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Abstract
Black	 and	 Hispanic	 cancer	 patients	 have	 a	 higher	 incidence	 of	 cancer	 mortal-
ity.	Many	factors	(e.g.,	socioeconomic	differences,	 insufficient	access	to	health-
care)	 contribute	 to	 racial	 disparity.	 Emerging	 research	 implicates	 biological	
disparity	 in	 cancer	 outcomes.	 Studies	 show	 distinct	 differences	 in	 the	 tumor	
immune	microenvironment	(TIME)	in	Black	cancer	patients.	Studies	also	have	
linked	altered	mitochondrial	metabolism	to	changes	 in	 immune	cell	activation	
in	 TIME.	 Recent	 publications	 revealed	 a	 novel	 immunomodulatory	 role	 for	
triphenylphosphonium-	based	 mitochondrial-	targeted	 drugs	 (MTDs).	 These	 are	
synthetically	modified,	naturally	occurring	molecules	(e.g.,	honokiol,	magnolol,	
metformin)	or	FDA-	approved	small	molecule	drugs	(e.g.,	atovaquone,	hydroxyu-
rea).	Modifications	involve	conjugating	the	parent	molecule	via	an	alkyl	 linker	
chain	to	a	triphenylphosphonium	moiety.	These	modified	molecules	(e.g.,	Mito-	
honokiol,	Mito-	magnolol,	Mito-	metformin,	Mito-	atovaquone,	Mito-	hydroxyurea)	
accumulate	in	tumor	cell	mitochondria	more	effectively	than	in	normal	cells	and	
inhibit	mitochondrial	respiration,	induce	reactive	oxygen	species,	activate	AMPK	
and	 redox	 transcription	 factors,	 and	 inhibit	 cancer	 cell	 proliferation.	 Besides	
these	 intrinsic	 effects	 of	 MTDs	 in	 redox	 signaling	 and	 proliferation	 in	 tumors,	
MTDs	induced	extrinsic	effects	in	the	TIME	of	mouse	xenografts.	MTD	treatment	
inhibited	 tumor-	suppressive	 immune	 cells,	 myeloid-	derived	 suppressor	 cells,	
and	regulatory	T	cells,	and	activated	T	cells	and	antitumor	immune	effects.	One	
key	biological	disparity	in	Black	cancer	patients	was	related	to	altered	mitochon-
drial	 oxidative	 metabolism;	 MTDs	 targeting	 vulnerabilities	 in	 tumor	 cells	 and	
the	TIME	may	help	us	understand	this	biological	disparity.	Clinical	trials	should	
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1 	 | 	 INTRODUCTION

Most	cancer	patients	do	not	respond	positively	to	immu-
notherapy.	Strategic	development	of	additional	combina-
torial	drug	regimens	 is	necessary.	Tumor	cells	evade	 the	
immune	 system	 through	 upregulation	 of	 programmed	
death	 receptor	 ligand	 1	 (PD-	L1)	 expression	 that	 binds	
to	 programmed	 cell	 death	 protein	 1	 (PD-	1)	 in	 T	 cells,	
resulting	 in	 immunosuppression.	 One	 way	 to	 prevent	
cancer	cells	 from	immune	evasion	 is	 to	decrease	 the	ex-
pression	 of	 PD-	L1	 or	 hinder	 the	 binding	 of	 PD-	L1	 to	
PD-	1.1,2 Therefore,	a	major	challenge	is	to	target-	specific	
metabolic	pathways	in	cancer	cells	without	adversely	im-
pairing	immune	cells	while	enhancing	antitumor	immu-
nity.	Tumor	cell	metabolism	is	primarily	governed	by	the	
Warburg	 effect	 or	 aerobic	 glycolysis.	 However,	 glucose	
metabolism	is	essential	not	only	for	cancer	cells	but	also	
for	T	cells	and	macrophages.	Thus,	targeting	cancer	cells	
alone	using	2-	deoxy-	d-	glucose	and	other	glycolytic	inhib-
itors	 will	 also	 adversely	 affect	 immune	 cells.	 Targeting	
oxidative	 phosphorylation	 (OXPHOS),	 in	 particular,	
mitochondrial	 complex	 I	 of	 the	 mitochondrial	 electron	
transport	chain,	is	emerging	as	a	potent	and	selective	an-
tiproliferative	strategy	in	tumor	cells.3–	12	Hypoxic	tumors	
with	 a	 reduced	 capacity	 for	 compensatory	 glycolysis	 are	
more	susceptible	to	OXPHOS	inhibitors.12 Modulators	of	
glutamine	metabolism	in	the	Krebs	cycle	are	being	devel-
oped	in	cancer	therapy.13

