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Diabetic kidney disease (DKD) remains the leading cause of the end-stage 

renal disease and is a major burden on the healthcare system. The current 

understanding of the mechanisms responsible for the progression of DKD 

recognizes the involvement of oxidative stress, low-grade inflammation, 

and fibrosis. Several circulating metabolites that are the end products of 

the fermentation process, released by the gut microbiota, are known to 

be  associated with systemic immune-inflammatory responses and kidney 

injury. This phenomenon has been recognized as the “gut–kidney axis.” 

Butyrate is produced predominantly by gut microbiota fermentation of dietary 

fiber and undigested carbohydrates. In addition to its important role as a fuel for 

colonic epithelial cells, butyrate has been demonstrated to ameliorate obesity, 

diabetes, and kidney diseases via G-protein coupled receptors (GPCRs). It also 

acts as an epigenetic regulator by inhibiting histone deacetylase (HDAC), up-

regulation of miRNAs, or induction of the histone butyrylation and autophagy 

processes. This review aims to outline the existing literature on the treatment 

of DKD by butyrate in animal models and cell culture experiments, and to 

explore the protective effects of butyrate on DKD and the underlying molecular 

mechanism.
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Introduction

Diabetic kidney disease (DKD) is a serious microvascular complication of diabetes 
mellitus and is also the leading cause of the end-stage renal disease (Marshall, 2016). Based 
on data from International Diabetes Federation, over 40% of patients with diabetes will 
develop DKD. This causes an increase in health care costs, cardiovascular events risks, and 
mortality. The etiology and pathogenesis of DKD are complex and have not been completely 
understood. It mainly includes hemodynamic changes, oxidative stress, insulin resistance, 
and the release of pro-inflammatory cytokines. All these events lead to glomerulosclerosis, 
tubular atrophy, fibrosis, and irreversible renal injury (Kawanami et al., 2016). Thus, the 
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prevention and effective treatment of DKD is crucial and the most 
challenging aspect of clinical studies.

Short-chain fatty acids (SCFAs) are the main metabolic 
products by the bacterial fermentation of macro-fibrous material 
that escapes digestion and enters the colon. 90 to 95% of SCFAs in 
the colon are composed of acetate, propionate, and butyrate 
(Cummings et  al., 1987). Among these SCFAs, butyrate is of 
particular concern due to its positive influence on cell energy 
metabolism and intestinal environmental stability (Guilloteau 
et al., 2010). It also relieves oxidative stress, inflammation, and 
fibrosis in diabetes and kidney diseases via G-protein coupled 
receptors (GPCRs) or serves as an epigenetic regulator by 
inhibiting histone deacetylase (HDAC), up-regulation of miRNAs, 
or induction of the histone butyrylation, a novel histone post-
translational modification (Lin et al., 2015; Lu et al., 2016; Xu et al., 
2018; Gonzalez et al., 2019; Sanna et al., 2019; Elgamal et al., 2020; 
Noureldein et al., 2020; Rodríguez-Carlos et al., 2020). Studies 
have already reported the therapeutic effects of butyrate or sodium 
butyrate, demonstrating that butyrate metabolic pathway could 
be a new therapeutic target for DKD (Du et al., 2020a,b; Huang 
et al., 2020; Li et al., 2020). This article aims to provide an overview 
of the role and the latent mechanism of butyrate action on DKD.

Overview of butyrate and 
butyrate-mediated responses

Origin, production, transport, and 
distribution of butyrate

As shown in Figure  1, butyrate is generally thought to 
be generated by bacterial fermentation of dietary fiber that enters 
the colon after digestion in the upper gastrointestinal tract 
(Bergman, 1990; Simpson and Campbell, 2015). The bacteria 
involved in butyrate production are widespread, the two most 
important clusters being Faecalibacterium prausnitzii in the 
Clostridium leptum cluster and Eubacterium rectale/Roseburia spp. 
in the Clostridium coccoides cluster of Firmicutes (Mokhtari et al., 
2017). In a normal human feces sample, each typically accounts for 
5–10% of the total microbial load that may be detected (Haenen 
et al., 2013). Some of these butyrate-producing bacteria are also 
scattered in clusters IX, XV, XVI, and XVII (Haenen et al., 2013).

Butyrate is produced via two metabolic pathways: firstly, 
butyryl-coenzyme A (CoA) is phosphorylated to form butyryl-
phosphate, which is then converted to butyrate via butyrate kinase 
(Louis and Flint, 2017). Secondly, the CoA moiety of butyryl-CoA 

is transferred to butyrate and acetyl-CoA via butyryl-CoA: acetate 
CoA-transferase (Trachsel et al., 2016). The butyrate’s absorption 
mechanisms through the apical membrane of colon cells include 
monocarboxylate transporters and sodium-coupled 
monocarboxylate transporters (Kumar et  al., 2015; Counillon 
et al., 2016). These transporters are diffusely expressed from the 
central nervous system to peripheral tissues, including liver, fat, 
heart, and kidney tissues.

