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Multi-omics analysis reveals neoantigen-
independent immune cell infiltration in copy-
number driven cancers
Daniel J. McGrail 1, Lorenzo Federico2, Yongsheng Li1, Hui Dai1, Yiling Lu1, Gordon B. Mills1,

Song Yi1,3, Shiaw-Yih Lin1 & Nidhi Sahni 1,4,5

To realize the full potential of immunotherapy, it is critical to understand the drivers of tumor

infiltration by immune cells. Previous studies have linked immune infiltration with tumor

neoantigen levels, but the broad applicability of this concept remains unknown. Here, we find

that while this observation is true across cancers characterized by recurrent mutations, it

does not hold for cancers driven by recurrent copy number alterations, such as breast and

pancreatic tumors. To understand immune invasion in these cancers, we developed an

integrative multi-omics framework, identifying the DNA damage response protein ATM as a

driver of cytokine production leading to increased immune infiltration. This prediction was

validated in numerous orthogonal datasets, as well as experimentally in vitro and in vivo by

cytokine release and immune cell migration. These findings demonstrate diverse drivers of

immune cell infiltration across cancer lineages and may facilitate the clinical adaption of

immunotherapies across diverse malignancies.
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Immune checkpoint inhibitors, such as antibodies targeting
PD-L1 and CTLA4, are emerging as a promising new para-
digm in cancer treatment. However, a critical gap lies in

identifying which patients will respond to these therapies. Cur-
rent literature largely supports the idea that large mutational
burdens will generate neoantigens for T-cell recognition, in turn
leading to increased recruitment of CD8+ cytotoxic T-cells1

which are necessary for efficacy of immune checkpoint block-
ade2–4. Indeed, mutational burden has been shown to correspond
to efficacy of checkpoint blockade in melanoma, lung cancer, and
colorectal cancer3,5–7. This accumulating evidence has resulted in
attempts to utilize microsatellite instability, a biomarker for
defects in mismatch repair leading to a hyper-mutator phenotype,
as a pan-cancer predictive marker for immunotherapy8.

However, it remains unclear how broadly informative muta-
tional load is within other cancer lineages. While most current
clinical trials are focused on the aforementioned cancers, they are
rapidly expanding to more diverse cancers with little knowledge
of biomarker conservation. Checkpoint inhibitors targeting both
PD1 and CTLA4 are currently underway for hepatocellular car-
cinoma, triple negative breast cancer, head and neck cancer, and
thyroid cancer amongst other malignancies9. Recent analysis of
genomic correlates of immunotherapy response in clear cell renal
carcinoma found mutational burden to have no prognostic
value10. As these trials continue, there exists a clear need to
determine whether mutational burden is a sufficient biomarker
across all cancers, and if not what biomarkers could be useful in
their stead.

To investigate this, we leveraged multi-omics analysis across 19
different cancer lineages to better understand determinants of
CD8+ cytotoxic T lymphocyte (CTL) levels. We found only 26%
(5/19) of cancer lineages display a significant positive correlation
between neoantigen levels and CTLs, corresponding to M-class
cancers characterized by frequent mutational drivers. In contrast,
C-class cancers driven by recurrent copy number alterations,
including those of the breast, pancreas, and bladder showed no
relationship. Mutli-omics network analysis identified phosphor-
ylation of the DNA double-strand break signal transducer ATM
as a strong predictor of CTL infiltration that may act by driving
expression of key cytokines. These predictions were validated
using in vitro and in vivo experimental models. Taken together,
this work documents diverse determinants of CTL levels across
different cancer types and identifies ATM as a potential novel
driver of CTL infiltration.

Results
Neoantigen load is not a pan-cancer marker of CTL levels. To
gain a better understanding of CTL infiltration in cancer, we
sought to integrate recently published whole-proteome data sets
from breast11 and colorectal cancer12 patients with the abundance
of other omic data sets available for these cancers (Fig. 1a). We
classified patients as CTL high based on presence of both the
marker CD8 and the cytolytic enzyme granzyme B, and validated
this classification based on expression of a second cytolytic
enzyme perforin (Fig. 1b). As expected for colorectal cancer,
CTLs were enriched in microsatellite instable patients (P= 1.3 ×
10−3, Supplementary Fig. 1A) who have a large mutational load.
Likewise consistent with previous observations, neoantigen load
was strongly related with CTL levels as shown by the receiver-
operator characteristic curve for predicting CTL high patients
based on neoantigen burden (Fig. 2a). When analyzing breast
cancer, we were surprised to find that CTL high patients were
distributed throughout all four subtypes with no significant
enrichments (Supplementary Fig. 1B). Moreover, the previously

observed predictive power of neoantigen load was lost in breast
cancer patients, showing no relationship to CTL content (Fig. 2b).
Likewise, no enrichment for patients with high copy number
variation or overall mutational load was observed (Supplementary
Fig. 2).