Mitochondrial	OXPHOS	inhibitors	also	target	cancer-	
associated	immune	cells	in	the	tumor	immune	microen-
vironment	(TIME)10	and	play	an	important	role	in	cancer	
immune	 evasion.14	 Inhibition	 of	 the	 OXPHOS	 function	
in	 cancer	 cells	 and	 the	 concomitant	 decrease	 in	 tumor	
hypoxia-	induced	remodeling	of	the	TIME	and	the	antitu-
mor	response.8	Recent	reports	suggest	that	triphenylphos-
phonium	(TPP+)-	containing	mitochondrial	drugs	 inhibit	
tumor-	suppressive	 cells,	 such	 as	 the	 myeloid-	derived	
suppressor	cells	(MDSCs)	and	regulatory	T	cells	(Tregs),	in	
the	TIME.15,16 MDSCs	suppress	T	cells	that	destroy	tumor	
cells.17 Targeting	MDSCs	and	Tregs	 is	emerging	as	an	an-
titumor	 therapeutic	 strategy.18	 Current	 chemotherapeu-
tics	(e.g.,	gemcitabine	and	5-	fluorouracil)	used	to	inhibit	
MDSCs	 cause	 bone	 marrow	 suppression;	 therefore,	 less	
toxic	 and	 more	 targeted	 agents	 are	 needed	 to	 suppress	
MDSCs	and/or	suppressive	neutrophils	and	enhance	the	

cytotoxic	antitumor	function	of	T	cells.19–	21	Investigating	
the	immunomodulatory	effects	of	mitochondria-	targeted	
drugs	(MTDs),	especially	TPP+-	based	drugs,	is	an	area	of	
intense	research.16,22	Emerging	research	indicates	that	the	
TIME	in	Black	cancer	patients	consists	of	more	protum-
origenic	 and	 immunosuppressive	 factors	 than	 in	 white	
cancer	patients.23,24	Developing	potent	yet	nontoxic	MTDs	
may	help	overcome	this	biological	disparity.

2 	 | 	 MTDs CONJUGATED TO TPP +, 
OXPHOS INHIBITION, AND REDOX 
SIGNALING

The	 most	 studied	 and	 widely	 used	 mitochondria-	
targeting	 vector	 is	 TPP+.3,25–	28  TPP+	 possesses	 a	 single	
positive	 charge	 that	 is	 delocalized	 over	 three	 phenyl	
groups,	stabilizing	resonance.	In	addition	to	the	charge,	
the	 hydrophobicity	 of	 the	 lipophilic	 cation	 favors	 the	
interaction	 with	 the	 hydrophobic	 inner	 mitochondrial	
membrane.	Driven	by	the	membrane	potential,	the	con-
centration	 of	 the	 TPP+	 in	 the	 cytoplasm	 increases	 by	
about	5–	10-	fold,	compared	with	that	of	the	extracellular	
space.	The	resulting	accumulation	of	TPP+	 in	the	cyto-
plasm	 is	 about	 100–	500	 times	 that	 in	 the	 extracellular	
space	(Figure 1).	This	provides	a	highly	targeted	and	ef-
fective	 mitochondrial	 vector.	 The	 advantages	 of	 TPP+-	
based	targeting	molecules	are	the	stability	of	TPP+	in	the	
biological	 system,	 the	 low	 chemical	 reactivity	 toward	
cellular	components,	the	combination	of	lipophilic	and	
hydrophilic	moieties,	and	the	ease	of	synthesizing	large	
quantities	of	molecules	for	in	vivo	work.28

TPP+-	based	MTDs	conjugated	to	natural	products	or	
FDA-	approved	 drugs	 are	 potent,	 tumor-	selective,	 and	
relatively	nontoxic	(with	minimal	off-	target	pharmacol-
ogy)	 in	 cells	 and	 preclinical	 tumor	 xenografts.3–	10,15,16	
Several	 natural	 products	 (e.g.,	 honokiol,	 magnolol,	
metformin)	 and	 FDA-	approved	 drugs	 (e.g.,	 atova-
quone,	 hydroxyurea)	 conjugated	 to	 the	 TPP+	 moiety	
(e.g.,	 Mito-	honokiol,	 Mito-	magnolol,	 Mito-	metformin,	
Mito-	atovaquone,	Mito-	hydroxyurea)	(Figure 1)	exhibit	
significantly	 more	 antiproliferative	 potency	 than	 other	
non-	TPP+	 mitochondrial	 inhibitors	 (e.g.,	 metformin,	
phenformin,	 atovaquone,	 IACS-	010759)	 in	 different	
cancer	cells.

include	an	appropriate	number	of	Black	and	Hispanic	cancer	patients	and	should	
validate	the	intratumoral,	antihypoxic	effects	of	MTDs	with	imaging.

K E Y W O R D S
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3 	 | 	 MITO - HONOKIOL INHIBITS 
LUNG CANCER METASTASIS TO 
THE BRAIN

Previously,	 using	 low-	temperature	 electron	 paramag-
netic	resonance,	we	determined	the	mitochondrial	redox	
changes	 in	 pancreatic	 cancer	 cells	 treated	 with	 TPP+-	
containing	mitochondria-	targeted	agents.29	Based	on	the	
electron	paramagnetic	resonance	spectral	changes	of	mi-
tochondrial	complex	I	iron-	sulfur	(FeS)	clusters,	[2Fe2S]+	
and	[4Fe-	4S]+,	we	surmised	that	TPP+-	containing	MTDs	
(mitochondrial	 complex	 I	 inhibitors)	 bind	 closer	 to	 the	
NADH-	dehydrogenase	site	in	the	mitochondrial	complex	
I	 dictated	 by	 the	 NAD+/NADH	 couple.30  Mito-	honokiol	
is	 synthesized	 by	 conjugating	 TPP+	 through	 an	 alkyl	
side	 chain	 to	 honokiol,	 a	 component	 of	 magnolia	 tree	
bark	 extract	 and	 a	 widely	 used	 nutritional	 supplement.	