Butyrate ameliorates metabolic disorder 
and kidney injury

Studies have demonstrated a protective effect of butyrate by 
improving body weight, blood glucose, lipid distribution, and 
insulin sensitivity in animal models of obesity and diabetes, which 
can be postulated as new therapeutic strategy to counteract obesity 
and insulin resistance (Gao et al., 2009; Khan and Jena, 2016; 
Mollica et  al., 2017; Hu et  al., 2018). The butyrate-mediated 
secretion of glucagon-like peptide-1 may mediate the reduction of 
insulin sensitivity and diabetes (Bridgeman et  al., 2021). 
Glucagon-like peptide-1 has been shown to reduce hepatic 
gluconeogenesis and stimulate insulin secretion (Jin and Weng, 
2016). Increased levels of butyrate-induced glucose transporter 
4  in adipose tissues is also a crucial factor hypothesized to 
be responsible for the improvement in levels of glucose metabolites 
(Si et al., 2018). The current studies suggest that butyrate improves 
acute-chronic kidney injury that has been induced by ischemia–
reperfusion (Zheng et al., 2019; Sun et al., 2022), contrast agent 
(Machado et al., 2012), gentamicin (Sun et al., 2013), doxorubicin 
(Felizardo et  al., 2019), hypertension (Wu et  al., 2021), and 
lipopolysaccharide (LPS; Huang et al., 2017; Dou et al., 2022). It 
acts on kidney inflammation, immunity, fibrosis, and energy 
metabolism and has a protective effect on the kidneys. Thus, the 
role of butyrate in kidney disease is an intriguing area of research.

Butyrate ameliorates kidney injury 
through the “gut-kidney axis”

A growing number of studies have suggested that kidney 
inflammation is related to bacterial load and endotoxins produced 
by gastrointestinal dysbiosis, which increases gut permeability and 
contributes to infection-related acute renal failure and chronic 
accelerated development of kidney disease (Li et al., 2019; Yang 
et al., 2019; Cai et al., 2020; Snelson et al., 2021). Several studies 
have observed significant differences in gut microbiota richness 
and populations between DKD patients and healthy controls 
(Jiang et al., 2016; Castillo-Rodriguez et al., 2018; Hu et al., 2020). 
This connection between the gut and kidney has been termed the 
“gut-kidney axis” (Leonel and Alvarez-Leite, 2012; Evenepoel 
et al., 2017).

A study by Terpstra ML (Terpstra et al., 2019) did not find 
significant differences in the number or capacity of the three most 

Abbreviations: DKD, Diabetic kidney disease; SCFAs, Short-chain fatty acids; 
UACR, The ratio of urinary albumin to creatinine; LPS, Lipopolysaccharide; 
AMPK, AMP-activated protein kinase; β-arrs, β-arrestins; CKD, Chronic kidney 
disease; STZ, Streptozotocin; GPCRs, G-protein coupled receptors; CoA, Coenzyme 
A; NF-κB, Nuclear factor-kappa B; mRNA, Messenger RNA; Nrf2, Nuclear factor 
erythroid 2-related factor 2; mTOR, Mammalian target of rapamycin; miRNA, 
microRNAs; lncRNAs, Long non-coding RNAs; HDAC, Histone deacetylase; HG, 
High glucose.
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abundant butyrate-producing bacteria (F. prausnitzii, E. rectale, 
and Roseburia spp) between end-stage renal disease patients and 
healthy kidney donors. However, butyrate has been shown to 
make a positive contribution to kidney disease in humans. A 
recent clinical study by Wang et al. (2019) indicated reduced SCFA 
levels in patients with chronic kidney disease (CKD), suggesting 
that butyrate supplementation may delay the progression of 
CKD. Of further interest is a recent study that showed that 
quantitative reduction in SCFAs, especially butyrate, contributed 
to the progression of CKD (Wang et al., 2019). In a study by Cai 
et al. (2022), decreased serum butyrate levels were noted in the 
DKD group. Also, dysbiosis was evident in the gut microbiota of 
DKD patients, particularly associated with the lower abundance 
of SCFAs-producing bacteria belonging to the Ruminococcaceae, 
Lachnospiraceae, and Butyricicoccus groups. Li et al. (2022) also 
observed that the butyrate in serum was inversely connected with 
DKD. Given the substantial association between gut microbiota 
and butyrate, randomized controlled studies are necessary to 

examine whether alteration in the gut microbiota prevents 
DKD. Despite the controversy, the relationship between butyrate 
levels and renal injury has been proposed, indicating that butyrate 
may be  a prospective target for the treatment of DKD. New 
mechanisms are being uncovered demanding the investigation of 
the role of endogenous butyrate on the “gut-kidney axis.”

