water quality screening efforts, especially in vitro bioassays. These 
tools have become commonplace in water quality screening of wastewater, drinking water, source, and recycled 
waters (Blackwell et  al.,  2018; Cavallin et  al.,  2014; Conley et  al.,  2017b; Daniels et  al.,  2018; B. I. Escher 
et al., 2014; Jia et al., 2015; König et al., 2017; Leusch et al., 2018; Neale et al., 2017). Future regulatory appli-
cations, however, would benefit from refined water sample extraction methods, confirmation of interlaboratory 
precision, and identification of accurate effects-based trigger values (Snyder & Leusch, 2018).

2.2.1. The Adverse Outcome Pathway Framework

Fundamental to the utility of in vitro bioassays is the adverse outcome (AO) pathway framework in which they 
function. Every unique AO pathway consists of sequential causally linked biological processes, beginning with 
a MIE, such as receptor and receptor ligand binding, and ending in an AO at the organismal or population level. 
While the AO pathway MIE typically is the biological step exploited by in vitro bioassays, the AOs are relevant 
to human health or ecological risk assessment (Ankley et al., 2010). Further, each AO pathway contains defined 
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key events, or successive and quantifiable biological events, that span increasing levels of biological organization 
(cellular, tissue, organ, organ system) and provide causal linkages between the MIE and ultimate AO. Ideally, 
xenobiotic activation of the MIE can be quantified using a bioassay and the results are quantitatively predictive 
of the expected AO. Bioassays indicative of reproductive and developmental toxicity have provided accurate 
predictions of in vivo test results (Sonneveld et al., 2005), although specific chemical classes may not extrapolate 
from in vitro to in vivo as well (Conley et al., 2016; Gray et al., 2019).

A diverse array of AOs is represented by existing bioassays including reproductive and developmental toxicity, 
growth inhibition, and neurotoxicity (Table 2). Types of bioassays include, but are not limited to, enzyme acti-
vation, whole cell reporter-gene transcriptional activation, and whole organism assays (B. I. Escher et al., 2014; 
Jia et al., 2015; Neale et al., 2017). More complex in vitro “-omics” tools have been developed for water quality 
assessment (Skelton et al., 2014; Zhen et al., 2018) and whole effluent test methods (Table 2) require whole 
organisms and quantify survival, growth, and reproduction endpoints (USEPA, 2000).

Table 2 illustrates current trends in bioassay development and application in water quality monitoring. For exam-
ple, although bioassays are available for numerous biological endpoints, a few endpoints have many available 
bioassays for testing (e.g., estrogen and androgen receptor transcriptional activation bioassays). Disproportionate 
representation in bioassay MIEs is likely due to the specificity of the MIEs, interpretability of bioassay data 
output (direct impacts on human/ecological health), and whether key events linked to the in vitro MIE have been 
established in the respective AO pathway. Although numerous bioassays have been developed, only a few have 
Organization for Economic Co-operation and Development (OECD) test guidelines (internationally accepted 
standardized methods for chemical safety testing; Table 2, highlighted in red; OECD, 2019).

2.2.2. Chemical Toxicity Screening

Many bioassay methods were originally developed to assess effects of individual environmental chemicals, or 
mixtures of environmental chemicals on a single molecular mechanism of action (Altenburger et al., 1990; Hartig 
et al., 2002; McCann et al., 1975; Medlock Kakaley et al., 2017; Sonneveld et al., 2006; Wilson et al., 2002). 
One of the earliest examples of an in vitro bioassay is the bacterial Ames bioassay (McCann et al., 1975). The 
Ames bioassay utilizes mutagenicity as an indicator of carcinogenicity, as the MIE for many carcinogens is DNA 
mutation. More recently, bioassays have been used to characterize potency of CECs at a single MIE (Conley 
et al., 2016) and categorize compound classes according to the gene regulatory networks they affect (Martin 
et al., 2010). Such research used a multi-endpoint bioassay, Attagene's Cis- and Trans-FACTORIAL high-content 
bioassay, to assess 320 compounds for their effects on cellular gene regulatory networks involved in genotoxicity, 
hypoxia, immune function, and endocrine disruption.

In response to the National Research Council's hallmark publication, Toxicity Testing in the 21st Century: A 
Vision and A Strategy (NRC, 2007), both the United States and the European Union established initiatives to 
screen thousands of compounds for various types of toxicity using a wide array of in vitro bioassays (Table 2). 
United States' agencies including the USEPA and the National Institutes of Health designed Toxicity Forecaster 
(ToxCast; Dix et al., 2007) and Tox21 (NTP, 2004) programs, respectively, while the European Union devel-
oped ChemScreen (van der Burg et al., 2011), which focused solely on identifying reproductive toxicants. Each 
program is distinct, but similar with the common goal to develop efficient methods, often involving robotics, 
to screen toxicity of chemicals, although ToxCast does integrate predictive models for new chemicals based on 
acquired chemical toxicity data. Together, these efforts created a paradigm shift in chemical toxicity testing by 
allowing the prioritization of toxicants to reduce costly and time-intensive in vivo chemical toxicity testing. More 
recently, the USEPA described a strategic plan to reduce, refine, and replace in vivo vertebrate toxicity testing 
by incorporating new approach methodologies including some of the OECD standardized bioassays (Table 2 
highlighted in red; USEPA, 2018). Additionally, The European Union Directive 86/609/ECC and 2010/63/EU 
restricted use of vertebrates in toxicity testing, initiating the application of equitable in vitro toxicological meth-
ods (European Union, 2010).

2.2.3. Water Quality Screening

Many of the bioassays originally developed for chemical toxicity testing have been adapted to environmental 
sample assessment. These methodologies have been discussed in detail previously (B. Escher et al., 2021; Snyder 
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Bioassay endpoint Available bioassays

Xenobiotic Metabolism Pregnane X Receptor HG5LN-hPXR, PXR-cisFACTORIAL, 
PXR-transFACTORIAL

Constitutive Androstane Receptor CAR-transFACTORIAL, CAR-yeast

Peroxisome Proliferator-Activated Receptor gamma PPARλ-bla, PPARλ-transFACTORIAL, PPARλ-CALUX, 
PPARλ-GeneBlazer, Anta-PPARλ-GeneBlazer

Peroxisome Proliferator-Activated Receptor alpha PPARa-transFACTORIAL, PPARa-CALUX

Aryl Hydrocarbon Receptor AhR-yeast, AhR CAFLUX, H4IIEluc, MCF7DRE, 
Ahr-cisFACTORIAL, AhR CALUX

CYP19a1b Expression CYP19a1b-GFP

CYP1a DART cyp1a induction

Specific Mode of Action Estrogen Receptor T47D-KBluc, (Anta) ER-CALUX, MELN, 
ZELH-zfERalpha, ZELH-zfERbeta2, ChgH-GFP, 

E-SCREEN, YES, hER yeast, medER yeast, HELN-Era, 
HELN-ERB, ERE-cisFACTORIAL, hERa-HeLa-9903, 

MCF-ERE, Era-trasFACTORIAL, DART cyp19a1b, 
ERa-GeneBLAzer

Androgen Receptor (Anta) MDA-KB2, CV1-chAR, (Anta) AR-CALUX, 
HELN-AR, MCF-ARE, AR-EcoScreen, YAS, 

AR-GEneBLAzer, AR-transFACTORIAL

Glucocorticoid Receptor CV1-hGR, (Anta) GR-CALUX, GR Switchgear, 
GR-transFACTORIAL, GR-MDA-KB2, (Anta) 

GR-GeneBLAzer

Progesterone Receptor PR-GeneBLAzer, (Anta) PR-CALUX

Thyroid Hormone Receptor THbZIP-GFP (XETA), TRβ-CALUX, T-SCREEN, 
THRα1-transFACTORIAL, HELN-TR

Photosynthesis Algae photosynthesis inhibition

Acetylcholinesterase Acetylcholinesterase Inhibition

Reproductive and Developmental Effects MCF-RARE, P19/A15, hRAR-Yeast Assay, 
RORβ-transFACTORIAL

Steroidogenesis H295R

Acetylcholinesterase Inhibition Acetylcholinesterase Inhibition

Reactive Mode of Action Genotoxicity umuC TA1535/pSK1002 (+S9), umuC NM5004, SOS 
chromotest

Mutagenicity Ames TA98 (±S9), Ames TAmix (±S9), Ames TA100

Cytotoxicity and Indicators of System Response Caco 2 NRU, Nrf2-MTS, RTG2MTT, SK-N-SH cytotoxicity, 
THP1 cytokine, Photobacterium phosphoreum

Oxidative Stress AREc32, ROS formation RTG2, Nrf2-MDA-MB

Growth Inhibition Algae Growth Inhibition

Bacterial Cytotoxicity Vibrio fischeri (Microtox)

Neurotoxicity SK-N-SH

Immunotoxicity THP1-cp

Mortality/morbidity Immobilization Daphnia Immobilization Test

Acute Toxicity DART 48 hr lethality

Phototoxicity I-PAM

Whole Effluent Test Methods Acute Toxicity, Chronic Toxicity (Freshwater, Marine, 
Estuarine)

Adaptive Stress Response Heath Shock Proteins HSE-cisFATORIAL, hspb11 induction DART

Adaptive Stress Hypoxia-Switchgear

Table 2 
In Vitro and Low Complexity In Vivo Bioassays That Have Been Applied Previously to Water Quality Monitoring
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& Leusch, 2018). One of the first efforts to apply in vitro bioassays to environmental samples commenced after 
female fish in the Fenholloway River (Florida, USA) exhibited secondary sex characteristics of male counterparts. 
The masculinization (AO) was linked to activation of the androgen receptor (AR; MIE) after the AR was acti-
vated in multiple bioassays after in vitro river water exposure (Parks et al., 2001). More recently, bioassays have 
been applied to isolated, or short-term, water quality screening projects for wastewater (Könemann et al., 2018; 
Roberts et al., 2015; Sonavane et al., 2018; Suzuki et al., 2015; van der Linden et al., 2008) and surface or source 
water (Conley et al., 2017a; Zwart et al., 2018). Many of these studies focused on differences between pre- and 
post-treatment water quality to quantify water treatment efficacy (Jia et al., 2016; Roberts et al., 2015). Fewer 
studies exist assessing drinking water (Conley et al., 2017b; Leusch et al., 2018) due to relatively low expected 
contaminant concentrations and sample extraction (concentration) limitations. Nevertheless, application of a 
tiered statistical approach has proven useful for screening drinking water samples with anticipated low-levels of 
biological activity (Medlock Kakaley et al., 2021). Overuse of fresh water supplies globally (UNWAPP, 2017) 
has prompted recent interest in screening recycled water for residual or post-treatment added biological activity 
(E. G. Brown et al., 2018; Jia et al., 2015; Macova et al., 2011).

Water quality research has seen an upward trend toward applying multiple bioassays (Daniels et al., 2018; Leusch 
et al., 2018; Macova et al., 2011; Roberts et al., 2015; van der Linden et al., 2008), even tens of bioassays (B. 
I. Escher et al., 2014; Jia et al., 2015; Neale et al., 2017), to a single screening program. The benefits of apply-
ing multiple bioassays with similar or variable MIEs have been described previously (B. I. Escher et al., 2014; 
Medlock Kakaley et al., 2019; van der Oost et al., 2017). Although applying multiple bioassays with the same 
MIEs initially may seem redundant, it can increase confidence in positive biological activity detections because 
sensitivity varies among assays. Conversely, the application of bioassays with variable MIEs presents a more 
accurate representation of the chemical complexity often found in environmental samples. One such study 
screened a small set of water samples using over one hundred bioassays to define a superior battery of bioassays 
that would offer the most comprehensive assessment of water samples (B. I. Escher et al., 2014). Ultimately, the 
authors concluded that a reliable screening battery should include bioassays representing induction of xenobiotic 
metabolism, endocrine disruption, reactive modes of action, adaptive stress responses, and cytotoxicity endpoints.

As noted previously, bioanalytical tools cannot distinguish the presence of individual compounds like their 
targeted analytical chemistry methods counterparts, but they do permit cumulative detection of biological activity 
from chemical mixtures present in environmental samples. For this reason, many water quality assessors chose 
to apply the two approaches in tandem. For example, environmental concentrations of each known contami-
nant (detected using targeted chemical analysis) can be converted to proportional bioassay responses (≤100% 
response) using bioassay-specific chemical potency factors. If the sum of the bioassay responses from individual 
chemicals totals <100% response, then contaminants that were not targeted by analytical methods (or fell below 
analytical method detection limits) may be present. Recent studies have been able to illustrate this phenome-
non. For example, although none of the targeted known glucocorticoid receptor agonists were detected above 
method detection limits, cumulative glucocorticoid activity was detected in surface and wastewaters in the United 
States using the CV1-hGR bioassay (Table 2; Bradley et al., 2017; Conley et al., 2017a; Glassmeyer et al., 2018; 

Bioassay endpoint Available bioassays

Osmotic Stress Jurkat E6-1 I-κB

HIF-1α HIF-1α-cisFACTORIAL

NF-κB NF-κB-cisFACTORIAL, NF-κB-Geneblazer, 
NF-κB-CALUX

ARE AREc32

Nrf2 Nrf2-keap, Nrf2/ARE-cisFACTORIAL, Nrf2-CALUX

p53 p53-cisFACTORIAL, p53-CALUX, p53-CALUX+59, 
p53-GeneBlazer

Note. Highlighted in red are bioassays with Organization for Economic Co-operation and Development standardized methods (adapted from B. I. Escher et al., 2014; 
Jia et al., 2015; Neale et al., 2017).

Table 2 
Continued
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Medlock Kakaley et al., 2019). This type of mass-balance analysis has been conducted using glucocorticoids 
(Daniels et al., 2018; Jia et al., 2016), estrogens (Conley et al., 2017a; Könemann et al., 2018) and more complex 
mixtures (Neale et al., 2015). However, rigorous “fingerprinting” studies would need to be conducted prior to 
mass-balance analysis to obtain bioassay-specific potency and efficacy for each compound (Medlock Kakaley 
et al., 2020; Neale et al., 2015).

Discrepancies between bioassay and targeted analytical contaminant results (i.e., detected biological activity with 
no corresponding detections of chemicals with known such activity) have been mitigated using effect-directed 
analysis (EDA; see Section 2.3 for further description), an integrated tiered approach to water quality screening. 
Applying bioassays during an initial EDA screening tier provides sample bioactivity information and guides 
analytical approaches, overcoming the impossible task of monitoring for all CECs using traditional targeted 
analytical methods. EDA has been especially valuable for identifying the myriad of potential DBPs in drinking 
water. The formation of DBPs relies on variable organic matter present during the disinfection process (H. Dong 
et al., 2020); therefore, many DBPs have yet to be identified.

