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Alphavirus-based replicon systems are frequently used as preclinical vectors and as antigen

discovery tools, and they have recently been assessed in clinical vaccine trials. Typically,

alphavirus replicon RNAs are delivered within virus-like replicon particles (VRP) that are produced

following transfection of replicon RNA and two helper RNAs into permissive cells in vitro. The

non-structural proteins expressed from the replicon RNA amplify the replicon RNA in cis and the

helper RNAs in trans, the latter providing the viral structural proteins necessary to package the

replicon RNA into VRP. Current helper RNA designs incorporate the alphavirus 26S promoter to

direct the transcription of high levels of structural gene mRNAs. We demonstrate here that the

26S promoter is not required on helper RNAs to produce VRP and propose that such

promoterless helper RNAs, by design, reduce the probability of generating replication-competent

virus that may otherwise result from RNA recombination.

Alphavirus (family Togaviridae)-based replicon vectors are
well-described and widely used in many biological fields of
research (Atkins et al., 2008) and have recently been
assessed in clinical vaccine trials (Bernstein et al., 2009).
Virus-like replicon particles (VRP) are produced by
supplying the alphavirus structural proteins in trans to
cells that also contain a replicon RNA; the replicon RNA is
recognized and packaged by the structural proteins,
resulting in production of particles. Replicable helper
RNA transcripts can be provided by transfection (Berglund
et al., 1993; Bredenbeek et al., 1993; Frolov et al., 1997;
Geigenmuller-Gnirke et al., 1991; Liljestrom & Garoff,
1991; Pushko et al., 1997; Smerdou & Liljestrom, 1999;
Volkova et al., 2006) or as pol II transcripts from stably
transfected packaging cell lines (Polo et al., 1999).

Replication-competent alphaviruses (RCV) can be gener-
ated by recombination of helper RNAs with replicon RNA
(Hill et al., 1997; Raju et al., 1995; Weiss & Schlesinger,
1991). The probability of generating RCV was reduced
when the structural protein genes were separated onto two
different helper RNAs (Frolov et al., 1997; Pushko et al.,
1997; Smerdou & Liljestrom, 1999). These RNA designs
contain the 59 and 39 sequences required for replication as
well as an alphavirus 26S subgenomic promoter that directs
the transcription of a structural protein mRNA. The 26S
promoter is thought to be critical to these helper RNAs
because of the significant mRNA amplification effect it

imparts for the production of the subgenomic transcript.
This promoter element is present on all current split helper
RNA designs (Frolov et al., 1997; Pushko et al., 1997;
Smerdou & Liljestrom, 1999; Volkova et al., 2006). Here,
we demonstrate that the 26S promoter is not required by
split helper RNAs to generate VRP, and we propose that
helper RNAs with this design may have advantages in
reducing the probability of generating functional recombi-
nation events.

Standard 26S promoter-based capsid and glycoprotein
(GP) helpers (Fig. 1) used to package Venezuelan equine
encephalitis virus (VEEV) replicon RNA were modified to
remove the 26S promoter (D26S). PCR primers were
engineered to amplify the structural genes with unique
RsrII (59) and SphI (39) restriction sites from helper
plasmids that have been described previously (Pushko
et al., 1997). A plasmid containing cDNA for a VEEV
replicon was digested with RsrII and SphI to remove most
of the nsP1 gene and the entire remaining non-structural
coding region (nsP2–nsP3–nsP4). The structural gene PCR
products were then digested with RsrII and SphI enzymes
and ligated individually into a similarly linearized cDNA
plasmid containing a replicon vector, generating plas-
mids corresponding to dHcap(FL) and dHgp(FL) helpers
(Fig. 1). Analysis of the replication efficiency of these
D26S helpers was conducted by Northern blot. RNA was
transcribed in vitro from plasmids containing cDNA for a
replicon vector and each helper construct, and the RNAs
were purified and co-electroporated into Vero cells asA supplementary figure is available with the online version of this paper.
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described previously (Kamrud et al., 2007). After overnight
incubation, total cellular RNA was collected and analysed
by Northern blot using probes specific for the genomic and
subgenomic transcripts by using methods described
previously (Kamrud et al., 2007). The standard helper
RNAs demonstrate both a genomic and a subgenomic
transcript as expected, whereas the D26S helpers each show
replication of a single transcript, demonstrating the
removal of the subgenomic promoter (Supplementary
Fig. S1, available in JGV Online).

To determine which 59 nt sequences (in addition to the
conserved 59 terminal 44 nt) are required for efficient
helper replication, eight consecutive deletions were made
in the region 59 of the structural genes in both the
dHcap(FL) and dHgp(FL) helpers (Fig. 1). First, eight
different reverse primers were designed complementary to
various positions within the region 59 of the structural
genes in the D26S(FL) helpers. These primers also
contained a unique RsrII restriction site (Fig. 1). A forward
primer was designed, which when combined with any of
the reverse primers would amplify fragments with unique
59 XbaI and 39 RsrII restriction sites. Second, the amplified
59 regions were cloned into plasmids representing the
dHcap(FL) and dHgp(FL) helpers linearized with XbaI
(located in the plasmid backbone sequence) and RsrII. This
generated eight sets of 59 region truncated helper plasmids,
designated dHcap1–8 and dHgp1–8 (Fig. 1).