The molecular mechanism of 
butyrate-mediated renal protection

Butyrate modulates the host’s biological responses mainly 
through the following mechanisms: (1) Butyrate directly inhibits 
HDAC (enzymes that remove acetyl groups from histone tails and 
regulate gene expression; Bose et al., 2014; Bridgeman et al., 2021). 
(2) Butyrate is involved in signalling through metabolite-sensing 
GPCRs. Three butyrate receptors have been identified, namely 
GPR41, GPR43, and GPR109A, out of the ten trophic receptor 

FIGURE 1

Origin, Production, Transport, Effects, and Mechanism of Butyrate. Butyrate is produced from dietary fiber by bacterial fermentation through two 
metabolic pathways: (1) butyryl-CoA is transformed to butyrate via butyrate kinase and (2) the CoA moiety of butyryl-CoA is transferred to butyrate 
and acetyl-CoA via butyryl-CoA: acetate CoA-transferase. The two most important butyrate-producing bacteria are Faecalibacterium prausnitzii 
and Eubacterium rectale/Roseburia spp. Butyrate is absorbed by colonic epithelial cells as energy sources mainly through MCTs and SMCTs. About 
three of the de-orphanized GPCRs (GPR41, GPR43, and GPR109A) have been identified as butyrate receptors in the human intestinal mucosa, 
renal intrinsic cells, immune cells, pancreatic β cells, and adipose tissues. Butyrate act as epigenetic regulators by the inhibition of HDAC, the 
upregulation of miRNAs, or induction of the histone butyrylation and autophagy. Although controversial, most studies believe that exogenous or 
endogenous butyrate improves inhibits oxidative stress, and ameliorates diabetic inflammation. GPCRs, G-protein coupled receptors; MCTs, 
monocarboxylate transporters; SMCTs, sodium-coupled monocarboxylate transporters; CoA, coenzyme A; HDAC, histone deacetylase; miRNAs, 
microRNAs.
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GPCRs (Miyamoto et  al., 2016). (3) Butyrate may increase 
autophagy by switching on the AMP-activated protein kinase 
(AMPK)/mammalian target of rapamycin (mTOR) pathway (Cai 
et al., 2022). (4) The epigenetic mechanisms such as butyrate-
mediated histone butyrylation (Goudarzi et  al., 2016) and 
microRNAs (miRNAs; Yang et al., 2021) also modulate biological 
processes and are being extensively scrutinized. The effects and 
mechanisms of butyrate metabolism relevant to the “gut-kidney 
axis” and DKD will be discussed further in this part of the review.

GPR41 and GPR43

GPR41 and GPR43 have been identified as receptors for 
SCFAs, hence named free fatty acid receptors 3 and free fatty acid 
receptors 2, respectively (Brown et al., 2003). A previous study 
(Huang et al., 2020) by our research group evaluated the effects of 
three major SCFAs (acetate, propionate, and butyrate) on a 
high-fat diet and streptozotocin (STZ)-induced type 2 diabetes 
and DKD mouse models. The role and mechanism of butyrate in 
high glucose (HG)-induced mouse glomerular mesangial cells 
were explored to decipher new therapeutic strategies and 
molecular targets for DKD. We  demonstrated that exogenous 
SCFAs, especially butyrate, partially ameliorated type 2 diabetes-
induced kidney injury through GPR43-mediated inhibition of 
oxidative stress and nuclear factor kappa B (NF-κB) signalling. 
Our study suggested that butyrate may be a potential therapeutic 
agent for the prevention and treatment of DKD (Huang 
et al., 2020).

Both GPR41 and GPR43 activate the heterotrimeric G protein 
and subsequently unite with β-arrestins (β-arrs), which regulate 
the desensitization, internalization, intracellular signal 
transduction, and recirculation of GPCRs, and are responsible for 
the inflammation signalling pathway (Lee et al., 2013; Eichel et al., 
2018). Huang et al. (2020) showed that HG induced the expression 
of βarr-2, but not βarr-1, and HG reduced the interaction between 
βarr-2 and I-κBα. However, this effect was reversed by butyrate via 
GPR43, suggesting that GPR43-β-arrestin-2 signalling could be a 
prospective target for DKD treatment. Nevertheless, numerous 
questions regarding the functionality of butyrate remain 
unanswered and disputed. Future research on GPR41 and GPR43 
will require more effective and selective tools.

GPR109A

GPR109A was first identified as a niacin receptor activated by 
β-hydroxybutyrate and butyrate (Walters et al., 2009). As a ligand 
for GPR109A, butyrate reduces intestinal inflammation and 
promotes the integrity of the intestinal epithelial barrier, so 
activation of GPR109A is thought to have a protective effect (Macia 
et al., 2015; Feng et al., 2018). One study (Li et al., 2020) suggested 
that dietary fiber prevents DKD by regulating the intestinal flora, 
enriching SCFAs producing bacteria, and increasing SCFAs 

production, GPR43−/− and GPR109A−/− mice were sensitive to 
STZ-induced diabetes, indicating that GPR43 and GPR109A are 
indispensable for fiber and butyrate mediated protection against 
DKD. However, the mechanism of GPR109A in the pathogenesis 
and treatment of DKD needs further characterization.