To investigate this phenomenon across a broader panel of
cancers, we trained an RNAseq-based CTL score on this protein
data with markers previously shown to be indicative of cytolytic
CD8+ T-cells13 using elastic net regression on the breast cancer
patient data. To test the efficacy of the score, we first identified
TCGA breast cancer patients with high infiltrating lymphocyte
levels based on evaluation of tumor slides by trained histopathol-
ogists and found patients with high lymphocytes levels show
significantly higher CTL scores than those with low lymphocyte
infiltration (P= 3.86 × 10−5), though CTLs as evaluated by
CIBERSORT failed to reach statistical significance when perform-
ing the same analysis (P= 0.11) (Supplementary Fig. 3A).
Furthermore, our CTL score demonstrated strong enrichment
in known immuno-oncology biomarkers such as PDL1 protein
expression and MSI status (Supplementary Fig. 3B–C), and
compared favorably with a panel of other predictive RNAseq
approaches (Supplementary Fig. 3D). Finally, we immunostained
breast cancer tissue sections from a murine-derived syngeneic
transplant model14 for the CTL marker CD8 and found the
immunostaining data was in good agreement with our RNAseq
CTL score (Supplementary Fig. 3E). This score predicts high
levels of CTLs in lung and skin cancers, with minimal immune
levels in glioblastoma (Fig. 2c). When analyzing neoantigen levels
in the same panel of cancers we observed some discrepancies,
such as the kidney renal clear cell (KIRC) cohort showing the
highest CTL score without significant neoantigen levels (Fig. 2d).
To test if neoantigen load was broadly predictive of CTL score, we
compared these two parameters across over 7500 patients from
these cohorts, finding no significant correlation between the two
parameters (Spearman’s R= 0.02, P= 0.10, Fig. 2e). Finally, we
calculated the neoantigen-CTL correlation on a per-cancer basis,
finding five cancer cohorts that showed significant positive
correlation between CTL score and neoantigen levels: melanoma,
colorectal, endometrial, lung adenocarcinoma, and endocervical
adenocarcinoma (Fig. 2f). Notably, these include the majority of
cancer lineages well-studied in the context of immunotherapy,
and are consistent with previous reports of mutational load
predicting patient response to checkpoint blockade3,5–7.

Cytokines are predictive of CTL infiltration across cancers.
Next, in order to determine if there was a more global marker of
CTL invasion, we performed gene set enrichment analysis
(GSEA)15 on differentially expressed proteins between CTL high
and low patients. Amongst the top hits was the “KEGG chemo-
kine signaling pathway” (Fig. 3a). Leading edge analysis further
identified multiple chemokines as potential drivers of the enri-
ched phenotypes (Fig. 3b). Comparing the protein level of soluble
factors in CTL high patients compared to CTL low patients we
identified nine soluble factors that were over-expressed in CTL
high patients at the protein level (Fig. 3c). In order to expand this
across, cancers that do not have whole-proteome expression data
available, we determined which soluble factors showed significant
positive correlation between their transcript and protein levels,
resulting in six candidate soluble factors (Supplementary Fig. 4).
The expression level of these genes was correlated across 13
cancers using the RNAseq-based CTL score. Of these six genes,
we found four to be significantly correlated with CTL levels across
nearly all cancer lineages: CXCL9, CXCL10, CCL5, and IL16
(Fig. 3d).
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Fig. 1 Integrative multi-omics network analysis framework to reveal determinants of immune infiltration across human cancers. a Flow chart for analysis of
pan-cancer indicators of immune invasion. Cytotoxic T-cell (CTL) levels were determined from proteomic data and integrated with gene expression,
genetic mutations, phospho-/total- proteomics, and interactome networks. Identified markers were then expanded pan-cancer, and potential novel drivers
were experimentally verified. b Protein data sets and classification of CTL high patients. CTL high breast cancer patients were classified by positive
expression of the cytolytic enzyme granzyme B and CD8 CTL surface marker, and also showed enrichment of the cytolytic enzyme perforin. P values were
determined by Wilcoxon rank-sum test. Box indicates median with interquartile range, and whisker length determined by the Tukey’s method
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Breast cancer CTL levels corresponds with ATM activation. To
better understand the upstream pathways that may be leading to
CTL invasion as well as cytokine secretion, we began by repeating
the GSEA between CTL high and low patients for differentially
expressed phospho-proteins, and found enrichment of the Bio-
Carta ATM pathway (Fig. 4a). Ataxia-telangiectasia mutated
(ATM) is activated in response to DNA double-stranded breaks