2.2.4. Challenges

Despite their apparent utility, bioassays have some inherent limitations including lack of standardized protocols (B. 
I. Escher et al., 2014). For several MIEs, options are numerous for screening water samples, which has prompted 
investigations into inter-laboratory reproducibility and assay precision using bioassays with transcriptional acti-
vation of nuclear receptors as endpoints using both known (Altenburger et al., 2018; Di Paolo et al., 2016) and 
unknown environmental mixtures (Mehinto et al., 2015). In a step toward bioassay application to recurring water 
quality monitoring, the State of California released standard operating procedures (SOP) that permit the use of 
any estrogen and aryl hydrocarbon receptor transcriptional activation bioassay provided that the water sample 
preparation, bioassay methods, and data analysis meet the SOP criteria for recycled water assessment (Denison 
et al., 2020). Some inter- and intra-laboratory reproducibility may be optimized using extensive quality assur-
ance/quality control practices and documentation (B. Escher et al., 2021; Hirsch & Schildknecht, 2019).

Additional limitations include the method optimization typically required for detection of biological activity 
when contaminants are present at low concentrations (e.g., low effect-recovery post-extraction and confidence in 
accurate activity reporting). In most water quality studies, large-volume water samples (≥1 L) are concentrated 
through solid phase extraction prior to bioassay assessment. This process is intrinsically variably selective for 
each compound class potentially present in the sample and has been shown to reduce effect recovery by 30% 
(Neale et al., 2018). Further, biological activity in water samples is reported in biological equivalents (BioEqs) 
of a known compound that is highly potent at producing the measured effect outcome. When detected biological 
activity is low (does not reach the concentration to cause half the maximum effect or EC50 value), the confi-
dence in reporting accurate biological equivalency values for sample extracts is reduced. Low effect detections, 
however, could be remedied using a linear concentration-response model (B. I. Escher et al., 2018b), and the 
generalized concentration addition model when partial agonists are present (Brinkmann et al., 2018).

2.2.4.1. Effects-Based Trigger Values

Moving forward, the biggest hurdle for bioassay application to routine water quality monitoring may be estab-
lishing safety reporting limits for humans and wildlife (i.e., effect-based trigger values, EBTs). The lack of stand-
ardized EBTs has generally deterred the application of these tools to real-world water quality monitoring. In 
line with the European Union Water Framework Directive, the EU SOLUTIONS project was initiated to adapt 
bioassays to water quality monitoring by characterizing priority mixtures and primary drivers of toxicity in 
those mixtures (Altenburger et al., 2015; Brack et al., 2018, 2019). Therefore, bioassay-specific EBTs for many 
assays have been generated using existing environmental quality values for individual chemicals (B. Escher & 
Neale, 2021; B. I. Escher et al., 2018a; Neale et al., 2023). In addition to standardizing EBT development, the 
recycled water monitoring protocols for the State of California also contain trigger level values for estrogenic 
and dioxin-like activity (Denison et al., 2020). As indicated in the corresponding policy document, these values 
were not designed to regulate continued facility operation, but only to guide any further screening actions (State 
Water Resources Control Board, California Environmental Protection Agency, 2018), such as targeted analytical 
chemistry monitoring, increased frequency of bioassay monitoring, monitoring at additional locations, or modi-
fication to facility operations.
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Overall, bioassay methodologies would need optimization before their application as stand-alone tools for water 
quality monitoring. As part of integrated screening processes, however, water quality managers have much to 
gain through their implementation. These tools provide useful information on the potential presence of vari-
ous contaminants affecting many different biological functions and may serve as effective guides for additional 
targeted chemical monitoring.

2.3. Harmonizing Chemical and Bioanalytical Analyses of CECs: A Proposed Approach

EDA is a tiered testing strategy that harmonizes bioassay and analytical approaches to mitigate discrepan-
cies in contaminant detection results. In EDA, the initial identification of biological activity can be used 
to guide, or “direct,” the selection of contaminants in subsequent rounds of water sample screening with 
specific, targeted analytical methods (Brack et al., 2016; Maruya et al., 2016). Notably, EDA works best with 
bioassays measuring highly specific modes of action (Brack et al., 2016) such as estrogen, androgen, gluco-
corticoid, progesterone, and aryl hydrocarbon receptor ligand-mediated transcriptional activation (Sonavane 
et al., 2018; Table 2). With subsequent screening rounds, samples are fractionated further and analyzed again 
with a combination of bioassays and analytical methods (targeted or non-targeted) to elucidate the biological 
activity and chemical composition of each water sample. EDA often leads to screening numerous rounds of 
reduced fractions, but “downscaling” bioassays to smaller well sizes may be one solution to retaining high 
sample throughput (Zwart et al., 2018).

Using EDA to prioritize the application of NTA is of increasing interest as it has the potential to link target, 
suspect, and unknown identifications to the samples with the most important assay-specific responses. 
Although this iterative approach to contaminant identification is time and cost intensive, combining 
contaminant-specific cellular and subcellular assay responses with chemical fractionation techniques that 
reduce the complexity of the sample extracts simplifies the identification of toxicants by NTA. In particular, 
applying automated in vivo and in vitro assays, such as assays included in ToxCast (Knudsen et al., 2011), 
to whole or chemically fractionated samples, evaluating the most potent responses, and using the informa-
tion available about likely chemical classes that produce those responses provides toxicological insight that 
informs the evaluation of NTA results. Such an approach has been successfully demonstrated previously 
(Brunner et al., 2019a), where a ToxCast evaluation was applied to 1,000 suspect chemicals from an NTA 
analysis of wastewater effluent and used to develop a combined exposure hazard data prioritization to deter-
mine those contaminants that warrant identification first.

A tandem bioassay-NTA approach that integrates the strengths of EDA and bioassays as a means of focusing 
NTA application to complex environmental settings might start by using AO pathways to identify transcriptional 
activation of nuclear receptor bioassays that are potentially most responsive (e.g., in targeted sites important to 
the watershed such as contaminant discharges upstream from drinking water intakes). After identifying relevant 
receptor bioassays, a toxicity identification evaluation approach (Norberg-King et al., 1991) could be implemented 
to fractionate samples and test fractions in the most responsive bioassays. Subsequently, an NTA optimized for 
a suspects-to-unknowns workflow could be applied to maximize identification of potential response-initiating 
contaminants. After establishing the relationship between all contaminant groups (i.e., targeted, suspect, and 
unknown) and corresponding bioassay responses, a combination of optimized arrays and a focused NTA work-
flow could be applied upstream/downstream from a contaminant source, and for human exposure, from source 
water through treatment, distribution, and consumption. Such an integrated, prioritized toxicity/chemistry work-
flow would likely have a probabilistically higher chance of associating bioassay responses and the initiating 
contaminants or contaminant classes, at the different degrees of NTA confidence. In addition, by applying the 
power of the combined, optimized assay/NTA workflow, downstream production of adverse initiating contami-
nants such as DBPs could also be accounted for.

2.4. Enhancements in Microbial Analysis

Recent research indicates a diverse toolbox approach may be warranted for the next generation of water qual-
ity monitoring for pathogens. Although cultivation-based methods are valuable for indicating viable pathogens, 
only a small fraction of microorganisms can be cultured in a laboratory. Advancements in molecular methods 
and next-generation DNA sequencing technologies, which do not require the growth of a microorganism, have 



GeoHealth

GLASSMEYER ET AL.

10.1029/2022GH000716

27 of 76

greatly expanded our knowledge of microbial pathogens in the environment by detecting non-culturable organ-
isms, detecting pathogens directly, and providing more rapid results than culture-based methods. The most impor-
tant analytical advancements have come from quantitative polymerase chain reaction (qPCR) and next-generation 
sequencing (NGS) technologies.

2.4.1. Advances in qPCR

In qPCR, DNA primers and fluorescent probes are used to detect organisms by binding to unique and highly 
specific segments in the organism's DNA and emitting a fluorescent signal detected by the instrument (Botes 
et al., 2013). Fluorescent hybridization probes increase the analytical specificity of qPCR (i.e., ability to measure 
a specific target; Saah & Hoover, 1997) and can be designed for any taxonomic level: domain, class, phylum, 
genus, and species-specific, and any gene (e.g., ARG, virulence). Results are generally obtained for qPCR within 
hours and assays demonstrate high analytical sensitivity (i.e., accurate measurement of low concentrations; Saah 
& Hoover, 1997). Recent advances include high-throughput methods, wherein nanoliter-scale reactions allow 
simultaneous analysis of multiple gene targets across multiple samples, and digital PCR, wherein reactions are 
divided into many partitions to allow absolute target quantification using Poisson statistics (Hindson et al., 2011; 
Waseem et al., 2019).

The quality of sewage-affected surface waters is now better understood with qPCR-based molecular microbial 
source tracking methods, which allow the detection of a wide range of fecal indicator bacteria that identify 
host-specific sources of fecal contamination (e.g., human, cow, swine, fowl). The most common microbial source 
tracking markers, their method performance characteristics, and correlations with pathogens and health effects, 
have been described previously (Harwood et al., 2014). The most widely studied microbial source tracking method 
for indicating human fecal contamination in water targets is human-specific Bacteroides spp., an anaerobic fecal 
bacterium, and is commonly referred to as HF183. The qPCR assay, developed by Seurinck et al. (2005), and 
recently adapted as an EPA method (USEPA, 2019), targets a DNA marker that is widely distributed in human 
feces but rarely found in animals, and that is highly concentrated in human sewage. In addition to markers specific 
for human feces, many assays have been developed specifically for identifying animal feces (Shanks et al., 2008). 
This is important because some intestinal pathogens in animals can also infect humans, yet the risk presented by 
different fecal contamination sources varies (Soller et al., 2010).

The water quality of fresh and marine recreational waters in the United States can be monitored with molecular 
methods to provide timely notification to swimmers if elevated fecal indicator bacteria are detected. The first 
qPCR methods for evaluating sewage-affected recreational waters, EPA Methods 1609 and 1611, which target 
enterococci, have associated health-based water quality target levels (Haugland et  al.,  2014; USEPA,  2012a; 
USEPA, 2013). The methods, which can be performed in 3–4 hr, have epidemiological support for indicating 
increased human health risk and have been validated for use in fresh and marine waters (Wade et al., 2006, 2008).

Molecular methods developed to detect water-based pathogens have recently been used to understand the effects 
of treatment on CEC pathogens at drinking water treatment plants/public water systems in the United States 
(King et al., 2016). qPCR was used to detect the fungi Aspergillus fumigatus, A. niger, A. terreus, and the bacteria 
Legionella pneumophila, Mycobacterium avium, M. avium subspecies paratuberculosis, and M. intracellulare, 
in paired source and treated water obtained from 25 treatment plants of various sizes and using a variety of 
drinking water treatments. Treatment was effective at removing all three species of fungi at 14 of 25 plants where 
Aspergillus spp. were detected in source water; 5 of 6 treatment plants where L. pneumophila were detected; and 
7 of 12 treatment plants where mycobacteria were detected. Additionally, there were four treatment plants where 
M. avium and M. intracellulare and three treatment plants where M. avium subspecies paratuberculosis were not 
detected in source water but were detected in treated water. This indicates that treatment is effective at remov-
ing most L. pneumophila, but that mycobacteria may be growing during drinking water treatment (assuming 
well-paired samples).

Reverse-transcription qPCR (RT-qPCR) has now made detection of unculturable norovirus and slow-growing 
hepatitis A virus possible in water samples. Using RT-qPCR, previous research has determined that norovirus 
RNA remained detectable in groundwater for 1,266 days (Seitz et al., 2011). Although unknown viability of noro-
virus detected by RT-qPCR has been debated, human volunteers ingested groundwater spiked with human noro-
virus stored at room temperature for 61 days to demonstrate that the virus was still infectious (Seitz et al., 2011). 
In addition, RT-qPCR has been used to detect hepatitis A, rotaviruses, and enteroviruses in the Buffalo River and 
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source water dams in Cape Province, South Africa (Chigor & Okoh, 2012). Hepatitis A was detected in 43% of 
samples, rotaviruses in 13.9% of samples, and enteroviruses in 9.7% of samples. Hepatitis A virus was detected 
at all six sites sampled over the course of the year, indicating persistence of hepatitis A in the water environment. 
A drinking water treatment plant survey conducted in the United States used Bayesian statistics combined with 
RT-qPCR to estimate enterovirus, adenovirus, norovirus (NoV G1 and NoV GII), and polyomavirus concentra-
tions in source and treated water samples. This fully probabilistic approach accounted for PCR inhibition and 
method recovery and demonstrated treated water contained decisively less virus than source water (Varughese 
et al., 2018).

2.4.2. Next Generation Sequencing (NGS) Technologies

NGS technologies use pyrosequencing (Roche 454 sequencing), sequencing by synthesis (Illumina sequenc-
ing), sequencing by oligonucleotide ligation detection (SOLiD sequencing), ion semiconductor sequencing 
(Ion Torrent sequencing), nanopore sequencing (Oxford Nanopore Technologies), and single-molecule, 
real time sequencing (Pacific Biosciences) to identify and characterize the genetic content of the microbial 
community (Niedringhaus et al., 2011). This technology is more rapid, cost-effective, and accurate than tradi-
tional sequencing technology (e.g., Sanger sequencing). By using primers (e.g., 16S rRNA gene) that allow 
phylogenetic identification of microorganisms, NGS allows millions of sequences in a sample to be amplified 
in parallel, and, combined with bioinformatics tools, can identify different genera or species present (Aw & 
Rose,  2012). Beyond identification, metagenomic analysis uses shotgun sequencing and bioinformatics to 
characterize the entire genetic content of the microbial community in an environmental sample, including 
genes coding for virulence factors and AMR.

To better understand the microbial community and pathogen component of wastewater effluent released from 
a WWTP in Zhengzhou City, China, pyrosequencing and metagenomics were used to identify pathogens and 
virulence factors at different stages of treatment (Lu et al., 2015). This study found that Arcobacter butzleri, 
which causes gastroenteritis, was the most abundant pathogen in samples collected along the treatment train, 
followed by Aeromonas hydrophila, E. coli, and Klebsiella pneumoniae. qPCR assays specific for each pathogen 
confirmed the metagenomic results. This study also reported that 99% of pathogen sequences and genes coding 
for virulence factors were removed during treatment, with the most efficient step being aerobic secondary treat-
ment and removal of suspended solids.