Mito-	honokiol	inhibits	mitochondrial	complex	I-	induced	
oxygen	 consumption,	 induces	 superoxide	 and	 hydro-
gen	 peroxide	 formation	 and	 activation	 of	 AMPK,	 in-
hibits	 signal	 transducer	 and	 activator	 of	 transcription	 3	
(STAT3)	 phosphorylation,	 and	 inhibits	 proliferation	 of	
cancer	 cells.9	 Further,	 Mito-	honokiol	 inhibits	 lung	 can-
cer	 progression	 and	 prevents	 metastasis	 of	 lung	 cancer	
cells	 to	 lymph	 nodes	 and	 to	 the	 brain.9	 From	 a	 mecha-
nistic	 standpoint,	 the	 antitumor	 and	 antimetastatic	 ef-
fects	were	shown	to	be	mediated	by	the	STAT3	pathway.	
Knockdown	 of	 STAT3	 abrogated	 both	 the	 antiprolifera-
tive	 and	 antimetastatic	 effects	 of	 Mito-	honokiol.9  Mito-	
honokiol	 inhibits	STAT3	phosphorylation	irrespective	of	
the	epidermal	growth	 factor	 receptor	mutation	status	 in	
lung	cancer	cells.9	Reports	indicate	that	a	decrease	in	the	
core	 body	 temperature	 and	 death	 result	 from	 the	 exces-
sive	inhibition	of	OXPHOS.12 Mito-	honokiol	did	not	elicit	

F I G U R E  1  A	hypothetical	picture	showing	how	MTDs	could	potentially	change	the	immunosuppressive	microenvironment	to	an	
antitumor	microenvironment	and	cause	a	decrease	in	breast	tumor	metastasis.	M2,	tumor	promoting;	MDSCs,	myeloid-	derived	suppressor	
cells;	MTDs,	mitochondria-	targeted	drugs;	Treg,	regulatory	T	cells.	A	portion	of	this	figure	was	Reprinted	from	iScience,	24,	Cheng	G,	Hardy	
M,	Topchyan	P,	Zander	R,	Volberding	P,	Cui	W,	Kalyanaraman	B.,	Mitochondria-	targeted	hydroxyurea	inhibits	OXPHOS	and	induces	
antiproliferative	and	immunomodulatory	effects,	Pages	No.	102673,	©2021,	with	permission	from	Elsevier;	a	portion	of	this	figure	was	
reprinted	with	permission	from	Zielonka	et	al.28	©2017	American	Chemical	Society;	and	a	portion	of	the	figure	is	licensed	under	CC	BY,	
copyright	©2020 Kim	G,	Pastoriza	JM,	Condeelis	JS,	Sparano	JA,	Filippou	PS,	Karagiannis	GS,	Oktay	MH.	The	contribution	of	race	to	breast	
tumor	microenvironment	composition	and	disease	progression.	Front	Oncol.	2020 Jun	30;10:1022.	10.3389/fonc.2020.01022

https://doi.org/10.3389/fonc.2020.01022
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these	effects.9	Currently,	treatment	of	lung	cancer	metas-
tasis	 does	 not	 start	 until	 after	 diagnosis	 of	 brain	 cancer.	
Mito-	honokiol	 treatment	 inhibits	 metastasis	 of	 primary	
cancer	 to	 brain.	 Emerging	 research	 is	 focused	 on	 meta-
bolic	reprogramming	of	metastatic	lung	cancer	cells	and	
their	vulnerability	to	MTDs.7–	10,31

4 	 | 	 ANTIPROLIFERATIVE 
EFFECTS OF MITO - MAGNOLOL  
IN DRUG- RESISTANT MELANOMA 
CELLS

Drug	resistance	to	kinase	inhibitors	is	attributed	to	meta-
bolic	 reprogramming	 from	 glycolysis	 to	 mitochondrial	
oxidative	 metabolism.	 Bioenergetic	 mapping	 results	
showed	 that	 tumor	 cells	 with	 enhanced	 mitochondrial	
OXPHOS	were	more	sensitive	 to	TPP+-	based	MTDs	and	
other	OXPHOS	inhibitors.32 There	are	currently	no	effec-
tive	 drugs	 for	 treating	 melanoma,	 an	 aggressive	 form	 of	
skin	cancer.	B-	Raf	serine/threonine	kinase,	or	BRAF,	in-
hibitor	antiglycolytic	drugs	 induce	a	rapid	onset	of	drug	
resistance.	 BRAF	 inhibitors	 cause	 metabolic	 reprogram-
ming	from	a	glycolytic	phenotype	to	an	OXPHOS	pheno-
type	that	is	attributed	to	resistance	against	antiglycolytic	
kinase	inhibiting	drugs	(e.g.,	vemurafenib).	The	increased	
dependence	on	OXPHOS	for	energy	makes	OXPHOS	a	vul-
nerable	target	in	drug-	resistant	melanoma	cells.	Increased	
mitochondrial	 biogenesis	 and	 upregulated	 OXPHOS	
genes	are	associated	with	enhanced	mitochondrial	respi-
ration	in	drug-	resistant	melanoma	cells.	A	mitochondria-	
targeted	analog	of	magnolol	(Mito-	magnolol)	was	shown	
to	 potently	 inhibit	 melanoma	 cell	 proliferation	 and	
tumor	growth	in	murine	melanoma	xenografts.22,33 Mito-	
magnolol	is	synthesized	by	conjugating	a	TPP+	moiety	via	
an	alkyl	side	chain	to	magnolol.33 Magnolol	is	present	in	
abundance	in	magnolia	extract,	a	traditional	herbal	medi-
cine	 used	 effectively	 for	 centuries	 in	 East	 Asia	 to	 treat	
inflammatory	 diseases.	 Mito-	magnolol	 belongs	 to	 a	 new	
class	of	mitochondria-	targeted	polyphenolic	drugs.