where it acts as a signal transducer to primarily activate the DNA
damage checkpoint16. Enrichment of ATM related genes was also
found performing the same analysis with a gene expression sig-
nature indicative of CTL invasion (Fig. 4b, Supplementary Fig. 5).
Consistent with these observations, phosphorylated ATM was
strongly predictive of CTL invasion (Fig. 4c). While information
on ATM phosphorylation is not broadly available within the
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TCGA, all samples profiled by reverse phase protein array
(RPPA) have total ATM levels which correlate well with phos-
phorylated ATM levels (Fig. 4d). These total ATM levels from
RPPA show good agreement with Western blot quantification
(Supplementary Fig. 6), and also offer good predictive power
(Fig. 4e). Leveraging these RPPA ATM protein levels, we
expanded our analysis to all TCGA breast cancer patients, and
found ATM levels remained strongly predictive of CTL score
(Fig. 4f).

To delineate if the increased ATM was merely correlational or
may play some functional role, we analyzed the correlation
between ATM and CTL score in patients with wild type ATM
compared to those with mutation or deletion of ATM. We
hypothesized that if ATM were to play a functional role, the
relationship would not be observed in patients with genetic ATM
inactivation. We found that patients harboring genetic ATM
inactivation showed no correlation between ATM protein levels
and CTL score, suggesting that ATM may in fact play a functional
role in the recruitment of CTLs (Fig. 4g).

Activation of ATM as a driver of cytokine expression. As we
found cytokines to be potential drivers of CTL invasion, we
hypothesized that ATM could be acting to increase their gene
expression and subsequently recruit more CTLs. To test this, we
integrated three primary data sets as shown in Fig. 5a. First, we
created a network consisting of all first and second neighbor
connections of ATM using curated protein–protein interactions
from BioGrid 3.417. Since ATM is a serine/threonine protein
kinase, we then filtered these curated interactions to only include
those that showed a significant correlation at the phospho-protein
level. Finally, we recovered transcription factor binding infor-
mation from ENCODE (ENCyclopedia Of DNA Elements) Pro-
ject18 and tested to see if transcription factors bound at cytokine
promoters were enriched within our ATM network. We found
that all four primary cytokines correlated with CTL invasion were
significantly enriched within this network (Fig. 5b). Analyzing
this relationship in proteomic data from patient-derived xeno-
grafts (PDX) from immunocompromised NOD/SCID mice that
lack mature T cells, B cells, and NK cells, we found that all three
detectable cytokines (CCL5, CXCL10, and IL16) positively cor-
related with levels of phosphorylated ATM (Fig. 5c), suggesting
these factors are tumor-cell derived19. We further validated these
results in patient samples with the approach from Fig. 4g, where if
the relationship is causal then the correlation between ATM levels
and cytokine gene expression should be lost in patients with
genetic ATM inactivation. Consistent with a potential causal role
of ATM, all three cytokines tested showed significantly decreased
correlation in tumors with genetic alterations in ATM (Fig. 5d).