2.5. Beyond the Next Generation

NTA, bioassays, and advancements in molecular methods and sequencing techniques for microorganisms have 
all worked to increase the number/fraction of environmental contaminants examined or the sample throughput 
or both. These methods, however, still require the analysis of samples. An individual sample is a snapshot in 
time. The factors that influence those samples either through decision (e.g., instantaneous grab sample vs. 24-hr 
composite) or circumstance (e.g., proximal rain events, intermittent contaminant releases) can affect the results 
and the decisions based on those analyses. Nevertheless, better identification of the true sources of contaminant 
effect in long-term monitoring and assessment programs is possible. A purposeful design of integrated sampling 
programs—with appropriate arrays of chemical, bioassay, and microbiological methods—and subsequent itera-
tive application of appropriate modeling approaches offers this possibility. Modeling is one way to identify the 
variances between chemical, bioassay, and microbiological results from real aquatic systems, and predictions 
made from theoretical understanding of pertinent chemistry, hydrology, and both macrobiology and microbiol-
ogy. Modeling inherently requires simplifications that may not fully reflect the complexity of the aquatic system 
in question.

3. The Challenge of Numerous and Ubiquitous CECs: The Role of Modeling
Important developments in the field of CEC exposure modeling have occurred alongside major advances in the 
quantification and identification of CECs in the environment in the past 20 years (Di Guardo et al., 2018). Envi-
ronmental exposure models have been used to address a variety of environmental research and policy questions, 
functioning mainly as decision-support and regulatory tools for environmental risk assessment (Di Guardo & 
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Hermens, 2013). Monitoring data are valuable but expensive to obtain, and it would be impossible to measure all 
CECs throughout space and time.

Exposure models can guide monitoring by identifying the CECs, locations, and environmental media of greatest 
concern based on the emission pathways and physicochemical properties, thereby intelligently prioritizing CECs 
for further study and risk assessment (Burns et al., 2018; Ginebreda et al., 2018; Zhi et al., 2022). Similarly, 
models to characterize exposure levels of microbial contaminants can inform quantitative microbial risk assess-
ment (QMRA), a key application for characterizing their associated health effects (Haas et al., 1999).

Exposure models can also be used to investigate the fate, transport, distribution, and the drivers of environ-
mental exposure. Inverse modeling where an unknown or difficult to characterize parameter can be solved by 
working backwards from measured environmental concentrations (Boxall et al., 2014; Pistocchi et al., 2012). 
Hypothesis testing or sensitivity analysis can identify which environmental processes dominate CEC environ-
mental behavior, thereby directing further laboratory or field research to where it is most needed, is another 
common application (Åberg et al., 2015; Dale et al., 2015). Investigating the impact of future changes in emis-
sions or environmental conditions is another useful application (Keller et al., 2015; van Wijnen et al., 2019; 
Wu et al., 2023). This could include using exposure models to evaluate exposure mitigation strategies, such as 
the effect of upgrading WWTP removal technology (Kehrein et al., 2015), evaluating the relative environmen-
tal effect of prescribing one pharmaceutical over another (Allijn et al., 2018), or identifying where environ-
mental quality standards could be exceeded (Arnot et al., 2006; Johnson et al., 2013). Environmental exposure 
models can also be used proactively to investigate the environmental fate and transport of next generation 
chemicals designed to replace chemicals of concern such as polybrominated diphenyl ethers or PFAS (Gomis 
et al., 2015; Liagkouridis et al., 2015).

3.1. CEC Exposure Modeling Approaches

In general, two types of models exist to estimate the aquatic exposure of CECs, multimedia fate and expo-
sure models and single media models (Grill et al., 2016). The choice of which approach is best suited to 
a particular CEC and scenario benefits from upfront consideration (Hollander et  al.,  2012). Building a 
conceptual model of sources, pathways, and receptors is a logical starting point. For many CECs, the domi-
nant environmental source is through consumer use of CEC-containing products (e.g., cleaning products, 
pharmaceuticals, and personal care products) and their subsequent down-the-drain disposal to WWTPs 
where municipal effluents are treated and released to the freshwater environment. For other CECs, this 
pathway could be one of several, which includes entering the aquatic environment directly through in situ 
wash-off (e.g., sunscreens which contain ultraviolet [UV] filters), combined sewer overflows, or degrada-
tion (e.g., secondary microplastic, TPs) in addition to various diffuse sources including industrial (e.g., 
fire-fighting foams), agricultural (e.g., pesticides, veterinary medicines, biosolid applications), solid waste 
disposal (landfill leachate) or stormwater runoff. All potential sources are important to consider; however, it 
is not always feasible or necessary depending on the objective and CEC under investigation. Physicochemi-
cal properties can then indicate whether a compound is volatile or hydrophobic, in which case a multimedia 
approach that estimates the distribution between environmental media (e.g., surface water, soil, air) would 
be preferred over a single media approach that focuses in detail on a single compartment (e.g., surface water) 
(Hollander et al., 2012). Therefore, these approaches are complementary rather than competing (Mackay & 
MacLeod, 2002). Ashraf et al. (2022) reviewed model selection based on the scenario and category of under 
investigation. We review a selection of recent CEC modeling developments in Table 3, the interested reader 
is directed to Tong et al. (2022) for a comprehensive review of the geographical and CEC domains of current 
models, in addition to their limitations.

3.1.1. Multimedia Fate and Exposure Modeling

Multimedia fate and exposure modeling posits that chemical fate, transport, and transformation is driven by 
the interaction between inherent physicochemical properties of a chemical and environmental conditions (X. Z. 
Kong et al., 2016). Environmental characteristics are variable and complex through both space and time, thus 
the computing power required to account for even a small amount of environmental spatial and temporal vari-
ability is a limiting factor for these models. To overcome this, the environment can be simplified into generic 
fixed compartments (e.g., air, water, soil, and biota) where only their ability to retain a contaminant is consid-
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ered (MacLeod et al., 2010). A mass-balance approach, where an equation per compartment is parameterized 
by partition coefficients, mass transfer coefficients, and degradation rate constants, is commonly used (Csiszar 
et al., 2011). In this way, compartment-specific chemical transfer and degradation can be predicted using either 
experimental or predicted physicochemical properties (Figure 6).

Multimedia fate and exposure models are important tools for regulatory chemical risk assessment and 
decision-support because they provide a quantitative prediction of the transport of a chemical to relevant envi-
ronmental compartments and the time to ultimate degradation, to sequestration, or to biotransformation (Su 
et al., 2019). The models favored for these national and regional applications utilize a generic spatial and tempo-
ral approach (e.g., SimpleBox) despite the availability of more complex spatial and dynamic models. There is 
debate as to whether increased complexity—in terms of the number of parameters, compartments, and processes 
considered—improves model performance and environmental relevance. For example, including variable envi-
ronmental conditions and emissions through time is challenging to interpret and understand, which can affect 
external user utility and diminish confidence in results (MacLeod et al., 2010). Critically, the quality of model 
output is limited by the quality of data used to build and parameterize a model.

Figure 6. Hypothetical representation of the different environmental journeys various classes of contaminants of emerging 
concern (CECs) Take When Released to Wastewater. Certain CECs are highly mobile and/or persistent (e.g., per- and 
polyfluoroalkyl substances, microplastic) or can lead to more widespread environmental exposure (e.g., regional, global) in 
contrast to more localized exposure characterized by CECs that degrade (e.g., pharmaceuticals) or strongly sorb to solids 
(e.g., ultraviolet filters). Moreover, certain fate processes are relevant for some CECs, but not others (e.g., homoaggregation, 
volatilization), which is why numerous different modeling approaches of varying complexity have been developed to 
capture generalized fate processes important to each CEC class. For brevity, only select CECs are presented but note that 
many modeling approaches have been applied across the broad spectrum of CECs (e.g., pesticides, personal care products, 
veterinary medicines).
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3.1.2. Spatially Explicit Catchment Modeling

Single-media models are focused on a specific environmental compartment and therefore can more easily incor-
porate an increased level of environmental detail over multimedia approaches, making them highly useful for 
compounds that are expected to predominately remain in the environmental compartment they were emitted to 
(Jagiello et al., 2015). Aquatic concentrations of CECs can vary over orders of magnitude at a local and regional 
scaleleading to notable differences in ecotoxicological risk within and across geographic regions (Oldenkamp 
et al., 2016). Therefore, spatially-explicit models that incorporate the spatial variability in flow, channel dimen-
sions, river connectivity, chemical inputs, fate, and chemical transport have been developed to respond to the need 
for realistic localized exposure estimates within a watershed or region (Burns et al., 2021). These models can 
be thought of as a digitized river network that considers the spatial variability in key environmental parameters 
and chemical inputs within a watershed. These models such as GREAT-ER (Kehrein et al., 2015) LF200-WQX 
(A. P. Williams et  al.,  2009; R. J. Williams et  al.,  2009) and iSTREEM (Kapo et  al.,  2016) were developed 
for data-rich regions (e.g., USA and Europe). Efforts are on-going to expand their geographical application 
(e.g., McDonough et al., 2022) made possible through advances in large-scale hydrographic data sets, such as 
HydroSHEDS, generated from global elevation data (Lehner et al., 2008). On the other hand, Zhu et al. (2019) 
presented a simplified alternative for China to overcome river network and flow data limitations. The country was 
gridded and WWTP discharge to each grid was based on associated population and an average WWTP connec-
tion rate  and previously derived dilution estimate (see Keller et al., 2014). The global dilution model (Keller 
et al., 2014) and a similar approach described by Kilgallon et al. (2017) are simpler models that do not have the 
computational or data demands of higher-tier models, but permit investigation of surface water concentrations at 
a coarser spatial resolution.

3.1.3. Spatially Resolved Environmental Fate Models

Recently models have been developed that bring together the advantages of detailed spatially explicit catch-
ment models and multimedia models into a single modeling framework, as shown in Figure 7, and reviewed by 
Falakdin et al. (2022). This permits not only the prediction of realistic local concentrations but can also provide 
a starting point for the quantification of far-field aggregate human exposure (e.g., produce, surface water, fish, 
meat, milk) and incorporate the role of persistence for evaluating reservoir stocks of CEC in various environmen-
tal compartments (Wannaz, Franco, et al., 2018). The temporal component of these models permits investigation 
of seasonal changes on fate processes (Han et al., 2022), as well as over longer time scales (e.g., 10–100 years) 
(Han et al., 2019; Ross & Knightes, 2022).

Pangea, a multi-scale spatial multimedia fate, transport, and exposure model framework, recently introduced by 
Wannaz, Franco, et al. (2018), combines the advantages of the two modeling approaches to describe contaminant 
fate and transport globally using a novel multi-scale grid method. To demonstrate the usefulness of the approach, 
the authors examined the effect of just using local emissions versus including upstream emissions; they observed 
that concentrations exceeded a factor of 10 times higher for compounds with longer half-lives (Wannaz, Fantke, 
& Jolliet, 2018). Jolliet et al. (2020) increased the spatial resolution of Pangea and applied it to the prediction of 
personal care and household products in environmental media in Asia. It was determined that the uncertainty in 
predictions were far lower than the variability of exposure concentrations across the region.

The STREAM-EU model goes a step farther and is a temporally resolved multimedia model that generates 
spatially explicit concentrations at the sub-basin scale (e.g., 28 km 2) throughout Europe (Lindim et al., 2016). The 
model was created to incorporate both diffuse and point sources along with the interactions of surface water with 
groundwater, sediment, soil, air, snow, and suspended particulate material (Lindim et al., 2016). STREAM-EU 
also incorporates temporal changes in temperatures, transport velocity, and emissions, while also spatially distrib-
uting environmental parameters and emissions (Lindim et al., 2016).

STREAM-EU is a highly complex model; however, an alternative method is the openly available and site-specific 
spatiotemporal modeling framework WASP8 updated with advanced toxicant module that can predict the fate and 
exposure of solute chemicals, nanoparticles, and solids in surface water-sediment systems (Knightes et al., 2019). 
The model is limited to surface water-sediment interactions; however, it implements a detailed set of processes 
including settling, burial, resuspension, erosion, and bedload transport in addition to specific fate processes for 
nanoparticles, microparticles, and solute chemicals in these media.
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Figure 7. Simplified overview of the evolution of single media catchment models and multimedia fate models (MFM). A hypothetical scenario is given where with 
each step of increased spatial complexity is introduced. Once both types of models reach regional and global scale, small-scale combinations of MFMs and spatially 
explicit catchment models emerged. Most recently, the regional spatially explicit MFMs Stream-EU and Pangea have been developed, which combine the strengths of 
both approaches but are heavily data intensive.
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3.1.4. Quantitative Microbial Risk Assessment (QMRA)

Microbial risk assessment is a process used to estimate the likelihood of adverse human health effects follow-
ing exposure to microbial pathogens or microbiological products (Haas et al., 1999; Parkin, 2007; Schroeder 
et  al.,  2007). Although originally developed for food-borne illness, the methodology has since advanced to 
include other exposure routes, including drinking water and water reuse applications (Nappier et al., 2018; Owens 
et al., 2020; Petterson & Ashbolt, 2016; Zhiteneva et al., 2020). For quantitative assessments, uncertainty in meas-
urements is further coupled with uncertainty about the human exposure pathway and specific health effects of 
microbial agents. QMRA methods therefore include a measure of uncertainty by expressing predictions as proba-
bility distributions rather than discreet point estimates. This is done by quantifying variability in input parameters 
and propagating this uncertainty through to model output, for example, with Monte Carlo simulation (Adgate & 
Ramachandran, 2007; Schroeder et al., 2007). This stochastic approach is advantageous because it recognizes that 
risk, by definition, is probabilistic, and provides decision makers with an objective range of outcomes from which 
to draw appropriate conclusions (Parkin, 2007). Furthermore, sensitivity analysis can then be used to determine 
which parameters contribute most to the overall uncertainty in risk estimates. This is useful for the identification 
of factors (e.g., environmental concentration, exposure rate, dose-response) on which calculated risk is most 
dependent, and thus where risk management activities are most effectively directed. Sensitivity analysis can also 
target data gaps by identifying parameters that drive risk estimates but for which little information is available 
(Parkin, 2007; Schroeder et al., 2007). Given the inherent uncertainty associated with emission, fate and trans-
port, and health effects of emerging contaminants, these considerations are particularly critical for microbial 
CECs. Ongoing advances in QMRA include integration with molecular biology tools, such as microbial source 
tracking and whole genome sequencing (Haas, 2020; Rantsiou et al., 2018; Q. Zhang et al., 2019), incorporation 
of Bayesian network modeling approaches (Beaudequin et al., 2015; Greiner et al., 2013), and development of 
software applications for practical implementation (Chhipi-Shrestha et al., 2017; K. Kim et al., 2018; Schijven 
et al., 2015). Among microbial CECs, AMR presents unique challenges for QMRA (Ashbolt et al., 2013; Pires 
et al., 2018); see Section 1.3.2.