Mito-	magnolol	 potently	 inhibits	 mitochondrial	 com-
plex	I-	induced	mitochondrial	respiration,	blocks	cell	cycle	
progression,	and	inhibits	proliferation	of	melanoma	cells,	
primarily	through	the	downregulation	of	mTOR/AKT	sig-
naling	and	mitophagy.33

Mito-	magnolol	 induced	 AMPK–	threonine	 172	 phos-
phorylation,	activating	AMPK	signaling,	mitophagy,	and	
energy-	related	proteins	in	melanoma	cells.	Mito-	magnolol	
treatment	was	equally	effective	in	inhibiting	drug-	resistant	
melanoma	cells	(with	enhanced	OXPHOS).33

Mito-	magnolol	 inhibited	 tumor	 progression	 in	 an	
immune-	competent	mouse	xenograft	model.22	Also,	Mito-	
magnolol	 remodeled	 the	 TIME	 in	 a	 mouse	 melanoma	

model.	Mito-	magnolol	induced	infiltration	of	T	cells,	de-
creased	MDSCs,	and	decreased	 tumor-	associated	macro-
phages	 in	 melanoma	 tumors.22  The	 antitumor	 effect	 of	
Mito-	magnolol	 is	 inhibited	 by	 immune	 depletion.22  The	
antitumor	immunity	effect	of	mitochondria-	targeted	poly-
phenolics	is	an	exciting	area	of	therapeutic	drug	targeting	
and	TIME	remodeling.

5 	 | 	 ANTITUMOR IMMUNE 
EFFECTS OF MITO - ATOVAQUONE

Recent	reports	indicate	that	selective	targeting	and	inhib-
iting	 of	 mitochondrial	 complex	 III	 mitigate	 and	 reverse	
immunosuppression	 by	 Tregs,	 promoting	 the	 function	 of	
effector	T	cells.34 Tregs	suppress	the	antitumor	immunity	
that	greatly	hampers	immunotherapy.	Inhibitors	of	mito-
chondrial	complex	III	(e.g.,	antimycin	A)	and	not	complex	
I	 (e.g.,	 rotenone)	 reversed	 the	 immunosuppressive	 func-
tion	of	Tregs.

34	Although	several	relatively	nontoxic	mito-
chondrial	complex	I	inhibitors	exist	(excluding	rotenone	
which	is	toxic),	the	availability	of	mitochondrial	complex	
III	 inhibitors	 is	 relatively	 scarce	 except	 for	 antimycin	 A	
and	 atovaquone.	 Mito10-	atovaquone	 is	 synthesized	 by	
conjugating	TPP+	via	an	alkyl	side	chain	to	atovaquone,	
an	FDA-	approved	antimalarial	drug.15 Mito10-	atovaquone	
inhibits	 both	 mitochondrial	 complex	 III-		 and	 complex	
I-	induced	 oxygen	 consumption.15  We	 showed,	 for	 the	
first	 time,	 that	 conjugating	 atovaquone	 to	 TPP+	 and	 in-
creasing	 the	aliphatic	 linker	 side	chain	 length	generates	
Mito-	atovaquone	 analogs	 (e.g.,	 Mito4-	atovaquone	 and	
Mito10-	atovaquone)	 that	 are	 potent	 inhibitors	 of	 mito-
chondrial	 complex	 I-		 and	 complex	 III-	induced	 oxygen	
consumption	 in	 cancer	 cells.15  Mito4-	atovaquone	 and	
Mito10-	atovaquone	 effectively	 inhibit	 Treg	 differentiation	
and	 survival	 while	 stimulating	 effector	 T	 cell	 response.	
These	 compounds	 represent	 a	 new	 class	 of	 antitumor	
and	 immunoregulatory	 drugs.	 The	 TIME	 is	 a	 poten-
tially	 vulnerable	 target	 in	 cancer	 therapy.	 MTDs	 (e.g.,	
Mito-	honokiol,	 Mito-	magnolol,	 Mito-	metformin,	 Mito-	
atovaquone,	 Mito-	hydroxyurea)	 inhibit	 immunosup-
pressive	 cells	 (e.g.,	 MDSCs	 and	 Tregs)	 and	 increase	 the	
infiltration	of	cytolytic	T	cells	in	the	TIME	as	well	as	Mito-	
magnolol	and	Tregs.

15,16,33

6 	 | 	 OXPHOS INHIBITORS,  MDSCs, 
AND METASTATIC CANCER

The	metabolic	reprogramming	(enhanced	OXPHOS)	that	
occurs	in	metastatic	cancer	cells	likely	plays	a	major	role	
in	 metastatic	 cancer	 cell	 survival	 and	 progression.31,35	
Reports	indicate	that	an	OXPHOS	inhibitor,	IACS-	010759,	
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inhibits	melanoma	brain	metastasis.10 The	mitochondrial	
complex	I	inhibitor	also	inhibits	MDSCs	in	the	metastatic	
TIME.	 TPP+-	conjugated	 OXPHOS	 inhibitors	 of	 mito-
chondrial	 complex	 I	 and	 complex	 III—	Mito-	magnolol,	
Mito-	atovaquone,	 and	 Mito-	hydroxyurea—	are	 poten-
tially	 suitable	 antimetastatic	 drugs.15,33	 It	 was	 reported	
that	brain	metastases	 from	patients	with	melanoma	dis-
played	a	considerable	degree	of	immunosuppression	and	
increased	expression	of	genes	related	to	OXPHOS.	IACS-	
010759,	 a	 reported	 mitochondrial	 complex	 I	 inhibitor,	
blocked	 metastasis	 formation	 in	 mouse	 models.10  Mito-	
atovaquone	and	Mito-	lonidamine	are	potent	OXPHOS	in-
hibitors	and	inhibit	lung	cancer	metastasis	to	the	brain	in	
mouse	models.15,36