HDAC inhibitor

Acetate, propionate, and butyrate have all been reported as 
HDAC inhibitors, with butyrate being the most widely studied. 
Also, amongst all SCFAs, butyrate was mentioned to have the most 
potent inhibitory effect on HDAC activity in vitro and in vivo. The 
maximum inhibition effectiveness of about 80% was observed for 
HDAC1/2, while that of propionate was about 60% (Corfe, 2012). 
Several reported effects of butyrate have been attributed to 
epigenetic effects that regulate the expression of genes in activated 
T cells, including NF-κB, myoblast antigens, p53, and nuclear 
factors, by inhibiting HDAC, increasing histone acetylation, and 
reducing histone densification (Wang and Friedman, 2000; Cruz-
Bravo et al., 2014).

The mechanism of inhibition of HDAC activity by butyrate 
remains unclear. However, its benefits may be related to its anti-
fibrosis, anti-inflammatory, and immunosuppressive effects in 
polycystic kidney disease (Vinolo et al., 2011; Manson et al., 2014; 
Khan et al., 2015). Oxidative stress contributes to the pathogenesis 
of DKD (Zhang et al., 2012; Keshari et al., 2015). Du et al. (2020a) 
found that sodium butyrate acts as an antioxidant and suppresses 
the HG-induced apoptosis in normal rat kidney tubular epithelial 
cells by inhibition of HDAC2. Sodium butyrate is also an activator 
of nuclear factor erythroid 2-related factor 2 (Nrf2, Yaku et al., 
2012; Wu et al., 2018). Dong et al. (2017) first noted that Nrf2 was 
an important aspect of sodium butyrate’s mediated protection 
against DKD. Sodium butyrate may inhibit HDAC activity, 
facilitate the expression of the Nrf2 gene, which might enter the 
nucleus, and upregulate downstream targets-HO1 (heme 
oxygenase 1) and NQO1 (NAD (P) H dehydrogenase quinone 1). 
It also inhibits oxidative stress and inflammation in DKD. In 
contrast, in the absence of the Nrf2 gene, the role of sodium 
butyrate is eliminated. Although sodium butyrate seems to play 
a significant role via the activation of Nrf2, further studies are 
necessary before sodium butyrate can be  suggested for use 
in humans.

The coagulation protease-activated protein C studies showed 
cytoprotective effects in vitro and in vivo disease models, including 
DKD (Madhusudhan et al., 2020). Activated protein C reduced 
glucose-induced hypomethylation and hyperacetylation of the 
p66Shc promoter in podocytes, sodium butyrate eliminated the 
protective effect of protease-activated protein C (Bock et al., 2013). 
Therefore, the role of butyrate as an HDAC modulator in the DKD 
is still controversial, and it is necessary to understand the mode of 
action of butyrate in intestinal physiology and lipid metabolism. 
The research will contribute to the consideration of butyrate as an 
HDAC inhibitor in preventing and treating DKD kidney injury.
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Regulation of miRNAs

Recently, long non-coding RNAs (lncRNAs; Vinolo et al., 2011) 
and miRNAs (Du et al., 2020b) have been paid elaborate attention 
to decipher the molecular mechanisms of butyrate-mediated renal 
protection. miRNAs are small non-coding RNAs that regulate gene 
expression through the 3′ untranslated region of messenger RNAs 
(mRNAs). In DKD, extensive alterations in the expression of 
miRNAs such as miR-184 (Zanchi et al., 2017), miR-192 (Kato 
et al., 2013), and miR-21 (Kölling et al., 2017) was noted. Butyrate 
has been reported to influence miRNAs expression in oncogenic 
signalling pathways such as miR-92a, miR-22, miR-3,935, 
miR-574-3p, and miR-106B (Hu et al., 2015; Pant et al., 2017; Xiao 
et al., 2018). Du et al. (2020b) demonstrated that miR-7a-5p was 
prominently reduced in the HG-induced SV40-MES-13 cells and 
the kidneys of db/db mouse, while butyrate induced the 
upregulation of Mir-7a-5P. Later, the Mir-7a-5p inhibitors were 
administered to block the antifibrotic effects of butyrate.

Yang et  al. (2021) also confirmed that sodium butyrate 
improved renal dysfunction in DKD model mice induced by db/
db mice. Further RNA-seq results (Yang et al., 2021) showed that 
certain lncRNAs and mRNAs in the DKD+ sodium butyrate 
group had reverse changes compared with the DKD groups, and 
subsequent bioinformatics analysis also suggested that these 
changes might affect nephritis. These cumulative results indicated 
that sodium butyrate could protect DKD by altering the expression 
of lncRNA in mouse kidneys.

Autophagy

Autophagy is a highly conserved process and maintains 
cellular homeostasis (Liu et  al., 2017). The expression of 
autophagy-related protein 7 in renal tubular epithelial cells was 
increased by SCFAs, suggesting that SCFAs regulate autophagy in 
acute kidney injury (Andrade-Oliveira et al., 2015). In colorectal 
and bladder cells, sodium butyrate also stimulated autophagy and 
inhibited tumor growth (Zhang et al., 2016; Luo et al., 2019; Wang 
et al., 2020). These results suggest a correlation between SCFAs 
and DKD via autophagy signaling.