Studies were then conducted to determine whether
matched combinations of deletion-mutant D26S helper
RNAs could replicate, express structural proteins and
package VRP. RNA was transcribed in vitro from plasmids
containing the cDNA for a replicon expressing an influenza
HA gene (Hubby et al., 2007) and each helper construct.
The RNAs were purified and co-electroporated into Vero

cells as described above. After overnight incubation, VRP
were harvested for titration, and from the electroporated
cells total cellular RNA and cytoplasmic lysates were
collected for capsid- and GP-specific Northern and
Western blot analyses (Kamrud et al., 2007). For
Northern blots, positive-sense transcripts were detected
with an RNA probe specific for nsP1 sequences present on
both helper and the replicon RNAs. Northern blot analysis
demonstrated efficient helper replication with the detection
of progressively shorter transcripts corresponding to the
respective truncation of the 59 nt sequence (Fig. 2a). The
dHcap8 and dHgp8 D26S helpers demonstrated markedly
reduced replication. This truncation removes the 51 nt
conserved sequence element found in all alphaviruses (Ou
et al., 1983), and others have also shown that this element
is important for replication (Frolov et al., 2001; Monroe &
Schlesinger, 1984; Niesters & Strauss, 1990; Tsiang et al.,
1988). VRP production with each of the D26S helpers was
reduced compared with the VRP yields produced with
standard helper RNAs (Fig. 2a). Western blot analysis
indicated that D26S capsid helpers expressed either very
little protein or larger proteins relative to the expected
molecular mass for capsid, which presumably constitute
fusion proteins. Fusion protein expression was not noted
with D26S GP helpers by using a goat-anti-VEE E2
polyclonal antibody. The low VRP yields observed may
be due to reduced expression of structural proteins or
production of fusion proteins that do not function
efficiently to package VRP. Analysis of the nt sequence
upstream of the structural gene open reading frames
(ORFs) revealed the presence of in-frame initiation codons
that could produce the capsid fusion proteins observed. Of
these, only one was in a favourable context for initiation of
translation (Kozak, 1984), and it is in all of the helper
RNAs. Prominent capsid-reactive proteins were detected,

Fig. 1. Design of standard and D26S helper
RNAs. The number located in each shaded box
represents the nt length of the 59 region
upstream of the structural gene for each
construct. The g symbol indicates removal of
the 26S promoter sequence. The dark-hyphe-
nated lines indicate the 59 region deleted from
each D26S helper. The right-facing arrow
represents the VEEV 26S promoter.
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from the sixth and seventh helper truncations that
correspond to the predicted molecular mass of proteins
that would be produced if this start codon was used for
translation (Fig. 2a).

To generate D26S helpers that have this start codon ablated
(mutated to a stop codon), site-directed mutagenesis was
carried out (QuikChange kit; Stratagene) on all but the
eighth truncation variant, which demonstrated reduced
replication. These helpers are identified by an ‘m1’
designator. Ablation of all 59 region start codons was

conducted but these D26S helpers replicated poorly,
presumably due to disruption of 59 RNA structure(s)
important for replication (data not shown). Vero cells were
electroporated with replicon and m1 D26S helper RNAs as
described above and the results of VRP production,
Northern and Western blot analyses are shown in Fig. 2b.
Northern blot analysis demonstrated efficient helper
replication. Western blot analysis demonstrated that the
majority of capsid proteins expressed from the m1 helpers
had the correct molecular mass, suggesting that the m1-
modification suppressed the translation of the capsid
fusion proteins noted previously. VRP yields with the m1
D26S helpers were uniformly higher than those generated
with the original D26S helper set. VRP yields generated
with the sixth and seventh truncation m1-modified D26S
helpers were similar to the yields produced with standard
helper RNAs (Fig. 2b). There was no clear correlation
between GP helper replication and VRP production
especially for the H6m1 and H7m1 helpers (Fig. 2).
Based on the Northern analysis, these GP helpers did not
replicate well yet expressed similar amounts of GP to the
other constructs analysed. However, the VRP yields with
these GP helpers were only slightly lower than those
measured with standard helper RNAs. An explanation for
the lack of correlation between GP helper replication and
GP expression remains unclear. The replication of the
H6m1 and H7m1 capsid helpers were less affected than
their GP helper counterparts. This may be due to the
capsid helpers overall smaller length relative to the GP
helpers, thus imparting a replication advantage to the
shorter RNAs.