3.2. Modeling Considerations

3.2.1. Emissions

Chemical emission is the most critical model input and, frequently, the most challenging to characterize (Guillén 
et al., 2012). The starting point for any modeling exercise is an emission estimate, but these estimates can be 
difficult to obtain as either a chemical inventory does not exist, or chemical usage is proprietary information 
(Burns et al., 2018). When this information is publicly available, it may only represent a portion of the total envi-
ronmental emission. Alternatively, national sales data collected by market research firms can be used (Hodges 
et al., 2014), but in certain cases can be prohibitively expensive. This leads the modeler to make a “best guess” 
emission estimate or base it on a proxy (Hodges et al., 2012). Spatial emission patterns are particularly challeng-
ing to account for because data are rarely available to account for them. In the absence of emission data, different 
approaches to estimating emissions have been taken. Hodges et al. (2012) spatially allocated consumer chemical 
emissions based on population density, product affordability, national sales data, and the spatial distribution of 
the gross domestic product across the country. Jolliet et al.  (2020) identified through sensitivity analysis that 
emissions had the greatest impact on concentrations of CECs across Asia using the Pangea model. Aldekoa 
et al. (2015) determined that CEC emissions were the largest source of uncertainty in spatially explicit catchment 
models.

3.2.2. Parameters and Sensitivity Analysis

Models rely on CEC physicochemical data to predict transport and fate, which can be problematic because exper-
imental data, particularly for CECs, are rare. The critical physicochemical parameters, and the environmental fate 
or degradation process they describe, are listed in Figure 6. The identification of the key physicochemical param-
eters that are needed is based on the type of exposure modeling being conducted. In a single media model, only 
parameters relevant to that media are generally necessary, while multimedia approaches incorporate a greater 
number of environmental processes and therefore require more parameters to describe them. Most chemical 
property estimation methods have been developed and validated for hydrophobic neutral chemicals (e.g., polybro-
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minated diphenyl ethers), while CECs represent a much broader physicochemical diversity that falls outside the 
applicability of well-studied property estimation approaches (Jagiello et al., 2015; Wang et al., 2011).

The most common property estimation technique is quantitative structure-activity relationships (QSARs), where 
unknown properties can be predicted based on the likeness in molecular structure to a set of chemicals with known 
properties. The USEPA's EPISuite™ software or the OECD Toolbox are well-known collections of QSARs used 
to predict various physicochemical properties (e.g., log octanol/water partition coefficient [Kow], log octanol/
air partition coefficient [Koa], log air/water partition coefficient [Kaw] and biodegradability) and have been used 
extensively to fill in data gaps for data-poor CECs (Burns et al., 2018). These QSARs have been validated exter-
nally and are robust within their applicability domain (Devillers et al., 2013; Posthumus et al., 2005); however, 
many CECs fall outside the applicability domain (e.g., polar and ionizable). Some work has been done to address 
this; for example, Franco and Trapp (2008) derived a soil-water QSAR for ionizable pharmaceuticals, and the 
WWTP removal prediction software SimpleTreat was updated to include ionizable compounds (Struijs, 2014). 
For a more in-depth review on the advantages and disadvantages of these predictive approaches, interested read-
ers are directed elsewhere (Jagiello et al., 2015). Moving forward, Tratnyek et al. (2017) suggested that parameter 
estimation models will go beyond physicochemical properties to predicting TPs based on environmental factors.

Currently, analytical methods to detect engineered nanoparticles in environmental matrices are limited, which is 
further complicated by the inability to analytically differentiate between synthetic and naturally occurring nano-
particles (Baalousha et al., 2016). In the absence of monitoring data, models have taken on a particularly important 
role in expanding the knowledge surrounding engineered nanoparticle environmental exposure (Nowack, 2017). 
Partition coefficients, which dictate solute chemical equilibrium partitioning between environment media, were 
found to be unsuitable for describing engineered nanoparticles' behavior (R. J. Williams et al., 2019). Rather, the  
irreversible processes by which these nanoparticles attached to one other (homoaggregation) or to particulate  
matter (heteroaggregation) influenced their environmental fate (e.g., downstream transport, deposition to 
sediment, and resuspension). Dissolution was determined to be another important nano-specific process, where the  
agglomeration could also be affected by interactions with metals or organic matter present in the water column 
(Nowack, 2017). R. J. Williams et al. (2019) and Nowack (2017) provide detailed reviews on this growing field. 
The WASP8 model with the advanced toxicant module is a promising development for predicting the expo-
sure, fate, transformation and environmental distribution of engineered nanoparticles (Han et al., 2022; Ross & 
Knightes, 2022).

Microplastics pose both similar (Hüffer et al., 2017) and divergent challenges (Kooi et al., 2018) to engineered 
nanoparticles for environmental exposure modeling. Kooi et al. (2018) summarized that their low-density (i.e., 
float in water), extreme persistency, large size range (nanometers to centimeters), variable morphology (e.g., 
fibers, films, foams, and fragments) and in-stream formation (degradation of larger plastic particles) make their 
modeling challenge unique. These properties indicate transport will be particle size/shape dependent, whereas 
larger particles could be affected by wind and flow (low-density), and nano-sized particles could mix within the 
water column (Besseling et al., 2017). Yu et al. (2020) proposed applying machine learning techniques to evaluate 
the exposure to microplastics. However, creation of a robust training regime is limited by a lack of standardized 
microplastic data and test protocols. This conclusion for the difficulty of microplastic modeling also reached 
by Uzun et al. (2022). Quik et al. (2023) adapted the SimpleBox4Nano framework to account for attachment, 
aggregation and fragmentation of microplastics, this development is a significant step forward in the predicting 
the relative distribution of microplastic between environmental media.

3.3. The Future of CEC Modeling

CECs are a large and evolving group of chemicals that possess a vast array of chemical properties that influence 
how they will behave in the environment. Generally, environmental occurrence and fate data are limited and a vali-
dated modeling framework for classes or specific CECs is rare (Geissen et al., 2015). Furthermore, CECs are present 
as a complex mixture, not only with other CECs, but other aquatic contaminants including nutrients, pathogens, or 
suspended solids that affect water quality. This leads to a situation where water quality could be affected simultane-
ously by multiple contaminants from similar sources where a holistic assessment is needed to comprehensively evalu-
ate water quality (Kroeze et al., 2016). Strokal et al. (2019) presented a critical assessment of the potential challenges 
associated with developing a global multi-contaminant model that could simultaneously deal with numerous contam-
inants in rivers and their subsequent export from land to sea. An approach of this type could be important to meet the 
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challenge of integrating the effect of multiple water quality stressors (including CECs) on aquatic systems to holisti-
cally evaluate potential ecotoxicity (Nilsen et al., 2019) and drinking-water quality (van Vliet et al., 2017). Meanwhile, 
efforts to build models for data-poor regions by utilizing flow and emission proxies (e.g., Barbarossa et al., 2018; 
Hodges et al., 2014; Zhu et al., 2019) are valuable for increasing model coverage for currently underrepresented areas 
(e.g., tropical regions) and emission scenarios (e.g., direct wash-off; Ruiz-Gutiérrez et al., 2022).

Computing power and input parameters likely will continue to be a challenge for CEC exposure modeling. A potential 
solution is a tiered modeling framework (e.g., Figure 7) that begins with high-throughput screening and can incorporate 
a wide variety of compounds with limited environmental data, with the goal of prioritizing CECs for further investi-
gation using more complex and data-intensive modeling (Di Guardo et al., 2018). To achieve this, the key would be 
expanding current parameter estimation applicability domains to handle a broader range of CECs alongside developing 
and refining the dominant CEC-specific processes, ensuring that increasing detail is included only up to the point where 
it is needed (Di Guardo et al., 2018; Ehret et al., 2014; Jagiello et al., 2015; MacLeod et al., 2010). Higher-tier models 
(e.g., spatially explicit single or multimedia models) can then be deployed for further investigation of CECs prioritized 
in the initial screening phase (Franco et al., 2017). A temporal and spatially explicit approach (e.g., STREAM-EU) 
could form the top tier, where investigations into the temporal dynamics could be evaluated if necessary. At the same 
time, as monitoring data are becoming increasingly available, these data can aid in the evaluation and improvement of 
the spatiotemporal processes described within these higher-tier modeling approaches and the role of these processes on 
chemical fluxes and exposure in the environment (Di Guardo et al., 2018).

Increased freshwater demand from growing populations, coupled with the regionally variable effects of climate 
change, can influence the occurrence of CECs in the water cycle. Models can help predict the effects of these changes 
on CEC exposure and fate through scenario-analysis (Di Guardo et al., 2018; Wu et al., 2023). Drinking water is a 
potentially important CEC human exposure route (Nguyen et al., 2018), particularly as the distance between wastewa-
ter and drinking water is reduced through the combination of regionally variable climactic and demographic factors. 
Furthermore, global food demand, paired with increasing water scarcity, may lead to increased wastewater effluent 
re-use for irrigation (Assouline et al., 2015). The necessity of this practice would be regionally variable, and CEC 
exposure would be strongly influenced by the local population and wastewater treatment connectivity. Taken together, 
changing demographics and climate will influence our water use and management practices. The scenario-analysis 
that environmental exposure models can provide would be a crucial proactive tool for predicting how these changes 
could influence CEC exposure, transport, fate, in. an increasingly urbanized water cycle

4. Water Treatment Technologies for CECs
Water is used by humans for countless purposes—direct consumption, food preparation, personal hygiene, recre-
ation, irrigation, and in industrial processes—all of which require water of high quality. The continued develop-
ment of new chemicals used in manufacturing and products can lead to the degradation of water quality, if not 
adequately controlled. Gogoi et al. (2018) stated that “there are as of now no laws or mandates illustrating the 
upper limits of concentrations of CECs in wastewater discharge, drinking water, or the environment,” citing a lack 
of data on CEC fate and transport, concentrations, and their effects as the limiting factor for implementing policy. 
A lack of knowledge and understanding of the effects of individual CECs, mixtures of CECs, and mixtures of 
CECs with other contaminants likely will continue to be a hurdle in setting the necessary regulations for govern-
ing treatment requirements.

Water treatment processes are a primary barrier for both conventional contaminants and CECs. Conventional central-
ized wastewater treatment includes the following stages: preliminary treatment, primary treatment, secondary treat-
ment, and tertiary treatment including disinfection (Amenu, 2013). Through such a treatment train, most microorgan-
isms are removed in the tertiary treatment. Conventional drinking water treatment also includes several stages, with the 
source water type and quality determining the appropriate stages to include. In general, a conventional drinking water 
treatment train for surface water includes coagulation, flocculation, sedimentation, filtration, and disinfection. Under 
the right conditions, microorganisms are removed in filtration and inactivated via disinfection.

WWTPs are an important crux for CEC investigation. Effluent wastewaters affect surrounding environmental 
biomes and are often released into natural water systems that may serve as subsequent sources of drinking water; 
treated wastewater can also be directly reused for various purposes (Homem & Santos, 2011; S. Kim et al., 2018; 
Rivera-Utrilla et al., 2013; Teodosiu et al., 2018; Vidal-Dorsch et al., 2012; Y. Yang et al., 2017). Most CECs are 
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not fully removed or transformed by conventional wastewater treatment (M. B. Ahmed et al., 2017; Gu et al., 2018; 
Kasonga et al., 2021; S. Kim et al., 2018; Rizzo et al., 2019; Taheran et al., 2016; Vidal-Dorsch et al., 2012; Y. 
Yang et al., 2017), and there are knowledge gaps when it comes to CEC treatment efficacy (Gogoi  et al., 2018; 
Y. Yang et  al.,  2017). WWTPs have been primarily designed to reduce microbes and biodegradable carbon, 
phosphorus, and nitrogenous substances—not more complex CECs (Gogoi et al., 2018). Processes typically used 
for drinking water treatment target a higher-quality water product and may provide insight for technologies that 
can specifically target CEC removal. Of concern is that some treatment technologies can transform CECs (e.g., 
through biological or chemical degradation) into new compounds that can have equal or higher toxicity (Gogoi 
et al., 2018).

Several critical reviews are available that examine the efficacy of water treatment technologies for CECs, 
including those identified in Table 4. Scientific inquires range from bench-scale testing of individual treat-
ment technologies, some examining single-solute solutions and some of complex contaminant mixtures, to 
more holistic evaluations of an entire treatment train. For example, Y. Yang et al. (2017) provides percent 
removal data for various treatment studies on wastewaters from around the world, illustrating treatment effi-
cacy for various stages (i.e., preliminary, primary, secondary, tertiary) of wastewater treatment processes, 
as well as more specific combination processes, such as sand filtration with chlorination, granular acti-
vated carbon adsorption, ultrafiltration, and reverse osmosis membrane rejection. M. B. Ahmed et al. (2017) 
presented a critical review of various chemical, biological, and combination wastewater treatment processes, 
summarizing advantages and challenges of each. Rodriguez-Narvaez et al. (2017) reviewed CEC removal by 
specific adsorption, membrane, biological, and advanced oxidation treatment processes. Rizzo et al. (2019) 
summarized advantages and challenges of various advanced wastewater treatment processes, including 
ozonation, advanced oxidation processes, activated carbon adsorption, nanofiltration, and reverse osmosis 
membrane processes. These authors also include a review of estimated operational costs and economic 
feasibility studies.

Contaminant response to a treatment technology is highly complex. Treatment efficacy can be influenced by 
variable process parameters, water matrix characteristics, and other environmental conditions. Selected studies 
and comprehensive reviews have been presented here to highlight some important influences on CEC water 
treatment.

Vidal-Dorsch et al. (2012) specifically looked at CECs in southern California. This study investigated 56 
CECs in effluent wastewaters from four WWTPs on the coast, as well as seawater samples (near-seafloor) 
where these effluents were discharged into the ocean. Eighteen of the 56 CECs analyzed were present in all 
WWTP effluent samples (including the EDCs benzophenone, bisphenol A, and estrone), with 35 detected 
in at least one; 20 CECs were detected in at least one of the seawater samples. Fourteen of these 20 were 
among the CECs found in all WWTP effluent samples; the remaining six were found in at least one WWTP 
effluent sample. Generally, WWTPs that used more advanced secondary wastewater treatment processes 
resulted in lower CEC concentrations, both in the plants' effluents and in the receiving seawaters, indicating 
that advanced treatment processes hold a key toward more effective, but not complete, removal of these 
complex contaminants. Some CEC removal can be attributed to secondary treatment biological processes 
(via biodegradation and sorption). Assessing the full effects of an individual WWTP effluent discharge as 
a point-source is difficult because dilution (e.g., with ocean water), chemical transport and transformation, 
and additional discharge sources (e.g., other treatment facilities, storm water) will influence environmental 
concentrations.