AMPK is activated and downregulates the mTOR pathway 
under hunger or increased energy needs, which may induce 
autophagy to maintain homeostasis (Alers et al., 2012). AMPK 
phosphorylation was activated by butyrate in CKD rats, reducing 
renal injury (Gonzalez et al., 2019). Also, sodium butyrate causes 
autophagy-mediated cell death and reactivates the tumor 
suppressor gene DIRAS1 in the UOK146 renal cell carcinoma cell 
line (Verma et al., 2018). By increasing intestinal barrier function 
and activating the free fatty acid receptor 2-mediated PI3K/AKT/
mTOR pathway, butyrate protects against DKD-induced muscle 
atrophy (Tang et al., 2022). Cai et al. (2022) first revealed that 
sodium butyrate boosted the phosphorylation of AMPK (Thr172), 
inhibited the phosphorylation of mTOR (Ser2448), and initiated 
autophagy in DKD rats. However, extensive research is needed to 

evaluate the mechanisms and interactions involved in gene 
knockout or overexpression in vitro and in vivo.

Histone butyrylation

We previously described that butyrate improves DKD by 
inhibiting HDAC (Khan and Jena, 2014; Dong et al., 2017; Du 
et al., 2020a). In the recent years, histone butyrylation (Chen 
et al., 2007), crotonylation (Tan et al., 2011), β-hydroxybutyrylation 
(Xie et  al., 2016), and other novel histone post-translational 
modifications have been found. Pelletier N reported these 
mechanisms to cooperate or antagonize with histone acetylation 
and methylation, which plays a crucial role in gene expression 
regulation and cell fate decision (Pelletier et al., 2017). In 2007, 
Zhao Y’s team found that butyrate metabolite-butyryl-CoA, 
catalyzed by transcriptional coactivator P300 with 
acetyltransferase activity, can transfer the butyl group to the 
histone lysine side chain, and produce a novel modification-
histone butyrylation (Chen et  al., 2007). Yang et  al. (2021) 
reported that butyrylation of histone H3K9 is negatively regulated 
by high-fat stress in mouse heart tissue. Also, Ishikawa-Kobayashi 
E and Gaikwad AB reported that the acetylation of H3K9 is 
involved in obesity and diabetic heart disease (Gaikwad et al., 
2010; Ishikawa-Kobayashi et al., 2012). The β-hydroxybutyrylation 
of H3K9 up-regulated matrix metalloproteinase-2 and improved 
DKD (Luo et  al., 2020). Nie et  al. (2017) reported that the 
butyrylation of H3K18 in hepatocytes of high-fat induced obesity 
mice model significantly decreased, and the acetylation was 
up-regulated. The above studies thus suggest that the crosstalk 
between these modifications at the same lysine site may have 
synergistic or antagonistic effects on related gene expression. 
Since butyrate may induce butyrylation of histone, the role of this 
modification in the pathogenesis and prevention of DKD 
deserves further attention.

Application of butyrate in 
prevention and treatment of DKD

In a limited number of investigations conducted to date, 
butyrate or sodium butyrate has been used therapeutically in DKD 
in vivo and in vitro studies. Research conducted on the application 
of butyrate in DKD is summarized in Table 1.

Butyrate ameliorates DKD as HDAC 
inhibitor

In a study by Khan S (Khan and Jena, 2014), sodium 
butyrate reduced plasma glucose, creatinine, urea, histological 
alterations, and descent of the HDACs activity. It also curbed 
the expression of endothelial nitric oxide synthase, inducible 
nitric oxide synthase, alpha-smooth muscle actin, collagen I, 
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fibronectin, and transforming growth factor-β (TGF-β), and 
NF-κB in the kidneys of STZ-induced diabetic mice (Khan and 
Jena, 2014). However, Du Y’s study (Du et al., 2020a) showed 
that sodium butyrate as an HDAC2 inhibitor had no significance 
on the blood glucose levels of diabetic mice, though it 
significantly improved the ratio of urinary albumin to creatinine 
(UACR). Further, Dong et al. (2017) found that sodium butyrate 
did not alter blood glucose levels in STZ-induced diabetic 

C57BL/6 Nrf2 knockout and the WT mice, but significantly 
reduced UACR.

Surprisingly, Bock et al. (2013) reported that supplementing 
the drinking water with 8 g/l sodium butyrate eliminated the 
protective effect of activated protein C in diabetic mice. It further 
increased renal H3 acetylation, PAS-positive staining, 
nitrotyrosine accumulation, and urine albumin without affecting 
blood glucose levels or albuminuria in non-diabetic control 

TABLE 1 Application of butyrate in vivo and in vitro model of DKD.