7 	 | 	 OXIDATIVE METABOLISM,  
A BARRIER TO IMMUNOTHERAPY

Hypoxia	 (a	 lack	 of	 oxygen)	 is	 a	 key	 hallmark	 of	 tumors	
and	 the	 TIME.	 Hypoxia	 is	 associated	 with	 a	 decreased	
metabolic	 function	 of	 T	 cells	 in	 the	 TIME	 and	 inhibits	
antitumor	 immunity.	 Studies	 showed	 that	 tumors	 with	
enhanced	oxidative	metabolism	(due	to	metabolic	repro-
gramming)	 responded	 poorly	 to	 immunotherapy	 (PD-	1	
blockade).	Tumors	with	decreased	mitochondrial	respira-
tion	and	oxidative	metabolism	responded	more	positively	
to	immunotherapy.37–	39 This	was	attributed	to	enhanced	
T	cell	exhaustion	in	the	TIME	of	tumors	with	enhanced	
oxidative	metabolism	(increased	hypoxia	in	the	TIME)	in	
contrast	to	tumors	with	less	mitochondrial	oxidative	me-
tabolism	(decreased	hypoxia	in	the	TIME).	These	findings	
suggest	 that	 it	may	be	possible	 to	manipulate	 tumor	hy-
poxia	and	remodel	the	TIME	using	MTDs.

Emerging	 research	 suggests	 that	 targeted	 therapy	 to	
remodel	 the	 TIME	 and	 enhance	 T	 cell	 function	 would	
increase	 the	 antitumor	 effect	 and	 improve	 the	 efficacy	
of	immunotherapeutic	effects	of	cancer.40–	42	Remodeling	
processes	enhancing	the	oxygen	tension	of	the	TIME	was	
proposed	as	a	viable	therapy.43	Higher	metabolic	rates	in	
tumors	 result	 in	 tumor	 hypoxia,	 especially	 in	 solid	 tu-
mors	with	disorganized	vasculature.44,45	One	approach	to	
decrease	tumor	hypoxia	(i.e.,	to	enhance	oxygen	concen-
tration	in	tumors)	is	to	decrease	tumor	oxygen	consump-
tion.11	Decreased	hypoxia	in	tumors	is	a	pharmacodynamic	
response	 of	 MTDs	 that	 can	 be	 quantitated	 by	 positron	
emission	 tomography	 imaging.46,47	 Immunotherapeutic	
efficacy	 was	 potentiated	 by	 a	 metformin-	induced	 de-
crease	 in	 tumor	 hypoxia.48	 Previously,	 we	 showed	 that	
inhibition	 of	 OXPHOS	 by	 Mito-	metformin	 enhances	
radiation-	induced	pancreatic	cancer	cell	killing,	which	is	
attributable	to	increased	oxygen	tension	or	decreased	hy-
poxia	in	pancreatic	cancer	cells.4

8 	 | 	 MTDs AND CHECKPOINT 
INHIBITORS

Tumor	 hypoxia	 facilitates	 the	 recruitment	 of	 immuno-
suppressive	 cells	 (MDSCs,	 Tregs,	 tumor-	associated	 mac-
rophages)	to	the	TIME.49	In	addition,	immunosuppressive	
metabolites	and	cytokines	are	released	by	both	tumor	cells	
and	 immune	 cells	 under	 hypoxia.	 Immune	 checkpoint	
molecules	(e.g.,	PD-	L1,	cytotoxic	T-	lymphocyte-	associated	
protein	4)	are	also	upregulated.	All	of	 these	adaptations	
to	 tumor	 hypoxia	 blunt	 an	 effective	 immune	 response.	
Restoring	the	oxygen	supply	to	tumors	was	shown	to	re-
activate	the	antitumor	response	because	of	decreased	im-
munosuppressive	cells	and	increased	effector	cytotoxic	T	
cells	in	the	TIME.50,51	In	a	paradoxical	study,	oxygen	was	
shown	to	impair	the	anticancer	activity	of	T	cells	in	mice,	
and	 inhibiting	 the	oxygen-	sensing	capability	of	 immune	
cells	 prevented	 lung	 metastasis.52	 Recent	 studies	 show	
that	radiotherapy	combined	with	 inhibition	of	OXPHOS	
is	 an	 effective	 strategy	 to	 overcome	 the	 barrier	 to	 PD-	1	
immunotherapy.53,54  The	 combination	 of	 IACS-	010759,	
a	 mitochondrial	 complex	 I	 inhibitor,	 with	 radiotherapy	
proved	to	be	a	promising	strategy	to	treat	PD-	1-	resistant	
lung	 cancer.	 Several	 clinical	 trials	 are	 underway	 inves-
tigating	 the	 antihypoxic	 effects	 of	 FDA-	approved	 drugs	
for	 other	 diseases	 (e.g.,	 metformin,	 atovaquone,	 papa-
verine)	in	combination	with	radio	and	immunotherapies	
of	cancer.	Metformin,	a	weak	inhibitor	of	mitochondrial	
complex	 I,	 was	 more	 effective	 in	 treating	 Black	 cancer	
patients.55,56 Metformin	was	shown	to	decrease	PD-	L1	ex-
pression	through	activating	the	Hippo	signaling	pathway	
in	 colorectal	 cancer	 cells.57	 A	 clinical	 trial	 investigating	
the	use	of	metformin	to	reduce	disparities	in	breast	cancer	
is	ongoing.58 Mito-	metformin	containing	longer	aliphatic	
side	chains	 that	are	 significantly	more	potent	 than	met-
formin	 in	 inhibiting	 pancreatic	 cancer	 cell	 proliferation	
and	growth	may	be	a	viable	candidate	drug	for	future	clin-
ical	trials	designed	to	decrease	racial	disparities	in	breast	
cancer.