As with standard split helper RNAs, generation of RCV
using D26S helper RNAs would require a minimum of two
independent recombination events. In the absence of the
26S promoter, most recombination events would not result
in the generation of a functional transcriptional unit that
could express an intact structural protein. Regeneration of
a complete structural region with D26S helpers requires
that recombination events occur in a specific order and in
specific nucleotide locations. The initial recombination
event must involve the capsid helper coding sequence,
since it must be located in a 59 position relative to the
glycoproteins for its autoprotease activity to cleave itself
and to generate a functional capsid protein (Strauss &
Strauss, 1990). The standard split helpers do not have this
constraint, as the presence of the 26S promoter on each
helper makes them independent transcriptional cassettes.
Furthermore, the D26S capsid helper must be recombined
with the replicon vector via a near-nt perfect recombina-
tion event to achieve a recombinant in which there would
be efficient expression of the capsid protein. Only
recombination events that are downstream of the replicon
26S promoter and do not result in production of capsid
fusion proteins may be viable. The second recombina-
tion event, involving the D26S GP helper, must occur
downstream from the capsid gene to avoid insertional
mutagenesis and maintain the structural protein ORF.

Fig. 2. Summary of VRP yield, Northern and Western blot analysis
using matched combinations of deletion mutant D26S helper
RNAs. (a) Analysis of deletion-mutant D26S helper RNAs. (b)
Analysis of deletion mutant D26S helper RNAs with the nsP1 start
codon modified to a stop codon (m1 helpers). VRP yields
represented as infectious units (IU) ml”1 determined on Vero
cells. The average titres determined from three experiments are
represented. Total RNA was extracted from electroporated cells
and 0.5 mg of each sample was analysed. A 12S rRNA-specific
probe was used to demonstrate equivalent amounts of total cellular
RNA were analysed by Northern blot. Protein lysates were
produced from electroporated Vero cells and 10 mg of each
protein sample was separated by SDS-PAGE, transferred to PVDF
membranes and analysed with goat anti-VEE capsid or E2-specific
polyclonal antibodies. –C, Negative control sample; Std, standard
helpers with functional 26S promoters; ND, none detected.
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Because the capsid protein provided by a split helper RNA
system does not need to maintain its cleavage activity,
introduction of a stop codon at the 39 end of the capsid
gene, in place of the chymotrypsin-like cleavage site,
increases the difficulty of producing functional recombi-
nants with a glycoprotein helper even further. That is, the
recombination event would have to be nt perfect to replace
the engineered stop codon in the capsid gene, while
reconstituting an active capsid cleavage site and maintain-
ing the glycoprotein ORF. Capsid helpers with a stop
codon engineered in place of the cleavage site have been
generated and they function as well as the cleavage-
competent capsid helpers to package VRP (data not
shown). Thus, producing VRP using D26S helper RNAs
would theoretically generate RCV at a lower frequency than
with standard split RNA helpers as most double recomb-
ination events would yield non-functional recombinants.
The order and location of recombination restrictions
described above are limited to double recombination
events. Recombinants arising due to three or more
individual events would not be restricted in the same
manner.

The current split helper systems reduce the probability of
generating RCV (Frolov et al., 1997; Pushko et al., 1997;
Smerdou & Liljestrom, 1999; Volkova et al., 2006). Because
generation of RCV in these systems is a rare event, it is
difficult to demonstrate experimentally a further reduction
in the frequency of its occurrence. To demonstrate the
enhanced barrier to functional recombination when
employing the D26S helper design, we constructed a
replicon vector in which the capsid gene (with a stop
codon engineered in place of the cleavage site) was inserted
directly downstream of the 26S promoter. As discussed
above, this construct represents an RNA molecule that
would be generated after a functional first recombination
occurred between a replicon RNA and a capsid helper
RNA. By providing the capsid replicon RNA as the
requisite first recombinant template, the two helper RNA
systems can be directly compared for the ability to generate
RCV via a second recombination between capsid replicon
RNA and GP helper RNA. For this experiment, capsid VRP
were harvested following co-electroporation of Vero cells
with capsid replicon RNA and either 26S promoter GP
helper or D26S GP helper RNA. Following infectivity
titration, Vero cell culture flasks were infected with the two
capsid VRP preparations at two multiplicities of infection.
The two preparations were carried through two blind Vero
cell passages to allow for the amplification of functional
recombinants, if present, as described previously (Kamrud
et al., 2007). Media samples were collected from pass two
flasks and analysed by plaque assay. The pass two samples
from cultures infected with capsid VRP generated with a
26S promoter GP helper each contained p.f.u. (m.o.i.
0.159.86107 p.f.u. ml21, m.o.i. 0.0557.46107 p.f.u.
ml21). However, the pass two samples from cultures
infected with capsid VRP generated with the D26S GP
helper had no detectable p.f.u. Sequence analysis of

RT-PCR amplified cDNAs of RNA extracted directly from
particles in the p.f.u.-positive culture fluids revealed that
the 26S promoter GP helper had recombined into the 39

non-coding region of the capsid-replicon RNA, resulting in
a recombinant that expressed capsid and GP under
separate 26S promoters (Fig. 3). These data support the
theoretical predictions outlined above describing the
increased constraints on functional recombination when
employing the D26S helper design. Based on these data, we
believe that the D26S helper design offers an efficient
system for the production of VRP, while providing
additional constraints on the generation of functional
RNA recombination events.
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