A study of a South African WWTP (Archer et al., 2017) measured 90 CECs in the plant's influent and effluent 
waters over a 5-day period, as well as corresponding river surface water grab samples upstream and downstream 
from the discharge location. Archer et  al.  (2017) report that 55 CECs were detected in the WWTP influent 
and 41 in the effluent. Of the detected compounds, 28% had a percent removal efficacy (defined as change in 
the concentration from influent to effluent, normalized by influent concentration) of less than 50%, and 18% 
of the compounds had removal efficacies below 25%. Five compounds exhibited concentration increases after 
treatment (the pharmaceutical tramadol and two of its metabolites, azithromycin, and a pharmaceutical metab-
olite, desvenlafaxine), two of which were deemed statistically significant (azithromycin and desvenlafaxine). 
Archer et al. (2017) hypothesize possible sources, including the dissolution of CECs that have accumulated in 
aggregate material and/or the potential back-transformation of metabolites present in the influent waters into 



GeoHealth

GLASSMEYER ET AL.

10.1029/2022GH000716

39 of 76

the original parent compounds, which subsequently show up in the effluent. The authors noted that the studied 
WWTP receives public, domestic, and industrial wastewater, with variable contribution from these sources that 
may not be captured during sampling. It is also worth noting that data used to track “removal” generally pertain 
to the parent compound, and thus, these data neglect tracking any TPs, which themselves may have negative 
effects on human and environmental health. Similarly, any CECs that have been transferred to a solid media 
(e.g., the aforementioned aggregate material) could be released into the environment through solids disposal or 
repurposing (e.g., biosolids used as soil amendments). Biosolids and wastewater effluent (used for irrigation) 
can be seen as beneficial in nutrient-deficient and arid environments, but they also have the potential to affect 
soil chemistry (e.g., salinity, pH, hydrophobicity) and to release bacterial pathogens (including fecal coliforms 
and antibiotic-resistant bacteria), heavy metals, organic contaminants (e.g., PAHs), and other CECs (Gatica & 
Cytryn, 2013).

Reference

Adsorption Membrane Oxidation Biodegradation
Holistic 
WWTP/
DWTP

Activated 
carbon Other UF NF RO FO Chlorination Ozonation

Other 
AOPs

Activated 
sludge

Membrane 
bioreactors Other

M. B. Ahmed et al. (2017) x x x x x x x x x

Archer et al. (2017) x

Bellona et al. (2010) x

Gogoi et al. (2018) x x x x x x x x x

Gu et al. (2018) x

Homem and Santos (2011) x x x x x x x x

Jang et al. (2018) x

S. Kim et al. (2018) x x x x

F. X. Kong et al. (2015) x x

Kucharzyk et al. (2017) x x x x x x

Noutsopoulos et al. (2015) x

Pan et al. (2016) x

Rivera-Utrilla et al. (2013) x x x x

Rizzo et al. (2019) x x x x x

Rodriguez-Narvaez et al. (2017) x x x x x x x x x

Rout et al. (2021) x x x x x

Sichel et al. (2011) x

Sophia and Lima (2018) x x

Taheran et al. (2016) x x x x

Teodosiu et al. (2018) x x x x x x x x

Trojanowicz et al. (2018) x x

Vallejo-Rodríguez et al. (2014) x

Vidal-Dorsch et al. (2012) x

Xie et al. (2012) x x

K. Xiao et al. (2019) x

Y. Yang et al. (2017) x x x x

Zamri et al. (2021) x x x x x x x x x x

S. Zhang et al. (2017) x

Note. UF = ultrafiltration, NF = nanofiltration, RO = reverse osmosis, FO = forward osmosis, AOP = advanced oxidation processes, WWTP = wastewater treatment 
processes, DWTP = drinking water treatment processes.

Table 4 
A Sampling of Reviews and Novel Publications Discussing Treatment Technologies for Contaminants of Emerging Concern (CECs)
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When evaluating treatment technologies, it is most common for process efficacy to be quantified by comparing 
an initial (i.e., before treatment) compound concentration with a final (i.e., after treatment) concentration, which 
is often presented as a percentage (Rodriguez-Narvaez et al., 2017). Treatment process efficacy will be dependent 
on physicochemical and biological properties of the individual CEC, including hydrophobicity/hydrophilicity, 
solubility, volatility, and biodegradability (Y. Yang et al., 2017).

4.1. Adsorption Processes

Adsorption is a mass transfer process where a solute is removed from the aqueous phase and accumulates on  
a solid phase adsorbent. Table 5 highlights references that examine the effect of solute properties, adsorbent  
properties, and water conditions on the efficacy of adsorption for removal of CECs. Activated carbon is one  
of the most common types of adsorbents, especially in DWTP. Adsorbent “activation” allows alterations of the 
surface chemistry and can be done through chemical (e.g., acid activation) or physical (e.g., heat activation) 
processes. The raw material source for activated carbons (e.g., coal, wood, coconut shell), activation method,  
and the pore size distribution will greatly affect adsorption capacity. The adsorption phenomenon involves bulk  
solute transport, film diffusion, and pore diffusion (M. B. Ahmed et  al.,  2015). Adsorption mechanisms are 
complex and are influenced by the solubility and hydrophobicity of the adsorbate, the hydrophobicity of the 
adsorbent, and the strength of electrostatic interactions between the adsorbate and the adsorbent (including 
π-π interactions of aromatic rings; Rivera-Utrilla et al., 2013; Sophia & Lima, 2018; Zamri et al., 2021). The 
capacity of an adsorbent was shown to be related to the adsorbent-specific surface area and micropore volume 

Supporting literature

Solute properties

 Size/molecular weight Cuerda-Correa et al. (2010)

 Charge/polarity M. B. Ahmed et al. (2015), Gogoi et al. (2018), De Ridder et al. (2010), Sophia and Lima (2018)

 Hydrophobicity M. B. Ahmed et al. (2015), Diniz et al. (2022), Gogoi et al. (2018), Rivera-Utrilla et al. (2013), 
Rout et al. (2021), Sophia and Lima (2018), Y. Yang et al. (2017), Zamri et al. (2021)

 Solubility Rivera-Utrilla et al. (2013)

 Functional groups Rivera-Utrilla et al. (2013)

Adsorbent properties

 Hydrophobicity M. B. Ahmed et al. (2015), Méndez-Díaz et al. (2010), Rivera-Utrilla et al. (2013), Rout 
et al. (2021), Sophia and Lima (2018), Zamri et al. (2021)

 Surface functional groups M. B. Ahmed et al. (2015), Cuerda-Correa et al. (2010), Diniz et al. (2022), Gogoi et al. (2018), 
Rivera-Utrilla et al. (2013), Rodriguez-Narvaez et al. (2017), Teodosiu et al. (2018), Zamri 

et al. (2021)

 Surface area/porosity/pore size Diniz et al. (2022), Gogoi et al. (2018), Homem and Santos (2011), Rodriguez-Narvaez 
et al. (2017), Rout et al. (2021), Sophia and Lima (2018), Teodosiu et al. (2018)

 Source material Diniz et al. (2022), Gogoi et al. (2018), Kucharzyk et al. (2017), Rodriguez-Narvaez 
et al. (2017), Rout et al. (2021), Sophia and Lima (2018)

Process/water conditions

 Contact time Sophia and Lima (2018), Teodosiu et al. (2018), Y. Yang et al. (2017), Zamri et al. (2021)

 pH M. B. Ahmed et al. (2015), Cuerda-Correa et al. (2010), Diniz et al. (2022), Gogoi et al. (2018), 
Kucharzyk et al. (2017), Rivera-Utrilla et al. (2013), Rout et al. (2021), Sophia and 

Lima (2018), Teodosiu et al. (2018)

 Presence of natural organic matter Cuerda-Correa et al. (2010), Homem and Santos (2011), Rivera-Utrilla et al. (2013), Rout 
et al. (2021), Zamri et al. (2021)

 Temperature M. B. Ahmed et al. (2015), Cuerda-Correa et al. (2010), Gogoi et al. (2018)

 Ionic strength Cuerda-Correa et al. (2010), Sophia and Lima (2018)

 Presence of other compounds (i.e., competition) Diniz et al. (2022), Gogoi et al. (2018), Homem and Santos (2011)

Table 5 
Physicochemical Properties That Have Shown to Influence Adsorption of Contaminants of Emgering Concern (Contaminants of Emerging Concern (CECs))
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(Cuerda-Correa et al., 2010). Adsorption capacity can also be increased by modifying chemical functional groups 
on the adsorbent surface (M. B. Ahmed et al., 2015). An advantage of activated carbons and other adsorbents is  
that they can be regenerated and reused through a reactivation process, which restores adsorbent surface chemistry. 
For carbon-based adsorbents, thermal decomposition processes are commonly used for regeneration (M. B.  
Ahmed et al., 2015). Regeneration techniques (e.g., thermal, solvent desorption) may result in air emissions or 
solvents that contain CECs and byproducts, which would then need to be appropriately disposed of M. B. Ahmed 
et al. (2015), Homem and Santos (2011).

Rizzo et al. (2019) reviewed activated carbon adsorption for removal of CECs, concluding that CEC adsorption 
is hindered in water matrices with high levels of organic matter because of competition for adsorbent surface 
sites. The level of competition is influenced by the physicochemical properties of both the target CEC and the 
organic matter. CEC size, charge and polarity, functional groups, and hydrophobicity will all affect adsorption 
(Rizzo et al., 2019). In wastewater treatment, activated carbon can be implemented at various stages in the water 
treatment process, such as within existing filter processes, within the existing biological treatment process, or 
as an independent post-biological treatment process (Rizzo et  al.,  2019). Generally, adsorption processes are 
controlled by contact time. Data were summarized by Rizzo et al. (2019) for studies examining activated carbon 
(both powdered and granular) as an advanced wastewater treatment; the authors targeted studies that examined 
real wastewater effluents to capture systems that consider the important effect of the background water matrix.

Adsorption studies compiled by Rodriguez-Narvaez et  al.  (2017) confirmed that the source material of acti-
vated carbon influenced removal capabilities. Four studies using biochar (created via pyrolysis of biomass) 
were summarized, showing some removal capabilities, but they were relatively low overall (Rodriguez-Narvaez 
et al., 2017). Although the activated carbon and carbon nanotubes seem to have higher performances for most 
CECs than biochar and clay mineral adsorbents, it is worth noting that overlap between data sets (which were 
themselves relatively small) was minimal and that additional factors (e.g., water matrix parameters, contact 
time) were not identified or compared (Rodriguez-Narvaez et al., 2017). Competition for adsorption sites, by 
other contaminants and/or natural organic matter present in the water matrix, may impact adsorption mecha-
nism (Cuerda-Correa et al., 2010; Diniz et al., 2022; Gogoi et al., 2018; Homem & Santos, 2011; Rivera-Utrilla 
et al., 2013; Rout et al., 2021).

Unlike transformational treatment processes (e.g., oxidation, biodegradation), activated carbon has the advan-
tage of not generating unknown (and potentially toxic) byproducts (Rivera-Utrilla et al., 2013). As previously 
mentioned, any adsorbed contaminants would need to be considered during carbon regeneration and disposal. 
Adsorption processes also have the advantage of being unaffected by CEC toxicity, whereas treatments relying 
on bioactivity (e.g., activated sludge) could be affected (M. B. Ahmed et al., 2015).

4.2. Membrane Processes

The most common membrane processes implemented for CEC removal are ultrafiltration, nanofiltration, forward 
osmosis, and reverse osmosis. Microfiltration is often not considered for CECs because of its limitation to 
contaminant sizes greater than 1 μm (Rodriguez-Narvaez et al., 2017). Ultrafiltration, nanofiltration, and reverse 
osmosis use a hydraulic pressure difference to transport water through the semipermeable membrane. Forward 
osmosis uses an osmotic pressure difference (S. Kim et al., 2018); such units are most commonly run in a cross-
flow configuration (Rizzo et al., 2019). Table 6 highlights literature sources that provide more treatment details 
of membrane rejection efficacy, as influenced by solute properties, membrane properties, and water quality 
characteristics. Organic solute retention by membrane processes is controlled by size exclusions, electrostatic 
(i.e., charge) repulsion, and adsorption (Z. H. Liu et al., 2009; Rizzo et al., 2019; Taheran et al., 2016; Zamri 
et al., 2021). Membrane transport of CECs is substantially influenced by chemical properties of the individual 
CEC, membrane characteristics and operating parameters, and the quality of the water matrix (S. Kim et al., 2018; 
Taheran et  al.,  2016). Taheran et  al.  (2016) provide an extensive review of how membrane, compound, and 
process parameters influence membrane rejection of pharmaceutically active compounds. Bellona et al. (2010) 
highlight the importance of understanding membrane fouling (i.e., from background natural organic matter in the 
water matrix).

S. Kim et al.  (2018) provide a critical review of numerous membrane transport studies for CECs. In general, 
membrane rejection of CECs increases from ultrafiltration, nanofiltration, forward osmosis, to reverse osmosis 
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membranes. Compiled data indicate that compound size (i.e., molecular weight), charge, and hydrophobicity 
are influencing parameters for rejection. CECs that are relatively small can partition and diffuse through reverse 
osmosis and forward osmosis membrane material; size exclusion (including steric exclusion) contributes to rejec-
tion when compounds are above the molecular weight cut-off of the specific membrane. Electrostatic repulsion 
(due to compound charge) and hydrophobic interactions (potentially leading to adsorption) generally correlate to 
higher rejection values, especially for nanofiltration and ultrafiltration membranes. Because of the importance 
of compound charge, water pH also is an influencing characteristic, potentially on compound speciation. S. Kim 
et al. (2018) conclude that “more polar, less volatile, and less hydrophobic organic CECs have less retention than 
less polar, more volatile, and more hydrophobic organic CECs.”

Rizzo et  al.  (2019) reviewed sources for primarily nanofiltration and reverse osmosis membrane processes. 
Membrane fouling can affect rejection through a process known as cake-enhanced concentration polariza-
tion. Some modeling approaches use process-based modeling for efficacy, such as the Spiegler-Kedem or the 
solution-diffusion models, while others attempt to correlate percent removal (i.e., rejection) data with solute prop-
erties. One problem with the latter is that with process performance being dependent on the solute, membrane, 
water matrix, and other system parameters, percent rejection values are rarely comparable between different 
studies and data sets. Rizzo et al. (2019) compiled experimental data, focusing on those that include four CECs 
(diclofenac, carbamazepine, estradiol, and n-nitrosodimethylamine [NDMA]), to portray the effect of contami-
nant and process variations. Scaling membrane processes from laboratory-scale to full-scale may prove challeng-
ing because of the difficulty in accurately scaling hydraulic conditions.