9 	 | 	 OXPHOS INHIBITION, AMPK 
ACTIVATION, AND ENHANCED 
IMMUNOSUPPRESSIVE TIME

AMPK,	 a	 master	 regulator	 of	 cellular	 energy	 homeo-
stasis,	 is	 typically	 activated	 by	 increased	 intracellular	
AMP.59,60  We	 previously	 showed	 that	 OXPHOS	 inhibi-
tors	 stimulate	 a	 signaling	 pathway	 for	 antiproliferative	
effects,	 linking	 mitochondrial	 complex	 I	 inhibition	 to	
AMPK	 activation4,6,9,33,36	 and	 leading	 to	 inhibition	 of	
STAT3 ser727	phosphorylation.61	AMPK	activation	inhib-
its	 the	 functions	 of	 MDSCs.62–	65  The	 MTD,	 phenformin,	
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inhibits	 MDSCs	 and	 enhances	 the	 antitumor	 activity.66	
Cumulative	 evidence	 suggests	 that	 STAT3	 activation	
leads	to	immunosuppression,	and	inhibiting	STAT3 sign-
aling	 is	 an	 effective	 strategy	 to	 improve	 antitumor	 im-
munity.67,68  Mitochondria-	targeted	 polyphenolics	 (e.g.,	
Mito-	honokiol,	Mito-	magnolol)	and	Mito-	metformin	acti-
vate	AMPK	phosphorylation	in	multiple	cancer	cells	and	
inhibit	immunosuppressive	cells	in	the	TIME.

10 	 | 	 MITOCHONDRIAL 
BIOMARKERS AND PERSONALIZED 
THERAPY

Developing	 novel	 therapeutic	 strategies	 targeting	 mito-
chondria	might	decrease	or	prevent	racial	health	dispari-
ties.69,70  Mitochondrial	 determinants	 of	 cancer	 health	
and	 the	 mitochondrial	 basis	 of	 cancer	 disparities	 are	
unknown.70	 However,	 recent	 reports	 suggest	 that	 mito-
chondrial	 biomarkers	 could	 predict	 tumor	 progression	
and	 outcome.71,72	 Atovaquone	 decreased	 tumor	 hypoxia	
or	 increased	 tumor	 oxygenation	 and	 inhibited	 hypoxia-	
regulated	gene	expression	in	lung	cancer	patients.73	In	hy-
poxia	PET-	CT	(positron	emission	tomography–	computed	
tomography),	a	key	pharmacodynamics	endpoint	was	the	
reduction	in	hypoxia-	regulated	genes,	which	were	down-
regulated	in	atovaquone	treatment	of	non-	small-	cell	lung	
cancer	patients.73	OXPHOS	 targeting	 is	an	effective	way	
to	inhibit	hypoxic	cancer	cells.	Hypoxic	monitoring	may,	
therefore,	 serve	as	an	effective	biomarker	 in	 therapeutic	
selection	and	treatment.

11 	 | 	 MITOCHONDRIAL 
DYSFUNCTION AND RACIAL 
DISPARITIES

Increasing	evidence	 supports	 the	existence	of	 racial	 and	
ethnic	 disparities	 in	 the	 breast	 cancer	 immune	 micro-
environment.23	 Higher	 levels	 of	 pro-	tumorigenic	 factors	
(e.g.,	macrophages,	Tregs,	exhausted	T	cells)	were	 identi-
fied	in	the	TIME	of	Black	breast	cancer	patients	as	com-
pared	 with	 white	 counterparts.23,24,74	 Upregulation	 of	
genes	 associated	 with	 OXPHOS	 was	 identified	 in	 tumor	
samples	 obtained	 from	 Black	 cancer	 patients.75  Tumors	
from	 Black	 cancer	 patients	 have	 more	 mitochondria,	
ERR-	1	 (estrogen-	related	 receptor	 1),	 and	 peroxisome	
PGC-	1α	(proliferator-	activated	receptor	gamma	coactiva-
tor	1-	alpha).76	Clinical	 trial	data	show	that	Black	cancer	
patients	respond	better	 to	mitochondrial	 inhibitors	(e.g.,	
metformin)	 than	 white	 cancer	 patients.55	 Developing	
the	next	generation	of	mitochondrial	inhibitors	was	per-
ceived	to	be	a	promising	therapeutic	strategy	to	mitigate	

or	prevent	enhanced	mortality	in	Black	cancer	patients.75	
A	 newly	 developed	 mitochondria-	targeted	 atovaquone	
(i.e.,	 Mito10-	ATO)	 inhibits	 MDSCs	 and	 Tregs.