Type Model species Mode and dose Results References

STZ-induced juvenile male SD 

rats

Sodium butyrate (500 mg/kg/day) by 

intraperitoneal injection

HDACs activity↓; BG↓; SCr↓, BUN↓; NOS↓, iNOS↓; 

a-SMA↓; collagen I↓; fibronectin↓; TGF-β1↓; NF-

κB↓; apoptosis↓; DNA damage↓

Khan and Jena (2014)

STZ-induced C57BL/6 mice 

and Nrf2−/− mice

Sodium butyrate diet (5 g/kg/day) BG (−); UACR↓; mesangial matrix↓; TGF-β1↓; 

CTGF↓; PAI-1↓; HDAC activity↓; Nrf2↑

Dong et al. (2017)

db/db mice Sodium butyrate (1 g/kg/day) by oral 

gavage

BG (−); UACR↓; apoptosis↓ (BCL-2↑; Bax↓; 

caspase-3↓)

Du et al. (2020a)

db/db mice Sodium butyrate (1 g/kg/day) diet BG (−); BW (−); mesangial matrix↓; UACR (↓); 

collagen IV↓; PAI-1↓; a-SMA↓; CTGF↓; P311↓; 

miR-7a-5p↑; TGF-β1↓

Du et al. (2020b)

In STZ-induced C57BL/6 mice Sodium butyrate 100 mg/ (kg·48 h) by 

intraperitoneal injection

BW (−); FINS (−); blood lipid spectrum (−); RBG↓; 

FBG↓; IR↓; UACR↓; SCr↓; BUN↓; cystatin C↓; NF-

κB↓; renal fibrosis↓

Huang et al. (2020)

vivo db/db mice Sodium butyrate (5 g/kg/day) by 

intraperitoneal injection

BW↓; BG (−); UACR↓; glomerular and tubular 

injuries↓

Yang et al. (2021)

STZ-induced C57BL/6 mice Sodium butyrate (50 mM) dissolved and 

administered ad libitum in drinking water

BG (−); UACR↓; podocytes/glomerulus↓; collagen-

PSR↓; macrophage (CD68+) ↓

Li et al. (2020)

STZ-induced juvenile male SD 

rats

Sodium butyrate (8 g/l) dissolved and 

administered ad libitum in drinking water

H3 acetylation↑; nitrotyrosine accumulation↑; 

p66Shc↑, albuminuria↑

Bock et al. (2013)

db/db mice Sodium butyrate (1 g/kg/day) diet Serum butyrate↑; SCr↓; BUN↓; and UACR↓; ZO-1↑; 

occludin↑

Tang et al. (2022)

STZ-induced SD rats Sodium butyrate (300 mg/kg) by oral 

gavage

Serum and fecal butyrate↑; BG↓; BUN↓; eGFR↓; 

fibronectin↓; collagen IV↓; LC3↑; LC3BII/I↑; 

autophagosomes↑; mTOR↓; AMPK↑

Cai et al. (2022)

mouse kidney mesangial cell 

(SV40-MES 14 cells)

Sodium butyrate (5 mM) lncRNA (+); mRNA (+) Yang et al. (2021)

Mouse glomerular mesangial 

cells (SV40-MES 13)

Sodium butyrate (5 mM) Oxidative stress↓ (ROS↓, MDA↓, SOD↑); 

inflammation ↓ (ICAM-1↓, MCP-1↓, IL-1β↓)

Huang et al. (2017)

In Mouse glomerular mesangial 

cells (SV40-MES 13)

Sodium butyrate (5 mM) ROS↓; MDA↓; MCP-1↓; IL-1β↓; NF-κB activation↓ Huang et al. (2020)

vitro Rat kidney tubular epithelial 

(NRK52E) cells

Sodium butyrate (0.1, 0.5, or 1.0 mM) HDAC2↓; BCL-2↑; Bax↓; caspase-3↓; oxidative stress 

↓ (ROS↓, SOD↑, LDH↓)

Dong et al. (2017)

Mouse mesangial cells (SV40-

MES-13)

Sodium butyrate (0.5 mM) Collagen IV↓; PAI-1↓; a-SMA↓; CTGF↓; P311↓; 

miR-7a-5p↑; TGF-β1↓

Du et al. (2020b)

Mouse kidney tubular 

epithelial cells and podocytes

Sodium butyrate (3.2 mM) IL-6↓; fibronectin↓; TGF-β↓; TNF-α↓; MCP-1 Li et al. (2020)