A study by Jang et al. (2018) of membrane rejection (presented as percent rejection) of 12 CECs by a forward 
osmosis membrane concluded that solute charge was an influencing parameter. In the context of membrane 
processes, the fraction of material (e.g., CECs) that remain on the feed-side of the membrane is said to be 

Supporting literature

Solute properties

 Size/molecular weight Gogoi et al. (2018), Jang et al. (2018), S. Kim et al. (2018), Rizzo et al. (2019), Taheran et al. (2016), Xie 
et al. (2012), Zamri et al. (2021)

 Charge/polarity Gogoi et al. (2018), Homem and Santos (2011), Jang et al. (2018), S. Kim et al. (2018), Rizzo et al. (2019), 
Rodriguez-Narvaez et al. (2017), Taheran et al. (2016), Y. Yang et al. (2017), Zamri et al. (2021)

 Hydrophobicity Gogoi et al. (2018), Jang et al. (2018), S. Kim et al. (2018), Rizzo et al. (2019), Taheran et al. (2016), Xie 
et al. (2012), Zamri et al. (2021)

 Solubility Gogoi et al. (2018), Jang et al. (2018), K. Kim et al. (2018), Xie et al. (2012)

Membrane properties

 Molecular weight cut-off/pore size Gogoi et al. (2018), S. Kim et al. (2018), Rodriguez-Narvaez et al. (2017), Taheran et al. (2016), Zamri et al. (2021)

 Surface potential/charge Gogoi et al. (2018), Homem and Santos (2011), Jang et al. (2018), S. Kim et al. (2018), Rodriguez-Narvaez 
et al. (2017), Taheran et al. (2016), Y. Yang et al. (2017), Zamri et al. (2021)

 Hydrophobicity Gogoi et al. (2018), S. Kim et al. (2018), Rodriguez-Narvaez et al. (2017)

 Membrane material S. Kim et al. (2018), Zamri et al. (2021)

 Permeability Jang et al. (2018), Zamri et al. (2021)

Process/water conditions

 pH Jang et al. (2018), S. Kim et al. (2018), Rizzo et al. (2019), Taheran et al. (2016)

 Fouling (presence of natural organic matter) Gogoi et al. (2018), Homem and Santos (2011), S. Kim et al. (2018), Rivera-Utrilla et al. (2013), Rizzo et al. (2019)

 Operating pressure Gogoi et al. (2018), Jang et al. (2018), S. Kim et al. (2018)

 Dead-end/cross-flow velocity S. Kim et al. (2018)

 Temperature Homem and Santos (2011), Jang et al. (2018)

 Recovery Jang et al. (2018)

 Draw solution (for forward osmosis) Xie et al. (2012)

Table 6 
Physicochemical Properties That Have Shown to Influence Membrane Rejection of Contaminants of Emerging Concern (CECs)
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“rejected” or “retained.” CECs that were negatively charged had higher rejection than those positively charged, 
due to the electrostatic repulsion by the negatively charged membrane surface. The attraction between charged 
CECs and the membrane surface induces a concentration gradient, which increases the diffusion of absorbed 
particles through the membrane into the permeate solution (Jang et al., 2018). For neutral (i.e., non-charged) 
CECs, membrane rejection was positively correlated to molecular weight and hydrophobicity (Jang et al., 2018). 
Neutral hydrophobic compounds (indicated by high octanol-water partitioning coefficients) had strong affinity 
for the membrane surface, resulting in adsorption (Jang et al., 2018). Solution pH was important to consider in 
relation to compound pKa (i.e., the negative log of the acid disassociation constant) because of its implication 
on compound charge; in water treatment schemes, pH would be an important operational parameter to monitor 
(Jang et al., 2018). Unlike other membrane processes, forward osmosis operates without an applied hydraulic 
pressure, which could potentially lower energy demand (therefore, operational costs) and allow for better control 
of membrane fouling (less severe and more reversible than nanofiltration and reverse osmosis; Xie et al., 2012).

While rejection of CECs by nanofiltration membranes may not be as high as reverse osmosis membranes, nano-
filtration requires considerably lower hydraulic pressure, which can reduce operating costs (Taheran et al., 2016). 
A drawback to membrane processes is that CECs are not degraded, resulting in a concentrated waste stream 
that would still require additional treatment and/or disposal (Rizzo et al., 2019; Taheran et al., 2016; Y. Yang 
et  al.,  2017). Membrane characteristics, including material (e.g., polyamide, cellulose acetate), the structure 
of the active layer, pore size, surface charge and hydrophobicity, and the extent of membrane fouling will all 
affect membrane performance (S. Kim et al., 2018; Zamri et al., 2021). Increasing cross-flow velocity generally 
increases retention by decreasing concentration polarization effects (S. Kim et al., 2018). Although initial efforts 
provide some insight into CEC behavior in membrane treatment systems, investigations are often limited in 
the number of solute compounds, number/types of membranes, range of water quality parameters, and operat-
ing conditions. Because of the diverse molecular properties of CECs and countless permutations of membrane 
process parameters, future efforts would benefit from systematically coordinating such research to investigate 
influences on solute rejection (S. Kim et al., 2018; Rizzo et al., 2019).

4.3. Oxidation Processes

In water treatment, oxidation processes are implemented for the destruction of pathogens. Common oxidation 
processes use chlorine, UV, or ozone, each having varying effectiveness on pathogens. Chlorine can be applied 
as a solid, liquid, or gas, and important considerations include the concentration, mixing time, remaining resid-
ual, and concentration of interfering reactive substances (Naidoo & Olaniran, 2014). In wastewater treatment 
processes, excess chlorine is often removed to prevent contamination of receiving waters with residual chlorine or 
toxic DBPs like trihalomethanes. Chlorine is effective at killing most bacteria and inactivating viruses, but proto-
zoan pathogens are relatively resistant. UV disinfection is becoming more routine due to its ease of use and lack 
of byproduct formation. UV inactivates microorganisms by damaging their DNA and preventing their replication. 
UV light is applied to wastewater through a mercury arc lamp, which uses electromagnetic energy to irradiate 
the effluent. In addition to inactivating bacteria and viruses, UV disinfection has also demonstrated effectiveness 
against the spore-forming protozoan pathogen Cryptosporidium spp., but must be used at the appropriate dose, 
optimal wavelength (250–270 nm), and exposure time for adequate inactivation (Morita et al., 2002). Ozone is 
preferred by some WWTPs for its on-site production, highly reactive nature, and lack of byproduct formation, 
but ozone can be expensive. The dose must be determined empirically and can range from a few milligrams 
per liter to 10 mg/L (Lazarova et al., 1999). Table 7, adapted from WHO (2011) describes the concentration 
of different disinfectants and contact time required to inactivate 99% of enteric bacteria, virus, and protozoa in 
drinking water, expressed in units of mg-min/L (milligram-minute per liter). Although DWTP are generally effec-
tive in reducing ARB and ARG, both ARB and ARG have nonetheless been detected in treated drinking water 
(Sanganyado & Gwenzi, 2019). In fact, disinfection processes may promote horizontal transfer of ARG, including 
to human pathogens (Sanganyado & Gwenzi, 2019).

In a series of chlorination batch reactor bench-scale experiments, Noutsopoulos et al. (2015) conclude that waste-
water pH is one of the most influential parameters when evaluating chlorine degradation (via direct dosing of 
sodium hypochlorite solution) of the nine CECs included in the study. The chlorine dosing concentration and 
presence of humic acids (a common constituent of natural organic matter) minimally influenced degradation 
(Noutsopoulos et al., 2015). The authors also examined the influence of suspended solids, finding it primarily 
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dependent on individual compound physiochemical properties governing their likelihood to adsorb to the solids. 
Homem and Santos (2011) suggest chlorinating wastewaters containing pharmaceuticals, as a pretreatment for 
biological treatments, to oxidize them to less toxic (i.e., more biodegradable) compounds. However, this seems 
to assume that all pharmaceuticals will be effectively oxidized by chlorine, which is not necessarily the case 
(Rivera-Utrilla et al., 2013; X. Yang et al., 2016), and that the chlorination byproducts will be less toxic  than the 
parent pharmaceuticals, which would also need to be verified (Rout et al., 2021; Zamri et al., 2021). For exam-
ple, Huang et al. (2015) found that oxidation of ibuprofen created a transformation byproduct with an increased 
toxicity. The composition of the water matrix (e.g., the presence of bromide) will also influence DBP composi-
tion. Generally, brominated-DBPs have been found to have a higher toxicity than their parent compounds (Jeong 
et al., 2012). The rate of degradation of antibiotics via chlorination is affected by the water matrix pH and back-
ground natural organic matter (Homem & Santos, 2011). Chlorine dioxide has been suggested as a preferred 
chlorine species (e.g., instead of hypochlorous acid) because of its selectivity, making it unlikely to form triha-
lomethanes as DBPs (Homem & Santos, 2011). The complexity of oxidation processes, TP formation, and vary-
ing toxicity levels of those byproducts leave several areas open for future investigation.

Rizzo et al. (2019) reviewed the use of ozonation, typically a process used in drinking water treatment, for its 
application in wastewater treatment. When considering ozonation, the background water matrix would need to 
be taken into accounted. Organic matter, expressed as dissolved organic carbon and nitrite, are also reactive with 
ozone, competing with CECs. Chemical oxidation processes, such as ozonation, form TPs through the oxidation 
of CECs themselves and oxidation byproducts through the oxidation of the background water matrix. Rizzo 
et al.  (2019) draw attention to a treatability test presented by Wildhaber et al.  (2015), aimed to assess waste-
waters as candidates for ozonation treatment, which indicates using NDMA and bromate as byproduct indica-
tors and a series of bioassays to evaluate biological activity. Generally, water treatment by ozone oxidation will 
depend on the second-order oxidation reaction kinetics and liquid-gas transfer equilibrium, which are pertinent 
to process/reactor design (Vallejo-Rodríguez et al., 2014). For some CECs (i.e., steroids), kinetic rate constants 
were highly dependent on the system pH and the dosing concentration of ozone (Vallejo-Rodríguez et al., 2014). 
Vallejo-Rodríguez et al. (2014) conducted ozonation experiments of four CECs to determine kinetic constants 
based on stoichiometric coefficients. The authors cite stoichiometric coefficients as an important component of 
process design, particularly when scaling systems.

Treatment Enteric pathogen Ct99 mg-min/L a Temperature (°C) pH

Chlorine Bacteria 0.08 1–2 7

Viruses 12 0–5 7–7.5

Protozoa 230, Cryptosporidium not killed 0.5 7–7.5

Monochloramine Bacteria 94 1–2 7

Viruses 1,240 1 6–9

Protozoa 2,550, Cryptosporidium not killed 1 6–9

Chlorine dioxide Bacteria 0.13 1–2 7

Viruses 8.4 1 6–9

Protozoa 40 22 8

Ozone Bacteria 0.2 5 6–7

Viruses 0.9 1 Not specified

Protozoa 40 1 Not specified

UV irradiation Bacteria 7 mJ/cm 2, b Not specified Not specified

Viruses 59 mJ/cm 2 Not specified Not specified

Protozoa 10 mJ/cm 2 Not specified Not specified

Note. Adapted from WHO (2011).
 aCt99 is defined as the concentration of disinfectant and contact time required to inactivate 99% of enteric bacteria, virus, or protozoa, and is expressed in units of 
milligram-minutes per liter (mg-min/L).  bUltraviolet (UV) irradiation dose is for 99% inactivation and is expressed in units of millijoule per square centimeter (mJ/cm 2).

Table 7 
Concentration and Contact Time (Duration) for Different Disinfectants to Inactivate 99% of Enteric Bacteria, Virus, or Protozoa
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Advanced oxidation processes combine multiple oxidants to create hydroxyl radicals, resulting in rapid and 
complete oxidation of target compounds (Homem & Santos, 2011; Vallejo-Rodríguez et al., 2014). Advanced 
oxidation processes have been recently explored as treatment options for CECs, although they have not been 
implemented for full-scale application (Rizzo et al., 2019). Rizzo et al. (2019) provide a review of published stud-
ies for various advanced oxidation processes and their applications for removing CECs from wastewater effluent. 
Rivera-Utrilla et al. (2013) have also tabulated key findings of various studies of advanced oxidation treatment 
of CECs (specifically, pharmaceuticals) and include percent removal, summaries of experimental conditions, 
and notable observations from individual studies. A potential disadvantage of advanced oxidation processes that 
use UV photolysis to create hydroxyl radicals is the high cost associated with the high energy consumption for 
the process (M. B. Ahmed et al., 2017; Sichel et al., 2011). Advanced oxidation processes can also be limited to 
treating lower flow rates of wastewater (Homem & Santos, 2011).

In a study by Sichel et al. (2011), DBPs of UV/chlorine advanced oxidation processes (specifically trihalometh-
anes) were reduced by quenching with thiosulfate to remove excess chlorine. Sichel et al. (2011) also found that 
the UV/chlorine degradation of eight CECs was not hindered in modeled waters with higher dissolved organic 
carbon concentrations that were intended to simulate municipal WWTP waters.

4.4. Biological Processes

Activated sludge processes use aerobic biodegradation and are commonly used in wastewater treatment. Gogoi 
et al. (2018) compiled data for aerobic wastewater treatment processes, including activated sludge, membrane 
bioreactors, sequencing batch reactors, waste stabilization ponds, constructed wetlands, and for anaerobic acti-
vated sludge processes. Comparing reported percent removal data for selected CECs, aerobic processes seem to 
perform better than anaerobic processes, and activity of the sludge bacteria was temperature-dependent (Gogoi 
et al., 2018). WWTPs using microorganism-based treatments are often limited in their ability to remove CECs 
that cannot be biodegraded (e.g., many pharmaceuticals); they may even bioaccumulate and/or hinder biological 
activity (M. B. Ahmed et al., 2017; Homem & Santos, 2011; Rivera-Utrilla et al., 2013). Bioaccumulation in 
treatment microorganisms would need to be further addressed when considering disposal and/or repurposing 
of the biosolids to prevent reintroduction of CECs into environmental systems. Biological processes may also 
promote genetic exchange and increases in AMR, particularly under selective pressure from cocontaminants 
(antibiotics and metals) in the wastewater (Rizzo et al., 2013).

Membrane bioreactors provide a more advanced biodegradation wastewater treatment process by combining it 
with membrane filtration (Gu et al., 2018). Membrane bioreactors show promise for higher removal of CECs 
than traditional activated sludge systems, which may be attributed to the bioreactors' high sludge retention time; 
however, like other membrane processes, membrane bioreactors are subject to membrane fouling (Gu et al., 2018; 
K. Xiao et al., 2019). Gu et al. (2018) compiled data for the removal of pharmaceuticals from wastewater using 
membrane bioreactor processes; influences on process efficacy included hydraulic and sludge retention times, 
dissolved oxygen and pH of the water matrix, and physicochemical properties of the CECs themselves (e.g., 
molecular structure, hydrophobicity). K. Xiao et al. (2019) provide an overview of several existing membrane 
bioreactor systems and the breakdown of associated capital and operational costs and energy consumption. In 
general, membrane bioreactor processes have comparable costs to traditional activated sludge with tertiary treat-
ment. K. Xiao et al.  (2019) also highlight studies showing successful removal of microplastics by membrane 
bioreactor systems, proving vastly superior treatment compared to traditional wastewater treatment sedimenta-
tion. It is worth noting that this success can likely be attributed to the retention of microplastics by the membrane 
filter and that similar removal may be evident in traditional membrane processes. The key is the implementation 
of membranes into wastewater treatment, which could prevent the release of microplastics into natural environ-
mental systems.