15	 It	 is	 con-
ceivable	 that	 newly	 developed,	 mitochondria-	targeted	
modified	natural	products	and	FDA-	approved	drugs	(e.g.,	
Mito-	honokiol,	 Mito-	magnolol,	 Mito-	metformin,	 Mito-	
atovaquone,	and	Mito-	hydroxyurea)	and	their	analogs	po-
tentially	could	be	useful	 in	understanding	 the	biological	
racial	 disparity	 in	 cancer	 mortality.	 Additional	 research	
centered	 on	 understanding	 the	 role	 of	 mutations	 in	 the	
epidermal	growth	factor	receptor,	epidermal	growth	fac-
tor	receptor	tyrosine	kinase	inhibitors,	the	OXPHOS	path-
way,77	and	racial	disparity	in	cancer	patients	is	needed.

A	recent	 report	highlights	 that	changes	 in	mitochon-
dria	 (enrichment	 of	 OXPHOS	 in	 tumors	 from	 Black	 pa-
tients)	could	be	a	biomarker	and	provides	a	rationale	for	
the	repurposing	of	mitochondrial	inhibitors	to	treat	can-
cers	 in	 Black	 patients.76	 Hypoxic	 gene	 expression	 signa-
tures	using	RNA	sequencing	may	be	used	as	a	biomarker	
for	patient	selection	and	treatment	with	MTDs.73	A	recent	
report	suggests	a	biomarker-	based	approach	to	patient	se-
lection	to	overcome	or	mitigate	racial	disparities	in	clini-
cal	cancer	trials.78

12 	 | 	 UNANSWERED QUESTIONS

How	mitochondrial	inhibition	of	tumor	tissues	decreases	
immunosuppression	in	the	TIME	is	not	known.	Whether	
this	effect	is	tumor	intrinsic,	tumor	extrinsic,	or	both	re-
mains	to	be	determined.	Dynamic	variations	in	the	mito-
chondrial	 membrane	 potentials	 of	 immune	 cells	 (i.e.,	 T	
cells,	 Tregs,	 natural	 killer	 cells,	 macrophages)	 that	 deter-
mine	 the	 toxicity	of	MTDs	are	not	known.	The	effect	of	
MTDs	on	PD-	L1	and	other	checkpoint	protein	expression	
in	cancer	cells	needs	to	be	examined	in	detail.

How	MTD-	mediated	 inhibition	of	complex	I-	induced	
mitochondrial	 respiration	 affects	 antigen	 presentation	
on	major	histocompatibility	class	1 molecules,	 including	
tumor	peptides,	needs	to	be	investigated	in	detail.	Studies	
suggest	a	compelling	role	for	mitochondria	in	antigen	pro-
cessing	and	presentation79,80	as	well	as	in	cancer	immune	
evasion.81	 Important	considerations	 include	strategies	 to	
counteract	the	inactivation	of	the	major	histocompatibil-
ity	class	1	pathway,	and	how	MTD-	induced	inhibition	of	
respiration	 affects	 cytokine	 (e.g.,	 interferon	 gamma)	 re-
sponse	in	antigen-	presenting	cells.82,83

How	 epigenetic	 modifications	 (DNA	 methylations,	
histone	 modifications,	 mRNA	 expression	 modulation)	
that	affect	changes	in	the	gene	expression	(not	caused	by	
changes	in	the	DNA	sequences)	are	influenced	by	MTD-	
mediated	repression	of	mitochondrial	respiration	in	can-
cer	 cells	 is	 not	 known.	 Epigenetic	 modifications	 have	
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been	used	as	predictive	biomarkers	 in	cancer.84 The	 im-
portance	of	epigenetic	events	in	racial	disparity	is	increas-
ingly	 recognized.85–	88	 One	 of	 the	 primary	 characteristics	
of	cancer	cells	is	altered	metabolism	(i.e.,	the	Warburg	ef-
fect).	Inhibitors	of	glycolytic	metabolism	in	tumors	affect	
epigenetic	 modifications.89	 Understanding	 the	 interplay	
between	alterations	in	DNA	methylations,	histone	modi-
fications,	chromatin	remodeling	in	light	of	altered	tumor	
metabolism,	 and	 metabolic	 reprogramming	 is	 critical	 to	
understanding	the	implications	of	mitochondrial	dysfunc-
tion	and	racial	disparity	in	cancer	treatment.90

Mitochondrial	 reactive	 oxygen	 species	 (ROS)	 and	
their	 significance	 in	 MTD-	dependent	 antiproliferative	
and	 antitumor	 effects	 are	 not	 known.	 N-	acetylcysteine,	
a	membrane-	permeable	cysteine	precursor,	is	used	as	an	
ROS	 scavenger	 and	 a	 potent	 antioxidant.	 Its	 cytoprotec-
tive	 effect	 and/or	 inhibition	 of	 oxidation	 of	 fluorescent	
dye	were	related	to	 its	ability	to	scavenge	ROS	(superox-
ide	 or	 hydrogen	 peroxide)	 and	 modulate	 redox	 signal-
ing	 effects	 in	 cancer	 cells	 treated	 with	 TPP+-	containing	
agents.91	However,	neither	superoxide	nor	hydrogen	per-
oxide	reacts	at	an	appreciable	rate	with	N-	acetylcysteine.	
This	calls	into	question	the	ROS	scavenging	as	an	antiox-
idant	 mechanism	 of	 N-	acetylcysteine.	 N-	acetylcysteine	
can	 enhance	 intracellular	 glutathione	 and	 glutathione-	
dependent	 hydroperoxide-	removing	 antioxidant	 enzyme	
machinery.	Thus,	the	proposed	antioxidant	mechanism	of	
N-	acetylcysteine	is	not	related	to	the	direct	scavenging	of	
ROS.