To validate this causal role for ATM phosphorylation in
cytokine secretion, we next turned to in vitro culture models to
directly manipulate phosphorylated ATM levels. First, ATM
phosphorylation was induced by irradiation in breast cancer cells
in presence or absence of the ATM inhibitor KU-55933. Twenty
four hours later, culture media was harvested and probed for

cytokine amounts using an ELISA array. These studies revealed
that not only did ATM activation by irradiation induce increases
in all three key cytokines observed in the PDXs, but that this
increase was blunted by ATM inhibition (Fig. 6a, Supplementary
Fig. 7). The role of this cytokine secretion in immune cell
recruitment was then evaluated by recapitulating this experiment
and testing the ability of peripheral blood mononuclear cells
(PBMCs) to migrate to conditioned media through a porous
transwell (Fig. 6b). As observed with cytokine secretion,
irradiation-induced ATM phosphorylation increased the migra-
tion of PBMCs, which was blocked by treatment of the tumor
cells with an ATM inhibitor (Fig. 6c).

Finally, to verify this phenotype we utilized a preclinical
murine syngeneic transplantation breast cancer model (Fig. 7a)14.
Within this model we found that phosphorylated ATM as
quantified by RPPA showed significant positive correlation with
CTL levels as determined by immunostaining for the marker CD8
(Fig. 7b, c). Moreover, phosphorylated ATM also positively
correlated with expression of CCL5, CXCL9, and CXCL10
(Fig. 7d). Taken together, these studies suggest that activation
of ATM can act to drive cytokine expression and increase CTL
recruitment to breast cancers.

Neoantigens and ATM drive CTL invasion in distinct cancers.
Thus far we had observed that neoantigen load agreed well with
CTL invasion in colorectal cancer and phosphorylated ATM was
a larger determinant in breast cancer, but it remained unclear
how generalizable these findings are. Using total ATM levels from
RPPA to approximate phosphorylated ATM (Fig. 4d), we ana-
lyzed how well ATM correlated with CTL score and compared
this with neoantigen correlations across 13 different cancer types
with sufficient matched data for RPPA, mutations, and RNAseq
(Fig. 8a, Supplementary Fig. 8A). Strikingly, correlation coeffi-
cients for CTL scores with ATM protein levels and neoantigen
loads showed a strong negative correlation (R=−0.68, P= 9.8e-
3). As we previously observed with colorectal cancer, many of the
commonly studied cancers in immuno-oncology such as mela-
noma, lung, and endometrial cancers showed strong positive
correlation between CTL scores and neoantigen levels consistent
with previous literature20. In contrast, the majority of the
remaining cancer lineages mirrored our observations in breast
cancer, with minimal relationship between CTL levels and
neoantigen load. In these cancers, we again observed significant
positive correlation of CTL score with ATM protein levels. These
findings were largely maintained when using CIBERSORT to
predict CTLs instead of our CTL RNAseq score (Supplementary
Fig. 8B–C). Consistent with our observations in breast cancer,
this relationship appeared to be functional, as genetic ATM
inactivation abrogated the correlation between ATM protein
levels and CTL score/cytokine gene expression in the gastric
cancer cohort (Supplementary Fig. 9).

Across cancer lineages, we found that positive CTL score
correlation with neoantigens and ATM protein levels to be largely
mutually exclusive. Indeed, the correlation of ATM with CTL

Fig. 2 Proteomic identification of patients with high CTL invasion reveals that breast cancer invasion does not correlate with neoantigens. a Receiver-
operator characteristic plot for prediction of CTL high patients based on neoantigen levels in colorectal cancer patients. Area under the curve (AUC) equal
to 0.757 (N= 64). b Receiver-operator characteristic plot for prediction of CTL high patients based on neoantigen levels in breast cancer patients. Area
under the curve (AUC) equal to 0.532 (N= 80). c CTL score calculated across 19 cancers, plotted in order of median for each cancer. Dots represent
individual patients, and lines are median with interquartile range. See Supplementary Fig. 3. Sample sizes given in Supplementary Table 1. d Neoantigens
per patient across 19 cancers, plotted in order of median CTL score for each cancer. Dots represent individual patients, and lines are median with
interquartile range. Sample sizes given in Supplementary Table 1. e Plot of CTL score as a function of neoantigen load across all patients (N= 7835). Inset r
is Spearman’s correlation coefficient and corresponding P value. f Pan-cancer analysis of neoantigen-CTL Spearman correlation, with size of dots topping
each bar representing significance level (P). Sample sizes and exact P-values given in Supplementary Table 2
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scores was significantly higher in cancers where neoantigen levels
were not indicative of immune infiltration (Fig. 8b). Upon closer
inspection of these divergent phenotypes, we observed that they
largely divided into the two classes of cancer originally observed
by Ciriello et. al.20 Their pan-cancer analysis clustered tumor
samples based on a panel of approximately 500 significant
functional events known to drive cancer development and growth
(Supplementary Fig. 10A), resulting in an M-class cluster,
characterized by recurrent mutational drivers, and a C-class