4.5. Data Gaps in the Understanding of Treatment Processes

While compounds classified as CECs have been the subject of scientific inquiry for decades, there are still many 
gaps in knowledge regarding their fate and transport in water treatment processes. Studies are often limited to 
small data sets (e.g., Xie et al., 2012) and results are often difficult to compare because of experimental vari-
ations. Varying and/or limited water matrices, operating conditions, and other factors, make a comparison of 
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percent rejection data difficult and often inconsistent (S. Kim et al., 2018). For membrane-based treatments, the 
effect of natural organic matter fouling on membrane rejection will vary for different membranes and the differ-
ent compounds being targeted for removal (Bellona et al., 2010; Rout et al., 2021). The resulting adsorption and 
cake-enhanced concentration polarization effects would ideally be considered in future experimental design and 
analysis. Some studies (e.g., F. X. Kong et al., 2015) have started reporting membrane rejection using flux-based 
models, which provide more universal process parameters. An additional challenge of all bench-scale treatment 
technology research is appropriately scaling process parameters for full-scale treatment design (e.g., adsorption 
processes, membrane processes) (S. Kim et al., 2018; Rizzo et al., 2019; Rodriguez-Narvaez et al., 2017; Rout 
et al., 2021).

Risk assessments for aquatic life are still needed, as toxicity thresholds have only been determined for a few CECs 
and potential TPs (Gogoi et al., 2018; Rivera-Utrilla et al., 2013; Vidal-Dorsch et al., 2012). For example, little is 
known about the membrane bioreactor-generated TPs of pharmaceuticals and their potential for negative effects 
on environmental and human health (Gu et al., 2018). Additional challenges for membrane bioreactors include 
improving cost- and energy-effectiveness, improving control of membrane fouling, and optimizing operational 
parameters to maximize removal of target contaminants (K. Xiao et al., 2019). Chemical oxidation processes also 
introduce the risk of adverse effects from transformation byproducts.

As a collective, CECs cover a diverse range of physicochemical properties and are generally present as complex 
mixtures, which can greatly affect their fate and transport in environmental and treatment systems (Archer 
et al., 2017). The effects of competition, by other CECs and other water constituents (e.g., natural organic matter), 
need to be investigated further (M. B. Ahmed et al., 2015). CEC and water matrix diversity make evaluation 
and prediction of effective treatment technologies difficult (Rizzo et al., 2019). A single treatment technology 
cannot be used to remove all CECs, so combined processes would need to be implemented (M. B. Ahmed 
et al., 2015; Gogoi et al., 2018; S. Kim et al., 2018; Rivera-Utrilla et al., 2013; Rodriguez-Narvaez et al., 2017; 
Rout et al., 2021; Y. Yang et al., 2017). Strategic integration of advanced treatment processes (e.g., activated 
carbon adsorption) into current wastewater treatment trains can help improve the removal efficacy for CECs (M. 
B. Ahmed et al., 2015; Gu et al., 2018; S. Zhang et al., 2017).

5. Drinking Water Epidemiology
Epidemiology is an applied science that can provide insights into which exposures pose public health risks and 
thereby inform interventions to mitigate those risks (Galea, 2013; Susser, 1991). Observational epidemiology can 
complement experimental studies by looking at real-world situations faced by human populations, rather than 
idealized and simplified exposure scenarios, and can evaluate putatively toxic exposures in human populations 
when conducting experimental studies would be unethical (F. Ahmed et al., 2023; Vlaanderen et al., 2008). To 
assess whether specific contaminants pose health risks in observational epidemiology studies, it is necessary to 
describe exposures to contaminants in populations and to assess the correspondence between exposure levels 
and health outcomes in those populations. Contaminant exposure can occur through various media including 
drinking water, food, house dust, or air (Elert et  al.,  2011). Accurately apportioning the relative importance 
of different exposure pathways would be helped by detailed data collection on the multiple routes of exposure 
(Clayton et al., 2002; Georgopoulos et al., 2006, 2008; Sexton et al., 1995a, 1995b; K. W. Thomas et al., 1999), 
which can be challenging and impractical. All humans consume water, so chemical and microbial contaminants 
in water are often of interest. Various approaches exist to characterize exposure to drinking water contaminants 
in epidemiological studies, each with their advantages and disadvantages. These exposure assessments can be 
grouped broadly into studies using biomarkers, studies using environmental data, and hybrid approaches that 
leverage both kinds of data.

5.1. Biomarker Data

An “exposure biomarker” is a measurement taken from a biological matrix, such as urine, that reflects the amount 
of a chemical than enters the body (e.g., arsenic concentrations in urine) (Lam & Gray, 2003). A major strength  
of the biomarker-based approach to exposure assessment is that the measures are person-specific and integrate  
the multiple routes of exposure by which chemicals enter the body, thus allowing for clearer epidemiological 
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assessments of whether the chemical poses a health hazard than approaches only considering a single route 
of exposure (Navas-Acien & Guallar, 2008; Shin et al., 2011). This is useful for drinking water health effect 
studies because biomarkers measuring total intake of chemicals can reflect challenging-to-measure behavioral 
changes such as switching to bottled water when drinking water supplies are suspected to be contaminated (Zivin 
et  al., 2011). However, biomarker-based exposure measures can sometimes be affected by the biology of the 
disease process under study in addition to the underlying exposure of interest (Weisskopf and Webster, 2017), 
leading to potential bias in health effect estimates (Bulka et al., 2017; Dhingra et al., 2017).

5.2. Individual Environmental Exposure Data

Measurements taken directly from point of consumption of drinking water (i.e., at the tap) can avoid some of the 
potential biases of biology-inflected exposure metrics, and account for contaminant transformation and introduc-
tion due to residence time, filtering, chemical additions, and premise plumbing (Figure 8). However, tap water 
data collection is limited by the large number of observations required to account for sampling variability in 
contaminant levels (Brunkard et al., 2011; Casteloes et al., 2015) and by high frequencies of left-censored data 
(i.e., contaminants occurring below the detection limit) (Bradley et al., 2018). In addition, people consume tap 
water at multiple locations (e.g., home, work, and other settings) (Zender et al., 2001) and sources (e.g., municipal 
drinking water, bottled water). Thus, assessment of water contamination at a single tap may misrepresent the total 
exposures encountered by individuals. Collection of water samples from each of the tap water sources encoun-
tered by each participant in a health effects study may be logistically prohibitive.

5.3. Aggregated Environmental Exposure Data

An expedient option sometimes used for modeling exposure in epidemiologic research is to assign a shared expo-
sure measure for a study region, such as an “average” concentration of water contaminants in a source water or 
water supply, to all persons in that region (e.g., persons served by that water supply; Marie et al., 2018). Spatial 
assignment could possibly be used for multiple water supplies encountered by an individual, such as at work 
and at home (Avanasi et al., 2016a), to provide a more holistic picture of contaminant exposure. A common 
misperception is that health studies using an aggregated exposure metric are plagued by the potential for ecologic 
fallacy, wherein inaccurate conclusions may be drawn about individual-level health risks when analyzing aggre-
gated group-level outcomes (Robinson, 2009; Subramanian et al., 2009). However, ecological bias does not arise 
when individual health outcomes are still the focus of the analysis rather than aggregated health outcomes, even 
when an aggregated exposure measure is used (Künzli & Tager, 1997). When the spatially aggregated measure 
represents an unbiased average of the true exposures for persons in the area, then for some kinds of epidemiolog-
ical dose-response models, the measurement error of individuals' experienced drinking water contaminant expo-
sures (i.e., the deviation of individuals' true exposures from the average) will not introduce bias into the health 
effect estimates, but instead only inflate the standard errors of the health effect estimates (Berkson, 1950). This 
is distinct from dose-response models based on individual-level exposures, whose measurement errors introduce 
some bias into dose-response estimates. Two important caveats are that (a) the lack of bias in dose-response 
models is only guaranteed under specific dose-response modeling conditions (e.g., normally distributed variables 
with linear relationships, as might be modeled in a linear regression, and errors that are unrelated to each other 
and unrelated to the true values of the variables; D. C. Thomas, 2009), and (b) real-world data are seldom so ideal. 
In real-world studies, using estimated average exposures based on imperfect environmental monitoring data leads 
to more complex measurement errors that likely introduce some bias into epidemiological dose-response esti-
mates, because the aggregated exposure measures also include some error characteristics akin to individual-level 
exposure measures (Zeger et al., 2000). For example, CEC exposures assigned to epidemiological study partic-
ipants based on water system average concentrations may have measurement errors due to differences across 
persons in daily water consumption rates, drinking water type (e.g., water as it comes from the tap, after filtration 
by a point-of-use device, or use of bottled water) and filtering efficiency (Wright et al., 2006). It is possible, by 
making assumptions about the nature of the measurement errors, to conduct sensitivity analyses to predict the 
likely direction of bias in the epidemiological dose-response estimates (VanderWeele and Hernán, 2012; Wright 
and Bateson, 2005), and sometimes under stronger assumptions about the magnitude and structure of measure-
ment errors to account for at least some of the error in statistical analysis using “errors-in-variables” methods 
such as regression calibration (Bateson & Wright,  2010). However, higher quality exposure data (e.g., water 
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quality data more proximate to the end-user tap) would allow firmer epidemiological conclusions than studies 
relying on limited-quality exposure data and modeling assumptions.

5.4. Instrumental Variables Analysis of Environmental Data

Spatially aggregated data on tap water contaminants can be regarded as measuring a key driver of the exposures 
experienced by persons, as opposed to the actual exposures encountered by individuals, and therefore analyzed 
using instrumental variable methods (Arellano & Bover, 1995; Baiocchi et al., 2014; Hernán & Robins, 2006; 
Imbens & Angrist, 1994). Treating the drinking water contaminant data as an instrumental variable predicting 
chemical exposure, rather than as a direct measure of chemical exposure, avoids some of the potential effect of 
disease-related biology on the exposure metric (Currie et al., 2013). However, to provide valid estimates, this 
approach requires that the drinking water supply contaminants only influence health through the actual encoun-
tered water contaminant exposures resulting from that water supply. This is often reasonable, but in contexts 
such as Flint, Michigan, where well-publicized contamination may have psychological implications distinct from 
the chemical exposures (Cuthbertson et al., 2016; Fortenberry et al., 2018), it is likely that mechanisms other 
than drinking water contaminant toxicity may connect the instrument of exposure (e.g., contaminant measures 
reported in the regional water supplies) to the health outcomes. For example, some effects might be driven by 
concerns about perceived water quality (Kruger et al., 2017). In contrast, a biomarker-based or household water 

Figure 8. Natural and human-influences factors that control exposure to contaminant mixtures at the tap and monitoring considerations. Locations of sample 
collections within the drinking water distribution system (watersheds and aquifers, public and private supplies, the distribution system and point of exposure) and the 
targeted analytes/parameters are listed. Light blue arrows list current compliance and research monitoring by governments, utilities, academia, and homeowners.
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chemistry-based health effects study may be able to distinguish chemical toxicity from negative perceptions by 
modeling these jointly as predictors in a multivariable model.

5.5. Integrative Modeling of Biomarker and Environmental Data

It is possible to integrate biomarker measures and environmental measures, such as via explicit modeling of 
contaminant intake and flow of contaminants within the body (Bois et  al.,  1996; Johnson et  al.,  2005; Shin 
et al., 2011). These hybrid approaches leveraging multiple data streams can potentially increase precision in the 
estimated exposure experienced by a person at the time of toxicity in the organ of toxicity, but may be limited by 
uncertainties in the actual chemical intakes and in the parameters of the model used to describe how contaminants 
behave within the body (Avanasi et al., 2016b).

5.6. Opportunities for Collaborative Knowledge Generation

Federally funded monitoring and modeling programs can help contribute toward national-scale data sets of 
modeled and empirical chemical exposures that can be leveraged for future epidemiological studies and risk 
assessments. Figure 8 shows the types of research and investigators at each of the steps drinking water trav-
els through from source to tap. U.S. Geological Survey (USGS) and USEPA scientists have begun nationally 
consistent characterization of the quality of United States streams and aquifers (Bexfield et al., 2019; Bradley 
et al., 2017; USEPA, 2020), drinking water sources (Glassmeyer et al., 2017), and tap water data sets (Bradley 
et al., 2017, 2020, 2021a, 2021b) collected using standardized protocols that can further contribute to epidemi-
ological knowledge.

6. Natural and Human-Caused Events That Affect Water Quantity Can Also Degrade 
Water Quality: What Does the Future Hold for CEC Exposure?
It is unlikely that the current status quo for water resources will remain the same on a global or local scale in the 
decades ahead. Factors such as population growth and distribution and frequency of severe weather events (i.e., 
floods, droughts) likely will affect both the quantity and quality of available potable water. Somewhat paradox-
ically, these quantity and quality concerns may occur both in locations that experience an insufficient amount  
of water as well as those locations with an excess (Figure 1). Access to water has always been one of the main 
drivers of civilization (Cassardo & Jones, 2011). It is not a coincidence that many of the earliest communities 
were settled in locations along rivers as a means of transportation as well as sources of drinking water. As civili-
zations evolved and populations increased, however, so did our need for access to larger quantities of water that 
were potable. Consequently, access to water supplies is limited by the quality of the supply. As we have demon-
strated above, our definition of the “quality” of a water supply has evolved with policy as well as our ability to 
detect ever lower levels of contaminants that might be present. Contaminant science therefore would need to be 
used carefully as these definitions alone could shrink access to water supplies. How that limitation is protective 
of public health while being economically and logistically feasible remains to be seen.