Although	most	of	 the	previous	preclinical	work	with	
OXPHOS	 inhibitors	 was	 performed	 in	 immunodeficient	
mice,	the	involvement	of	both	tumor	mitochondria	and	the	
TIME	in	the	antitumor	mechanism	of	MTDs	was	demon-
strated	 in	 immune-	competent	 mice.22  Mitochondrial	
transfer	from	the	stromal	cells	in	the	TIME	to	tumor	cells	
was	 shown	 to	 occur	 in	 several	 cancers,	 including	 acute	
myeloid	leukemia.92,93	However,	the	mechanism	of	trans-
fer	needs	to	be	determined.	Although	an	ROS	mechanism	
has	been	proposed,	the	identity	of	the	species	responsible	
for	the	transfer	has	not	been	determined.	Rigorous	char-
acterization	of	diagnostic	marker	products	of	fluorescent	
dyes,	as	previously	described,30	need	to	be	determined.

13 	 | 	 CONCLUSIONS AND FUTURE 
PERSPECTIVES

The	TIME	in	Black	cancer	patients	consists	of	more	pro-	
tumorigenic	 factors	and	mitochondrial	dysfunction	than	
in	 white	 cancer	 patients.	 Thus,	 developing	 a	 highly	 po-
tent,	less	toxic,	and	tumor/TIME	selective	next	generation	
of	mitochondrial	OXPHOS	inhibitors	 is	 timely	and	criti-
cal	 in	overcoming	racial	and	ethnic	disparities	in	cancer	

treatment.	 Poor	 accrual	 of	 Black	 and	 Hispanic	 cancer	
patients	 in	 clinical	 trials	 has	 hindered	 our	 understand-
ing	of	the	biological	basis	of	racial	disparity.	Clinical	trials	
should	 include	 Black	 and	 Hispanic	 cancer	 patients	 and	
combinatorial	treatments	(potent	OXPHOS	inhibitors	al-
leviating	hypoxia	and	radiation,	immunotherapy).	Patient	
selection	should	be	based	on	imaging	studies	that	validate	
hypoxic	modification	of	drugs	in	Black	and	Hispanic	can-
cer	patients.

It	is	conceivable	that	newly	developed,	mitochondria-	
targeted	 modified	 natural	 products	 and	 FDA-	approved	
drugs	 (e.g.,	 Mito-	honokiol,	 Mito-	magnolol,	 Mito-	
metformin,	Mito-	atovaquone,	Mito-	hydroxyurea),	as	well	
as	those	developed	in	other	labs,94,95	potentially	could	be	
useful	 in	understanding	the	biological	racial	disparity	 in	
cancer	mortality.

Recently,	 mono-	alkyl	 lipophilic	 cations	 (also	 referred	
to	 as	 cationic	 surfactants)	 consisting	 of	 a	 dimethyl	 sul-
fonium	cation	and	a	long	alkyl	side	chain	were	reported	
to	 inhibit	mitochondrial	 respiration	of	 fungi	and	exert	a	
strong	 antifungal	 mechanism.13,96  To	 establish	 the	 gen-
erality	of	the	OXPHOS	inhibition	mechanism,	additional	
cationic	molecules	should	be	tested.

Do	 all	 complex	 I	 inhibitors	 have	 the	 potential	 to	 be-
come	anticancer	agents?	The	 lack	of	effect	of	complex	 I	
inhibitors	on	normal	cells	must	be	studied	in	all	cases.

MTDs	combined	with	standard-	of-	care	chemotherapy,	
radiation	therapy,	and	immunotherapy	are	likely	to	have	
potentiating	effects.	Ongoing	research	in	preclinical	mod-
els	suggests	that	MTDs	augment	the	efficacy	of	PD-	L1	in-
hibitors.	These	combinational	modalities	may	counteract	
the	immunosuppressive	TIME	and	enhance	immunother-
apy	using	the	checkpoint	inhibitors.97

Emerging	research	reports	nanotube-	mediated	transfer	
of	mitochondria	from	T	cells	to	cancer	cells	as	an	immune	
evasion	 mechanism,98	 further	 substantiating	 the	 urgent	
need	to	develop	more	potent	MTDs.	Future	research	should	
also	focus	on	the	effect	of	MTDs	on	nanotube	or	nanotube	
assembly	 machinery	 formation.	 Previous	 research	 has	
demonstrated	 that	 dual	 targeting	 of	 mitochondria	 with	
MTDs	and	antiglycolytics	(e.g.,	2-	deoxy-	d-	glucose)	signifi-
cantly	 inhibits	 the	generation	of	adenosine	 triphosphate	
in	 breast	 cancer	 cells.27  This	 combinatorial	 therapeutic	
approach	may	hinder	nanotube-	mediated	mitochondrial	
trafficking	between	immune	cells	and	cancer	cells.
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