(−) no effect; (+) have an effect; STZ, streptozotocin; HDAC, histone deacetylase; HG, high glucose; eNOS, endothelial nitric oxide synthase; iNOS, inducible nitric oxide synthase; 
a-SMA, alpha smooth muscle actin; UACR, the ratio of urinary albumin to creatinine; TGF-β, transforming growth factor-β; CTGF, connective tissue growth factor; PAI-1, plasminogen 
activator inhibitor-1; Nrf2, nuclear factor erythroid 2-related factor 2; FINS, fasting insulin; BG, blood glucose; FBG, fasting blood glucose; RBG, random blood glucose; BW, body 
weight; SCr, serum creatinine; BUN, blood urea nitrogen; eGFR, estimated glomerular filtration rate; lncRNA, long non-coding RNA; mRNA, messenger RNA; IL-1β, interleukin-1β; 
IL-6, interleukin-6; ROS, reactive oxygen species; MDA, Malondialdehyde; SOD, superoxide dismutase; LDH, lactate dehydrogenase; NF-κB, nuclear factor kappa B; ICAM-1, 
intercellular adhesion molecule 1; MCP-1, monocyte chemotactic protein 1; TNF-α, tumor necrosis factor-α; BCL-2, B-cell lymphoma-2; Bax, BCL-2-Acssocisted X; ZO-1, zona 
occludens-1; IR, insulin resistance; AMPK, AMP-activated protein kinase; mTOR, mammalian target of rapamycin; LC3, an autophagy marker.
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animals. Chen et  al. (2014) showed that in sodium butyrate-
treated HBZY-1 cells (the rat mesangial cells), mRNA levels of 
monocyte chemotactic protein 1, intercellular adhesion molecule 
1, and vascular cell adhesion molecule 1 significantly increased 
(1.7, 1.3 and 3.1 times). Apelin13, the most active member of the 
adipokine apelin group, inhibited sodium butyrate-induced 
inflammation and HDAC1 reduction in HBZY-1 cells by 
regulating histone acetylation (Chen et al., 2014). Therefore, a new 
mechanism was proposed to determine whether butyrate 
mediated inhibition of HDAC and contributed to the improvement 
of DKD. However, more studies are necessary to characterize and 
explain the controversial effects of endogenous butyrate.

Butyrate mitigates DKD acts as GPCRs 
agonist

In addition to protecting against DKD by inhibiting the HDAC 
pathway, butyrate also acts as an agonist of GPCRs to ameliorate 
DKD. DKD is a chronic low-grade inflammatory disease, and SCFAs 
have proven to positively affect inflammation and kidney injury 
(Huang et al., 2017; Xu et al., 2018). Previous studies by Huang et al. 
(2017) showed that butyrate and GPR43 agonists reversed the HG 
and LPS-induced mesangial cell proliferation, reduced reactive 
oxygen species and malondialdehyde generation, and controlled the 
inflammatory cytokine release. Ensuing research (Huang et al., 2020) 
evaluated the effects of butyrate in mice fed with a high-fat diet, with 
STZ-induced type 2 diabetes, DKD, and on HG-induced mouse 
glomerular mesangial cells. The results showed that exogenous 
butyrate improved blood glucose and insulin resistance and avoided 
UACR, mesangial matrix accumulation, and renal fibrosis in mice. 
Butyrate is responsible for the aforementioned effects via GPR43-
mediated suppression of oxidative stress and NF-κB signalling.

Snelson et  al. (2020) first studied the effects of GPR109A 
deficiency on DKD through analysis of GPR109A signalling 
deficiency on the development of DKD renal injury by GPR109A 
gene deletion. The findings of the long-term study (24 weeks) 
suggested that GPR109A deficiency does not play a vital role in 
the occurrence and development of DKD and gastrointestinal 
homeostasis. On the contrary, Li et  al. (2020) explored the 
protective effects of dietary fiber on experimental DKD in 
STZ-induced diabetic mice or GPR43/GPR109A knockout mice. 
The diabetic mice fed on a high-fat diet had lower rates of 
albuminuria, glomerular hypertrophy, podocyte injury, and 
interstitial fibrosis compared with diabetic controls. Intake of fiber 
beneficially increased faecal and systemic SCFA concentrations 
and decreased the expression of inflammatory factors, 
chemokines, and fibrosis-promoting proteins in diabetic kidneys.

Since butyrate is recognized by the GPR109A, GPR41, and 
GPR43 receptors (Miyamoto et al., 2016), it has been argued that 
single-gene knockout models are insufficient to effectively 
illustrate the function of these receptors. This demands the use of 
double or triple knockout models (Tan et al., 2017). So far, the 
association between GPR41 and kidney injury has not been 

verified, and extensive studies are needed to investigate and 
further unravel the relationship between GPCRs and DKD.

Butyrate treats DKD by triggering 
autophagy

Recently, Cai et al. (2022) explored the protective effects and 
mechanism of sodium butyrate on STZ-induced DKD rats 
through activation of autophagy. They reported that oral sodium 
butyrate improved blood glucose, serum nitrogen levels, 
fibronectin, and collagen IV expression. They also confirmed that 
the beneficial effects of sodium butyrate on the said DKD 
phenotype were due to the activation of the AMPK/mTOR 
signalling pathway, which induces autophagy.

Studies by Tang et al. (2022) also showed that sodium butyrate 
lowered serum creatinine, blood urea nitrogen, and UACR levels 
in DKD models replicated in db/db mice. They further evaluated 
the protective effects of butyrate against DKD-induced muscle 
atrophy. Butyrate provides a protective effect in db/db mice and 
HG/LPS-induced C2C12 myoblasts by suppressing autophagy and 
oxidative stress and activating the PI3K/AKT/mTOR pathway. 
Since the relationship between autophagy and DKD is not entirely 
deciphered yet, butyrate’s role in the regulation of autophagy and 
the prevention and treatment of DKD needs further evaluation.