cluster, characterized by recurrent copy number alterations.
Cancer lineages that were predominately M-class tumors showed
primarily neoantigen-dependent CTL scores, whereas lineages
that were predominately for C-class tumors showed dependence
on ATM. While tumors from most lineages showed strong
segregation into one class, lung adenocarcinoma (LUAD) and
bladder cancer (BLCA) both had significant subsets of patients in
each class (Supplementary Fig. 10A). We leveraged this fact to
test our hypothesis, analyzing the correlation of CTLs with
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neoantigens in only M-class and only C-class patients from these
lineages (Fig. 8c). Consistent with our hypothesis, both lineages
showed an increase in Spearman correlation coefficient between
neoantigens and CTLs in M-class tumors relative to the bulk
population, and a decrease in correlation coefficient for C-class
tumors. Likewise, the correlation between ATM and neoantigens
was increased in C-class tumors compared to the bulk or M-class
subset. This trend was largely recapitulated across all analyzed
cancers (Supplementary Fig. 10B). Taken together, our results
suggest that phospho-ATM may be a primary mediator of CTL
invasion in numerous C-class tumors such breast, pancreatic, and
gastric cancers.

Discussion
In this study, we took a multi-omics approach integrating data
from mutations at the DNA level, alterations in gene expression
combined with proteomic and phospho-proteomic data to better
understand the potential mechanisms to leading to recruitment of

CTLs to the tumor microenvironment. First, we found that the
proposed relationship between CTLs and neoantigen levels only
held for a subset of cancers. Notably, in the majority of these
cancers tended to belong to the M class of cancers identified by
integrated pan-cancer analysis of TCGA data20. In this work,
Ciriello and colleagues used ~500 key functional events to cluster
12 cancer types, and found that they divided tumors into two
primary groups: a M class characterized by recurrent mutations
and a C class characterized by recurrent copy number altera-
tions20. These “M class” cancers that we find show positive cor-
relation between neoantigen levels and CTL infiltration include
most cancers where immunotherapy has been most successfully
implemented, including colorectal cancers, lung adenocarcino-
mas, and melanomas. Indeed, clinical data supports the hypoth-
esis that neoantigen load is indicative of patient response to
checkpoint blockade in these cancer lineages3,5–7. However, upon
analyzing other cancers including those originating from the
breast, pancreas, and stomach, we found this relationship no
longer held. Consistent with the lack of correlation between CTLs
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and neoantigen load in clear cell renal cancer (KIRC), a recent
clinical trial found that mutational load does not indicate
response to immunotherapy in kidney cancer10. These cancers all
largely originate from the C class of cancers, characterized by
frequent copy number aberrations. These cancers have been
much less successfully targeted with current immunotherapy
strategies, so a better understanding of CTL recruitment to these
tumors is urgently needed to advance the potential of these
powerful therapies.

To this end, by analyzing whole transcriptome and proteome
data sets we identified phosphorylation of the DNA double-
strand break response protein ATM as a novel potential driver of
CTL invasion in breast and other C-class cancers. Phosphorylated
ATM offered strong predictive value both in the CPTAC breast
cancer patient cohort (Fig. 4c), as well as in a pre-clinical murine
syngeneic transplant model (Fig. 7b). Moreover, this correlation
with ATM was abrogated when analyzing ATM mutant breast
(Fig. 4g) or gastric (Supplementary Fig. 9A) cancer patients,
suggesting ATM plays a functional role in CTL recruitment and is
not merely correlational. As we found levels of the cytokines
CCL5, CXCL9, CXCL10, and IL16 to indicate high CTL score
across multiple cancers, we hypothesized that ATM in its role as a
signal transducer may be promoting the transcription of these

cytokines. Indeed, ATM network modeling showed enrichment of
transcription factors that bind to cytokine promoters (Fig. 5a, b).
Moreover, we found that inducing ATM phosphorylation
through irradiation elevated secretion of cytokines and promoted
PBMC migration (Fig. 6a,c), both of which were reversible with
ATM inhibition.