Regardless of definitions, other anthropogenic and natural events such as groundwater mining, droughts, 
and floods can have secondary effects on the quality of water as contaminants are mobilized, concentrated, 
or introduced into our watersheds and aquifers. For example, unsustainable water consumption (Duran-Llacer 
et al., 2020; Knappett et al., 2020; Rad et al., 2020; Salmoral et al., 2020; Yu et al., 2020) and droughts affect not 
only the quantity of water (Rodell et al., 2018), but also the quality, as nutrients and other contaminants become 
concentrated, thus increasing the potential for algal blooms (Khan et al., 2015; Whitehead et al., 2009), which 
in turn can deplete oxygen levels in water bodies, release algal toxins, and have other cascading effects on water 
chemistry. Such over-extraction of water creates “subsidence,” causing the aquifers to compress like a gigantic 
empty water bottle. Once such subsidence occurs, the aquifer's ability to store water is permanently reduced. Even 
with mitigation practices to try to reverse the effects, the aquifers cannot be “re-inflated” due to the compaction/
compression of the aquifer materials. The tandem increase in the global population and increase in frequency and 
intensity of droughts is translating to aquifer subsidence becoming a global concern. Within the next 20 years, an 
estimated 1.6 billion people could be affected by aquifer subsidence causing economic losses in the trillions of 
dollars (Herrera-García et al., 2021). In contrast to subsidence, an additional climate change issue for areas along 
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shorelines is rising groundwater levels. Such a rise in groundwater causes problems such as road deterioration, 
sewage backups, earthquake liquefaction zones, and remobilization of legacy toxic contaminants. These and 
other  secondary effects can degrade water quality and thereby limit water supplies. This highlights the corner-
stone role water contaminant science plays in helping manage and maintain access to drinking water supplies. 
Water scarcity has implications not only for the consumption of water for domestic purposes, but also for indus-
trial and agricultural uses. Current global estimates find 70% of water used is for agricultural purposes, 19% is 
for industrial, and 11% is for domestic uses, including both consumption and hygiene (FAO, 2011). In agricul-
ture, water not only is required to produce the crops, but also to protect the health of the soil (Cano et al., 2018). 
Poor soil health leads to erosion, which decreases the potential for crop productivity (Pimentel et al., 2010). It is 
important to note that the increased globalization in the sale of agricultural goods can result in the end user of 
the product being on the opposite side of the globe from the location the crop was produced (Konar et al., 2016). 
Thus, even locations with sufficient water supply for domestic, industrial, and local agricultural purposes may be 
severely affected by droughts in areas from which agricultural goods are produced, especially when the quality 
of that water is a factor.

Climate-driven temperature and rainfall changes can affect water quality even after treatment. The drinking water 
and wastewater distribution systems in most communities are installed underground. Depending on the composi-
tion and age of the pipes, these materials may fail more frequently in either hotter or colder than average tempera-
tures (Laucelli et al., 2013; Wols & van Thienen, 2014), as well as to a lesser degree in drought conditions (Wols 
& van Thienen, 2014) due to contracting and shifting soils. When the wastewater lines are breached, untreated 
sewage can leak into the subsurface (Baah et al., 2015) and surface waters (Fork et al., 2021). When drinking 
water lines rupture, pathogens and chemicals can enter and surreptitiously contaminate the previously treated 
water (Gibson et al., 2019; LeChevallier et al., 2003).

Droughts can cause additional effects to water quantity and quality through wildfires (Hallema et  al.,  2018). 
Wildfires frequency and magnitude have been increasing in recent years (A. P. Williams et al., 2019). Forests can 
capture atmospheric contaminants (Simonich & Hites, 1995). Upon burning, these contaminants, as well as large 
stores of organic carbon, are released (Khan et al., 2015). Fighting these fires requires the use of flame retardants, 
which can further contaminate soil and water (Kalabokidis, 2000). The post-fire lack of vegetation can increase 
runoff and erosion (Robinne et  al.,  2018), decrease surface water quality, limit groundwater infiltration, and 
degrade water quantity (Hallema et al., 2018). Deforestation not due to wildfires has a similar negative effect on 
water quality and quantity (Emelko et al., 2011).

When water quality/quantity decreases, a community either needs to use less water or find additional, potentially 
non-optimal, sources of water. Both strategies have deleterious outcomes. For water restrictions, the risks can be 
both economic (Borgomeo et al., 2018) and health based. Decreased water usage increases the residence time of 
treated water in the distribution system. This increased time can lead to decreased chlorine residuals, potentially 
increasing the risk of pathogens (Khan et al., 2015). Recently, the COVID-19 pandemic and resulting shutdown 
of offices, businesses, and other places where multiple people normally assemble each day has caused drinking 
water supplies to remain stagnant in premise plumbing for weeks or months. As buildings reopen and as people 
return, these locations are being advised to flush their pipes (Proctor et al., 2020). This unanticipated event is 
causing precautionary measures to remove microbes or other contaminants that may now be present due to the 
increased residence time of water in such systems.

The alternative to restrictions is finding additional sources of water. Direct potable reuse uses highly treated 
wastewater as the source of drinking water (Lahnsteiner et al., 2017). Nevertheless, both chemical and microbial 
CECs in the reused wastewater have the potential to be in the finished drinking water (Khan et al., 2015). Most 
drinking water for direct potable reuse is produced by reverse osmosis as a means of limiting the contaminants 
present (see Section 4.2; Lahnsteiner et al., 2017). Reverse osmosis, however, creates a brine that is concen-
trated with contaminants that were removed from the corresponding source water. The disposal of this contami-
nated brine may then become a potential problem, especially for inland areas. In addition, the public perception 
of direct potable reuse, specifically the wastewater-derived water source, can limit implementation. Even with 
conventional water sources in the United States, there is a general distrust in drinking water quality among a 
small percentage of the population (Javidi & Pierce, 2018; Pierce & Gonzalez, 2016). Public perception of direct 
potable reuse is even less favorable (van Rensburg, 2016).
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Desalination is another viable option available in coastal regions to provide additional potable water. Desalination 
has two substantial impediments that prevent widespread implementation: energy usage and brine production. 
Solar, wind, and geothermal sources can be used to either directly desalinate water or as the energy source for 
more conventionally designed plants (Manju & Sagar, 2017). As previously mentioned (Section 1.3.7), nano-
materials may also help improve desalination techniques (Teow & Mohammad,  2019). The brines generated 
during desalination (as well as those produced during direct potable reuse) can be disposed of in several ways, 
each have limiting costs or environmental disadvantages. Common disposal methods are discharge to surface 
water, land application, discharge to wastewater treatment plants, deep well injection, and evaporation ponds 
(Younos, 2005). Land application of brines can contaminate groundwater, further exacerbating water quantity 
difficulties (Mohamed et al., 2005).

When challenged by too much water, rather than too little, different problems can arise, both in the production 
of safe drinking water and the treatment of wastewater. Flooding, both inland due to excessive rainfall and/or 
snowmelt and on the coast during storm surges, can greatly affect both surface and subsurface water quality. 
Concentrations of both chemicals and microorganisms have been found to be higher in locations after floods 
(Arnade, 1999; Yard et al., 2014). Groundwater wells that are inundated during floods are equally susceptible 
to contamination as surface waters (Andrade et al., 2018), particularly those wells under the direct influence 
of surface water. While municipal drinking water treatment plants regularly monitor and implement additional 
treatment to reduce these flood-borne contaminants, private well owners have sole responsibility for disinfecting 
their systems (Stone, 2005). Storm events may not only result in flooding but also power outages. Municipal 
water production may be taken offline if the outages are long lived. Coastal locations have additional threats to 
groundwater wells due to saltwater intrusion from storms or rising sea levels. Desalination, with the associated 
brine and energy drawbacks, may be required to treat water that previously did not require treatment.

Wastewater treatment plants can also be affected by increased water levels. An estimated 60 existing WWTPs in 
the United States would be flooded during a 1-foot storm surges event (Hummel et al., 2018); many more inland 
cities may be affected by 100- or 500-year storm events (Kessler, 2011). As populations continue to grow, the 
number of people in coastal flooding zones is expected to double (Hauer et al., 2016). Combined sewer overflows 
may become a greater concern for WWTPs in the future due to spring snowmelt or summer storms because of 
their potential to release untreated sewage (Jalliffier-Verne et al., 2015). Updates and or upgrades to infrastructure 
to reduce these overflows is another economic cost to treatment.

Wastewater and drinking water treatment plant operators and local governments both may have challenges in 
the future due to too much or too little water, as shown in Figure 9 (Raseman et al., 2017). Balancing available 
(and variable) water volumes, infrastructure and energy costs, and potential health risks goes beyond the treat-
ment plants themselves and often affects other local industries, such as agriculture and tourism (C. M. Brown 
et al., 2015; Jiricka-Pürrer & Wachter, 2019). Management priorities to accommodate such issues could include 
both increasing supplies and decreasing demands (Garnier & Holman, 2019).

Communication with stakeholders to determine the most effective science needed to develop strategies to solve 
these water surplus and deficit issues is vital (Harris-Lovett et al., 2018). For example, communities can perform 
hypothetical scenario exercises to explore potential regional issues (Deere et al., 2017), which in turn can lead to 
defining the underlying science gaps. When experts from a variety of fields are consulted, risks that are obvious 
and those that are less conspicuous can be planned for (Boholm & Prutzer, 2017). It should be noted that terres-
trial and aquatic habitat threats can be simultaneously factored into such drinking water studies (Vörösmarty 
et al., 2010). Failure to adequately address the science can have both public health and political implications 
(Kreamer, 2012). Such issues can start as localized issues, such as the dispute between Tennessee and Georgia 
over the Tennessee River (Jett, 2019). Without the science to inform best management practices regarding the 
quantity/quality of water needed for consumption and food production, these conflicts may continue to escalate.

7. Concluding Thoughts
Humans realized long ago that the water can affect health. As civilizations progressed, scientists and engineers 
showed how drinking water could be treated to protect the public from acute diseases by chemical disinfection. 
Then science shined a light on the potential linkages between chronic diseases and contaminants in drinking 
water. In turn that led to an expanded scope of contaminants that could be deleterious to public health, requir-
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ing an expansion in treatment technologies utilized and compliance monitoring. It was also demonstrated that 
contaminants can enter our watersheds and aquifers and how natural and human-caused events can degrade the 
quality of drinking water resources. Thus, protecting drinking water at the source or “source-water protection” 
became an integral part of water utility planning and management. Each of these milestones in water management 
began with increases in fundamental understandings. This knowledge helped focus cost effective water resource 
management on protecting public health.

Although we will soon be entering the fourth decade of research using the label CEC, it is important to remember 
that the use of the word “emerging” is a moving target. Concerns will continue to “emerge” when it comes to 
contaminants and there is no finite set of CECs today, tomorrow, or yesterday. And “concerns” will be subjective 
unless backed by scientific evidence that accurately depicts a hazard or a risk. Further, concerns would need to 
be contextualized in terms of whether they are institutional, policy-driven, regulatory, personal, or scientific. The 
science and tools used to put the term “CECs” in useful context warrants flexibility, innovations, integration of 
scientific and engineering disciplines, and the ability to prioritize scarce research dollars.

Improvements in instrumentation and analytical techniques have made it possible to detect the presence and 
persistence of these chemicals and microorganisms at low environmental concentrations. However, conventional 
analyte-by-analyte detection approaches are being augmented by non-targeted analyses and other screening meth-
ods. Thus, bioassays provide additional context and relevance to monitoring the broader range of chemical and 
biologically active components and mixtures found in our drinking water. Wastewater and drinking water treat-
ment also continue to improve and although conventional treatment and advanced technologies can remove or 
inactivate most chemicals and pathogens, it remains elusive and challenging to do so for many reasons, including 
cost. Improvements in toxicology and epidemiology have helped us understand a range of health effects that 
can be caused by drinking water exposures to individual contaminants. It remains to be seen if high-throughput 
screening, tissues-on-a-chip, and other technologies currently being used and developed by the pharmaceutical 
and other industries can be adapted for drinking water uses. With increases in databases related to public health, 
there is an opportunity to contribute to multi-institutional data sources focused on drinking water exposures. 
Once established, these data sources could one day lead to models, pattern recognition, and other advanced soft-
ware and artificial intelligence applications that could be used to find linkages, if they exist, between drinking 
water exposures and adverse health outcomes.

“Water, water everywhere but every drop unique” is poetic but can be interpreted literally as well. As used here, 
the phrase acknowledges each drop's unique characteristics that can lead to it being a potential source of contam-
inant exposure. Science will be relied on to unpack those unique characteristics in meaningful ways. Short-term 
successes can come through conventional and piecewise scientific channels. Longer-term, aspirational success 

Figure 9. Predicted future key events and responses stemming from water surpluses or deficits.



GeoHealth

GLASSMEYER ET AL.

10.1029/2022GH000716

53 of 76

at reducing CEC exposure would depend on much. Natural sciences and engineering, that is, both investigative 
and the applied sciences, would need to be fully integrated. New and emerging transdisciplinary research would 
need to address gaps in our scientific knowledge. Emerging technologies would need to tackle advanced water 
monitoring and biomonitoring. And forward-thinking policies would need to be developed to protect source water 
and to enhance treatment infrastructure. With the right scientific evidence to determine if a contaminant is “of 
concern” or not, the future of watershed and aquifer management, how water is recycled, treated, and conveyed, 
as well as how it is handled at the point of use may bear little resemblance to today's practices.

Acronyms
AFFF aqueous film-forming foam
AMR antimicrobial resistance
AO adverse outcome
AR androgen receptor
ARB antimicrobial resistance bacteria
ARG antimicrobial resistance genes
BioEqs biological equivalents
CCL contaminant candidate list
CECs contaminants of emerging concern
DBP disinfection byproduct
EBTs effect-based trigger values
EC emerging contaminant
EC50 half maximal effective concentration
EDA effect-directed analysis
EDCs endocrine-disrupting chemicals
GC gas chromatography
GC/ToF-MS gas chromatography time-of-flight mass spectrometer
HABs harmful algal blooms
HRMS high-resolution mass spectrometer
Kaw log air/water partition coefficient
Koa log octanol/air partition coefficient
Kow log octanol/water partition coefficient
L liter
LC liquid chromatography
MCL maximum contaminant level
MCLG maximum contaminant level goal
MFM multimedia fate model
MIE molecular initiating event
MONA MassBank of North America
MS mass spectrometer
NDMA n-nitrosodimethylamine
NGS next-generation sequencing
NTA nontarget analysis
NTS nontarget screening
OECD Organization for Economic Co-operation and Development
OECD Organization for Economic Co-operation and Development
OWC organic wastewater contaminant
PA polyamide
PAH polycyclic aromatic hydrocarbon
PCB polychlorinated biphenyl
PCR polymerase chain reaction
PE polyethylene
PEC predicted environmental concentration
PET polyethylene terephthalate
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PFAS per- and polyfluoroalkyl substances
PFBS perfluorobutane sulfonate
PFOA perfluorooctanoic acid
PFOS perfluoroctane sulfonate
POCIS polar organic chemical integrative sampler
PP polypropylene
PS polystyrene
PUR polyurethane
PVC polyvinyl chloride
qPCR quantitative polymerase chain reaction
QMRA quantitative microbial risk assessment
QSAR quantitative structure-activity relationships
QToF-MS quadrupole-time of flight mass spectrometer
RT-qPCR Reverse-transcription qPCR
SDWA Safe Drinking Water Act
SOP standard operation procedure
TCEP tris (2-chloroethyl) phosphate
TCPP tris (1-chloro-2-propyl) phosphate
TPs transformation products
TrOCs trace organic chemicals
UCMR unregulated contaminant monitoring rule
USEPA U.S. Environmental Protection Agency
USGS U.S. Geological Survey
UV ultraviolet
WHO World Health Organization
WWTP wastewater treatment plant
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