Butyrate alleviates DKD by novel 
epigenetic mechanisms

We previously described the epigenetic control by HDAC 
inhibition mediated by butyrate that leads to amelioration of 
DKD, which recent studies have corroborated. Du et al. (2020b) 
found that butyrate alleviated renal dysfunction, serum creatinine 
and UACR levels, and mesangial matrix expansion in db/db mice 
by modulating the miR-7a-5p/P311/TGF-β1 pathway. However, 
no apparent differences in blood glucose levels and body weight 
were noted. As reviewed by Yang et al. (2021), sodium butyrate 
significantly improved body weight, urinary microalbumin, and 
urinary creatinine in diabetic mice by altering lncRNA expression, 
with no significant improvement in blood glucose levels.

Studies have found that butyrylation, similar to histone 
acetylation, can competitively inhibit gene transcription (Nie 
et  al., 2017). Also, exogenous crotonate-mediated histone 
crotonylation inhibits the transcriptional activation of renal 
inflammatory genes and improves renal function in mice with 
acute AKI models (Ruiz-Andres et  al., 2016). There is also 
evidence that histone β-hydroxybutyrylation is potentially 
beneficial for DKD (Luo et al., 2020). However, whether butyrate 
or sodium butyrate improves DKD renal injury through the 
histone butyrylation pathway has not been deciphered. Therefore, 
exploring the role of novel epigenetic mechanisms in DKD gene 
transcription regulation can provide great insights into the 
development of novel therapeutics against this disease.
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Conclusion

All in all, endogenous butyrate or exogenous sodium butyrate 
supplementation improves body weight, glucose, and lipid 
metabolism, benefits a large population of type 2 diabetes, and 
protects against DKD, suggesting a new therapeutic reagent for 
DKD (Hong et al., 2016; Bridgeman et al., 2020). However, in vivo 
experiments have not clarified whether butyrate’s protective effect 
on DKD is independent or dependent on improving glycolipid 
metabolism, and the in vitro studies have reported that butyrate 
within a certain concentration range improves HG-induced renal 

intrinsic cells injury (Huang et al., 2017; Gu et al., 2019), but the 
harmful effects of butyrate have also been reported when the 
intervention concentration or time exceeds a certain level (Bock 
et al., 2013), furthermore, it is unclear whether the beneficial 
results observed in animal studies can be extrapolated to humans.

As shown in Figure 2, the molecular mechanism of butyrate 
improving DKD is extremely complex. As GPR41, GPR43, or 
GPR109A agonist, butyrate may exert anti-inflammatory effect 
through these receptors signalling pathways. At the same time, 
butyrate also acts as epigenetic regulators in response to the 
environment or therapeutic modulation by inhibiting HDAC, 

FIGURE 2

Overview of the molecular mechanism of butyrate in the prevention and treatment of DKD. The pathological process of DKD involves persistent 
HG-induced oxidative stress, immune system disorders, and inflammation (red arrows). Endogenous or exogenous butyrate (green arrows) inhibits 
the activity of HDAC, opens the structure of chromatin, and facilitates the expression of the Nrf2 gene, which may enter the nucleus and 
upregulate the downstream targets HO1 and NQO1 and then inhibits oxidative stress and inflammation in DKD. Meanwhile, GPR43 and GPR109A 
are important receptors of butyrate for renal protection, and the interaction between β-arrestin-2 and I-κBα is induced by butyrate via GPR43, 
suggesting that butyrate-mediated GPR43-β-arrestin-2 signaling may be a novel and promising target for DKD (green arrows). Moreover, it has 
been found that butyrate reverses HG-induced the downregulation of miR-7a-5p and inhibits the expression of P311, followed by the inhabitation 
of the kidney fibrosis of DKD (green arrows) and activated autophagy via the AMPK/mTOR pathway to delay the DKD progression. Notably, butyl-
CoA, a metabolite of butyrate, is the substrate of histone butyrylation modification, irrespective of whether butyrate or sodium butyrate improves 
DKD renal injury through histone butyrylation pathway or the cross-talk of the histone post-translational modifications has not been reported. 
Nrf2, Nuclear factor erythroid 2-related factor 2; HO1, heme oxygenase 1; NQO1, NAD(P)H dehydrogenase quinone 1; HDAC, histone deacetylase; 
HAT, histone acetyltransferase; UTR, untranslated region; NF-κB, nuclear factor kappa B; Kbu, histone lysine butyrylation; Kac, histone lysine 
acetylation; ACSS2, acetyl-CoA synthetase 2; p300, a histone acetylation transferase that mediates butyrylation; P311, an RNA-binding protein, 
which could stimulate fibrosis; AMPK, AMP-activated protein kinase; mTOR, mammalian target of rapamycin.
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up-regulation of miR-7a-5p, or induction of the histone butyrylation 
and autophagy processes. It is worth mentioning that butyrate-
induced histone butyrylation, as a novel histone post-translational 
modification, has demonstrated its renal protective effects on diverse 
nephropathies, which provides a novel perspective for elucidating 
the pharmacological mechanisms of butyrate. Therefore, further 
basic experiments and well-designed clinical studies are necessary to 
explore the pharmacological effects and molecular mechanism of 
butyrate in DKD prevention and treatment.
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