Overexpression of either CCL521 or CXCL1022 can abrogate the
in vivo tumorigenicity of cancer cell lines via increased immune
cell recruitment without any alterations in in vitro growth
kinetics. This raises the interesting proposition that radiation may
be useful clinical modality to combine with immunotherapy
independent from the proposed abscopal effect of antigen release.
Pre-clinical studies in melanoma have shown that irradiation
alone can increase CTL invasion and that an intact immune
system is required for efficacy of radiotherapy even in absence of
checkpoint inhibition23. Similar enhancement of CTL recruit-
ment has been seen following irradiation in breast cancer stu-
dies24. A number of clinical trials combining these two therapies
are currently underway, and this further mechanistic under-
standing of how they may synergize could improve aspects of
study design including dose scheduling25. More broadly, it will
also be of interest to determine alternative ways to induce
immune response when radiotherapy is not an option or greatly
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limited. Recent studies have shown that PARP inhibitors may be
useful for treating a subset of pancreatic cancer patients26, and
that T-cell invasion is marker of good prognosis in this lethal
cancer27. With accumulating evidence that PARP inhibitors may
act synergistically with immunotherapy28, this could be an
attractive option for targeting this aggressive disease.

As the immunotherapy field comes of age, it will remain critical
to understand cancer-type specific influences of immune cell
recruitment necessary for efficacy. While this study provides
evidence of two divergent drivers between C- and M-class can-
cers, undoubtedly further specification exists within each class.
Predictive biomarkers will be critical to moving forward clinical
trials as response rates in unselected patients currently remain
low, and mechanistic insight into the function of these bio-
markers may be used to induce responses in a larger patient
population. Taken together, this research advances this goal by
using an integrative analysis approach to elucidate phosphory-
lated ATM as a novel driver of CTL recruitment to tumors.

Methods
Analysis of proteomic and phospho-proteomic data for detection of CTLs.
Patients were considered CTL high in colorectal cancer if both CD8 and GZMB
were detected, whereas CTL low was considered if neither protein was detected.
Likewise, for breast positive expression of both CD8 and GZMB was determined as
CTL high, whereas expression of neither protein was considered CTL low. To
determine gene–protein correlations and differential gene expression, we inter-
preted absent proteins in the iTRAQ-labeled breast cancer data set on a per-run
basis. We first determined if any samples within a given 4-plex detected the protein
in question. If so, these samples were taken to be 10% the lowest detectable value,
otherwise they were excluded from the analysis.

CTL infiltration score from RNAseq gene expression. To determine CTL
invasion from RNAseq expression data, we started with expression values for
CD8A, GZMB, and PRF1, three markers previously shown to best predict CD8+ T-
cells and cytolytic activity13. Expression values were transformed as log2(counts+
1). We performed elastic net regression with these against the breast cancer CTL
high patients, resulting in a predictive signature consisting only of CD8A and
GZMB (Supplementary Table 4). This method compared favorably with other
previously published methods4,29 (Supplementary Fig. 3).

Gene set enrichment analysis of CTL high tumors. Gene set enrichment analysis
(GSEA) and leading edge quantification was performed as previously described15.
For proteomic and phospho-proteomic analysis, proteins were ranked by their T
statistic. For gene expression analysis, we adapted our previously published algo-
rithm30 to develop a representative gene signature. In short, the breast cancer
cohort was divided into a testing and a training group. Differential analysis was
determined by sub-sampling the training group 1000 times to generate 1000 lists of
P values and fold changes. Optimal Pvalue, fold change, and the percentage of time
these values must be satisfied was determined using a grid search algorithm
resulting the final signature (Supplementary Fig. 5). The coefficients for this sig-
nature were used to run GSEA based on gene expression.

Enrichment of cytokine transcription factors in ATM neighborhood.
Protein–protein interactions were called from BioGrid 3.417 to generate an initial
network with all first and second neighbors of ATM. We then filtered these curated
interactions to only include those which showed a significant correlation at the
phospho-protein level (FDR of 10%) to generate a final ATM second neighbor
network. Transcription factor binding information from ENCODE project was
used to test if cytokine transcription factors were enriched within this network. To
do so, we determined the number of cytokine TFs in the ATM network, and then
compared this to an empirical null distribution created by randomly selecting
proteins sets equal to the size of the ATM network for 106 iterations.

Collection of conditioned media and ELISA. RPMI containing 2% FBS was
equilibrated overnight in an incubator at 5% CO2 and 37 °C. The following day,
this media was added to sub-confluent BT-549, MDA-MB-231, or ZR-75-1 breast
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cancer cells (ATCC) with the addition of either 10 μM KU-55933 (Selleckchem,
Houston, TX) or DMSO solvent control. Two hours later, cells were either irra-
diated (5 Gy) or mock treated. Conditioned media was collected 24 h later, cen-
trifuged at 800 g for 10 min, and filtered through a 0.45 μm filter to remove any
cells or debris. Following collection cells were counted, and media diluted to correct
for any discrepancies. The Proteome Profiler Human Cytokine Array Kit was
acquired from R&D Systems (Minneapolis, MN) and run essentially per manu-
facturer’s instructions. Spot intensity was quantified using ImageJ software.

Peripheral blood mononuclear cell migration assay. Transwells (6.5 mm, 3.0 μm
pore size) were acquired from Corning (Kennebunk, ME) and equilibrated overnight
in RPMI containing 2% FBS. Cryopreserved peripheral blood mononuclear cells were
acquired from ZenBio (Research Triangle Park, NC) and thawed per provided
instructions. To account for any effects of ATM inhibition, KU-55933 was added
directly to the PBMCs, and either KU-55933 or DMSO was added as required to
cancer cell supernatants. Each transwell received 2 × 105 PBMCs which were allowed
to migrate for 4 h. After removing the transwells, the plates were centrifuged and
migrated PBMCs counted using an IncuCyte Zoom (Essen Bioscience).

Mouse models and immunofluorescent staining. Previously described murine-
derived syngeneic transplant models (MDSTs) models were transplanted into
4–8 week old FVB/N mice14. Tumors were fixed in 10% formaldehyde, embedded
in paraffin, and sectioned on a Finesse 325 microtome (Thermo Scientific) into 7
μm sections. Sections were deparaffinized with xylene and rehydrated through an
ethanol gradient. Antigen retrieval was performed using 10 mM citric acid (pH 6.0)
at 95 °C for 30 min. Sections were treated with 3 mg/mL sodium borohydride to
reduce autofluorescence, blocked with normal goat serum, and incubated overnight
at 4 °C in a humidified chamber with 0.5 μg/mL rat anti-CD8 (clone 4SM15,
eBioscience). After washing sections were incubated with secondary antibody
(cross-adsorbed goat anti-rat AlexaFluor 488, Invitrogen) for 1 h at room tem-
perature. Slides were counterstained with Hoechst and mounted with Vectashield
(Vector Labs). Images (at least eight random fields per section) were acquired on a
Nikon Eclipse TI inverted microscope at ×20 magnification. Images were quanti-
fied in a custom-written MATLAB algorithm. Area staining positive for CD8 was
segmented, and normalized to total tissue area determined from residual auto-
fluorescence in the red channel.

ATM mutation analysis. Gene expression values for CD8A, GZMB, CCL5,
CXCL10, and IL16, as well as ATM protein levels (RPPA) and ATM mutation
status were obtained from cBioPortal. We randomly selected a subset of ATM
mutant and wild-type patients to calculate the correlation coefficient for ATM and
desired gene levels. This process was repeated 1000 times, and a Wilcoxon rank-
sum test was used to determine if the correlation was significantly altered.

Data availability. Proteomic data was acquired from CPTAC publications for
breast11 and colorectal cancer12 patients. Whole transcriptome data for breast cancer
was downloaded from the GDC data commons (https://portal.gdc.cancer.gov/). Pan-
cancer gene expression, RPPA data, and mutation data were retrieved from cBio-
Portal31,32. We also utilized omics data sets for breast cancer PDXs19 and MDST
models14. Transcription factor binding information from ENCODE (ENCyclopedia
Of DNA Elements) Project18 was downloaded from Harmonizome33. Neoantigen
levels were retrieved from The Cancer Immunome Atlas4. Classification of tumors
into M-Class and C-Class was obtained from Ciriello et al.20
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